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Abstract: Internet users are becoming overwhelmed by rapidly growing Web information. Two commonly used
technologies to solve the problem are information retrieval and collaborative filtering. Existing information re-
trieval methods have been mainly developed for handling flat documents and current collaborative filtering
systems still suffer from the sparsity problem in which most users may rate very few items comparing with
the large number of available items in the systems. Moreover, current methods usually cope with these issues
separately. In this paper, we develop an intelligent agent framework that integrates document collection, in-
formation retrieval and recommendation. In order to improve the query performance, similar XML documents
are grouped together based on structural information. Different with conventional methods, we use tree-edit
distance to measure the similarity/dissimilarity among XML documents. In collaborative filtering, we convert
the recommendation problem into a classification problem and solve it by multi-class support vector machines.
Experimental studies show that the accurate rates of our recommendation method outperform existing ones.
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1 Introduction

The rapid expansion of the World Wide Web has
greatly facilitated the growth of e-commence. Each
day, more and more movies, books, and articles are
created and the information is posted online through
Web pages. Consequently, users quickly become
overwhelmed and are spending more and more time to
search for their desired targets. To address this prob-
lem, we have to face two challenges: information re-
trieval and recommendation.

The semistructured data extracted from Web
pages are usually maintained by relational database
technologies [17], where Web documents are decom-
posed and inserted into a set of tables. Studies [17]
show that grouping documents with similar structures
together can reduce table fragmentation, and, thus,
improve query performance. Recent research effort
[10] has focused on categorizing XML documents
by structures. Since an XML document can be rep-
resented by an ordered, labeled tree, tree edit dis-
tance is a common metric to measure the similar-
ity/disimilarity between two documents. Various al-
gorithms have been proposed to compute the tree-edit
distance between trees [19, 6, 5]. However, the cost
of computing the tree edit distances reported in cur-
rent work is quadratic to the document size, which is
not suitable for a collection of large documents. An
algorithm for finding the minimum edit distance be-

tween an XML document and a Document Type Def-
inition (DTD) is given in [15], and a faster algorithm
is reported in [5]. However, these algorithms are not
suitable for a large data set because of their high time
complexities.

Besides extracting data from Web pages, efficient
and effective tools to help users narrow down desired
targets is required. Recommender systems provide
automated methods for users to search for interesting
items with respect to users’ preferences. The under-
lying techniques used in today’s recommender sys-
tems can be classified into collaborative filtering (CF)
and content-based filtering (CBF). CF algorithms ex-
ploit similarities among users or items based on users’
feedbacks. CBF systems, on the other hand, recom-
mend items of interest to the active user by exploiting
content information of the items already rated. Typ-
ically, a profile is formed for a user individually by
analyzing information regarding the content of items,
such as desired actors/actresses, title, and description,
etc. Additional items can be inferred from this pro-
file. Usually, the content is difficult to analyze, thus
CF algorithms are more successful in a broad range of
areas.

Current CF recommender algorithms suffer from
a fundamental problem, called sparsity problem [14].
Since the set of all possible available items in a sys-
tem is very large, most users may have rated very few
items, and, hence, it is difficult to find the active user’s
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neighborhood with high similarity. As a result the ac-
curacy of the recommendations may be poor.

A lot of research have been launched to improve
the quality of recommendation systems. Machine
learning is a standard paradigm of predicting ratings
and preferences for users’ interests by casting the pre-
diction problem as a classification problem. Com-
pared to other machine learning methods, support vec-
tor machines (SVMs) can be analyzed theoretically
using concepts from computational learning theory,
and it has also been successfully applied to many ap-
plications, such as text categorization [8]. However,
the standard SVM classifier is not very successful [19]
when it is applied in recommender systems due to the
sparsity problem.

In this paper,we propose an agent framework for
users to integrate the functions of information retrieval
and recommendation. We first present a practical al-
gorithm that uses top-down tree edit operations. It is
shown that the algorithm runs in O(p × logp × n),
where p is the size of the schema and n is the size of
the XML document.

Then, we address the sparsity problem by re-
peatedly estimating the missing ratings for the items
which users have not rated. We first initialize these
missing values with default values to provide enough
training examples for learning machines, and, then,
build classifiers based on these training examples. Af-
ter the classifiers are obtained, those missing values
are re-estimated. This procedure is repeated until the
termination criterion is met.

The rest of the paper is organized as follows. Sec-
tion 2 describe the overview of the agent framework
and our solutions. In Section 3, we introduce the algo-
rithm for computing tree-edit distance and classifying
XML documents based the distance. Our recommen-
dation method is presented in Section 4. Experimental
studies are presented in Section 5. Section 6 states the
conclusion of the paper.

2 Overview of the System Model and
Techniques

Consider an Internet service system consisting of mul-
tiple proxy servers. Each proxy server hosts an agent
to provide recommendation services for local users.
The agent consists of several components, including
information collection, caching, information retrieval,
collaborative filtering, etc. The agent can collect Web
documents from the Internet by crawlers or exchange
information with other agents. Useful information are
retrieved from these documents and stored in rela-
tional tables. These tables are maintained by cache
managers at the proxy servers. Upon receiving re-

quests from users, agents trigger CF systems and pro-
vide recommendations to users. In this paper, we will
focus on some tasks in information retrieval and col-
laborative filtering.

Information retrieval involves the tasks of fulfill-
ing ephemeral interest queries to find a particular in-
formation need. Due to its wide deployment in the
commercial world, relational database is a common
practice to store XML documents. In this case, these
XML documents have to be decomposed into small
pieces and each piece is inserted into a correspond-
ing table. Since queries are usually constructed based
on path expression, grouping documents with similar
structures would improve the performance of query
processing. In order to compute users’ preference,
agents construct a table of users and items. Note
that some elements in the user-item matrix are miss-
ing because the users have not rated the corresponding
items.

3 Document Classification

We now start to introduce the details of our technique.
This section focuses on assigning a document into a
predefined category, given a set of labeled documents
at hand. We first define a metric to measure similarity
between two documents and present an efficient al-
gorithm to compute the similarity. Then, we employ
SVM classifiers for the classification.

3.1 Tree Edit distance and Similarity
For the purpose of classification, a proper similar-
ity/dissimilarity metric should be provided. An XML
document can be represented as an ordered, labeled
tree T . Each node in T represents an XML element
in the document and is labeled with the element tag
name. Each edge in T represents the element nesting
relationship in the document.

Tree edit distance [19] which is a natural exten-
sion of string edit distance can be used to measure the
structural difference between two documents. How-
ever, using the tree edit distance between two docu-
ments directly may not be a good idea of measuring
the dissimilarity. Hence, a potential solution to mea-
sure the dissimilarity between two documents is us-
ing the cost that a document conforms to the DTD
schema generating the other document. This cost is
actually the edit distance between the document and
DTD. Specifically, given two documents x1 and x2

and the corresponding DTD schemas s(x1) and s(x2),
the dissimilarity between x1 and x2 is defined by
δ(x1, x2) = δ(x1, s(x2)) + δ(x2, s(x1)). As a DTD
may be recursive, some nodes may lead to a infinite
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path. Instead of working on a DTD directly, we con-
vert it to a normalized regular hedge grammar. Regu-
lar hedge grammars were introduced by Murata in [9]
for schema representation of XML data.

Based on the definition of regular hedge grammar
in [9], a normalized regular hedge grammar (NRHG)
is defined as follows:

Definition A NRHG is a 5-tuple
(Σ, VT , VF , P, s), where:

1. Σ is a finite set of terminals,

2. VT is a finite set of tree variables,

3. VF is a finite set of forest variables,

4. P is a finite set of production rules, each of which
takes one of the four forms as below:

(a) vt → x, where vt is a tree variable in VT ,
and x is a terminal in Σ. This rule is used
to generate a tree with a single node.

(b) vt → a〈vf 〉, where vt is a tree variable in
VT , a is a terminal in Σ and vf is a forest
variable in VF . This rule is used to put a
new node as a new root of the forest that is
generated by forest variable

(c) vf → vt, where vf is a forest variable and
vt is a tree variable. This rule is the base
case to generate a tree for a forest.

(d) vf → vtv
′
f , where vf and v

′
f are forest vari-

ables and vt is a tree variable.

5. s ∈ VT is the starting symbol, which defines the
tree pattern that can be generated by this gram-
mar.

We have shown in [5] that the optimal edit se-
quences to transform an XML document to conform
to a DTD can be computed in O(n2p(n+log p)) time,
where n is the size of the document, and p is the size
of DTD. Although it is a polynomial time algorithm,
it becomes inefficient to process XML document with
more than 1M nodes, which is very common in E-
commerce application. In the next section, a linear
time algorithm to compute the top-down edit distance
is presented. We also show that the algorithm can be
used to compute the restricted top-down edit distance
with just one change.

3.2 Tree Edit distance and Similarity
We present the recursion to calculate the distance be-
tween an ordered tree and a NRHG. We follow the
same idea and notations as presented in [5].

Notations:

t[i] represents the node of T whose post-order is
i and it refers to the label of the node t[i] when there
is no confusion;

T [i] represents the sub-tree rooted at node t[i];
F [i] represents the sub-forest obtained by delet-

ing node t[i] from the tree T [i];
p(i) refers to the order of the parent node of t[i];
n(i) refers to the order of the right sibling of t[i];
Fs[i] denotes the suffix-forest obtained by delet-

ing the left sibling(s) of t[i] from F [p(i)].
δ(Tt, Ts): is the minimum cost to transform the

source tree Ts to the target tree Tt;
δ(vt, λ): is the minimum cost to construct a tree t

such that vt →∗ t;
δ(Ft, Fs): is the minimum cost to transform the

source forest Fs to the target forest Ft;
δ(vf , λ): is the minimum cost to construct a tree

t such that vf →∗ f ;
For vt ∈ VT in a NRHG, and a tree t, define:

C[vt, T [i]] = min{δ(t, T [i]) : vt →∗ t}.
Similarly, for vf ∈ VF in a NRHG, and a forest

f , define:

C[vf , F [i]] = min{δ(f, F [i]) : vf →∗ f}.
We state our main theorem as:
Theorem For each vt ∈ VT , and each sub-tree

T [i]:
C[vt, T [i]] =

min

⎧⎪⎨
⎪⎩

vt → x δ(x, T [i]) (1)
vt → a〈vf 〉 δ(λ, T [i]) + C[vt, λ] (2)
vt → a〈vf 〉 C[vf , F [i]] + δ(a, t[i]) (3)

⎫⎪⎬
⎪⎭

and for each vf ∈ VF and sub-forest Fs[i] =
T [i]Fs[n(i)]:

C[vf , Fs[i]] =

min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

vf → vt C[vt, T [i]] + δ(λ, Fs[n(i)]) (4)
vf → vt δ(λ, T [i]) + C[vf , Fs[n(i)]] (5)
vf → vtv

′
f C[vt, T [i]] + C[v

′
f , Fs[n(i)]] (6)

vf → vtv
′
f δ(λ, T [i]) + C[vf , Fs[n(i)]] (7)

vf → vtv
′
f C[vt, λ] + C[v

′
f , Fs[i]] (8)

vf → v
′
f C[v

′
f , Fs[i]] (9)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

Due to the space limit, the correctness of the
above theorem is omitted from this paper.

There are at most O(|VF |) number of vertices
and O(|VF |) number of edges in the graph, and there
is no negative weight edge in this graph. The time
needed to complete Dijkstra’s shortest path algorithm
is O(V log V + E), so the overall time to compute
C[vf , Fs[i]] for all vf ∈ VF is O(|VF | log |VF |).

For a tree with n nodes and a grammar with
p rules, there are O(n × p) C[vt, T [i]] to compute,
and it take constant time to compute each C[vt, T [i]].
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Similarly, there are O(n × p) C[vf , Fs[i]] to com-
pute. For each Fs[i], it takes p log p time to compute
C[vf , Fs[i]] for all the forest variables. So the above
procedure can be completed in O(n × p log p) time.

3.3 Linear Classifier

A general notion of the classification problem can
be described as follows. Given a set of l train-
ing documents (x1, y1), (x2, y2), . . . , (xl, yl) ∈ χ ×
{1, ... . . . , k}, we aim to estimate a prediction func-
tion f such that it can classify a new document x.

SVMs have been used successfully in the context
of text classification. By introducing slack variables
ξn ≥ 0, 1 ≤ n ≤ l, SVMs allow some classification
errors. In this case, the optimization problem can be
written as follows:

min 1
2(||w||)2 + C

l∑
n=1

ξn

subject to yn(wT x + b) ≥ 1 − ξn, 1 ≤ n ≤ l
ξn ≥ 0, 1 ≤ n ≤ l

where C is a predefined constant to control the tradoff
between the gap of two classes and errors of classifi-
cation.

The above binary classification method can
be extended for solving multi-class classification
problems[7]. In paper we consider an one-against-
one method, where a binary classifier is constructed
for each pair of classes i and j, and totally k(k− 1)/2
binary classifiers have to be constructed. If a classifier
wT

ijx + bij assigns x to the ith class, then a vote for
the ith class increases by one; otherwise, a vote for
the jth class increases by one. Finally, the largest vote
decides the class label of x.

4 Collaborative Filtering System

Consider a recommendation system consisting of M
users and N items. There is a particular user called
active user ua. The task of collaborative filtering is to
predict the preference of the active user based on the
opinions of a set of similar users. Each user uj has
given opinions on a set of items Ij and its opinion on
item n is given as numeric rating xjn. Note that Ij can
be empty. To predict the preference of the active user,
we need to estimate its rating on item n �∈ Ia. Let A
be a user-item matrix, where the value of ith row and
jth column is xij .

Current CF algorithms are usually divided into
two categories: Memory-based and Model based al-
gorithms [4]. Memory-based algorithms utilize the
entire user-item database to make predictions. Model-
based algorithms make predictions by first developing

a model of user ratings and then predict according to
this model. Our approach falls into the Model-based
category.

4.1 Model-based collaborative filtering

Since memory-based algorithms seriously suffer from
the sparsity problem, model-based approaches have
been studied to overcome this problem by learn-
ing a model for predicting ratings of unobserved
items. These approaches include item-based [14],
clustering [16], and classification [3], etc. The
item-based method assumes that users like to pur-
chase items similar to those items they have se-
lected in the history. To measure the similarity be-
tween two items, it first searches a set of users who
have rated both of the two items and, then, com-
pute the similarity with some techniques. Let Uin =
{users who have rated both item i and n}. The simi-
larity of item i and item n is computed by

Sin =
∑

u∈Uin
(xui − x̂u)(xun − x̂u)√∑

u∈Uin
(xui − x̂u)2

√∑
u∈Uin

(xun − x̂u)2

where x̂u is the average of the uth user’s ratings, that

is x̂u =
∑

u∈Iu
xun

|Iu| After the similarity computation,
we can predict the preference of ua on item n. It is
given as follows:

pan =
∑

i∈S(Sni × xai)∑
i∈S |Sni|

where S is the set of items similar to item n.

4.2 Classification Methods

In this paper, we recast collaborative filtering as a clas-
sification problem. Based on its numeric rating, an
item or a user can be classified into a corresponding
class. There are two ways to cast the problem [1]. One
way is to treat every item as a separate classification
problem. Given an item n, one can build a classifier
to predict which class the active user belongs to. Ev-
ery user uj is represented as a vector in the feature
space by using uj’s ratings on items other than n. A
more common way to cast the classification problem
is to treat every user as a separate problem [3]. One
can build a classifier for the active user ua by using
items as training instances. To be specific, training in-
stance n is represented as a feature vector xn in which
elements are ratings provided by other users. With-
out loss of generality, we consider the first user u1 as
the active user and u1 has rated the first l items, that
is, I1 = {1, . . . , l} . Then, the feature vector of item
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n,1 ≤ n ≤ l is xn = (x2n, x3n, . . . , xMn)T and its
class label yn is rating x1n . We need to predict labels
for all other feature vectors xn,l + 1 ≤ n ≤ N .

As the number of items grows very fast, users
usually just rate a smaller percentage of the item pop-
ulation. That is the so-called sparsity problem. As
a result, the corresponding feature vectors have many
empty elements. We overcome these problems by it-
eratively estimating missing elements in the user-item
matrix A. For each element amn ∈ A, we have

amn =

{
xmn if n ∈ Im;
pmn otherwise.

We will use SVM classifier introduced in the
above section to solve the recommendation problem.
Initially, We randomly assign 0 or 1 to pmn. Accord-
ing to SVM classifier fmn, a new pmn is given. After
each pmn is re-computed, we test the current classi-
fiers with the test data, denoted by T . Let Tc be the
total number of correct labels computed with current
classifiers. The accurate rate is defined as |Tc|/|T |. If
the difference of accurate rates between two consec-
utive steps is less than a predefined value ε, the algo-
rithm stops.

5 Experimental Studies

Our goal is to evaluate the performance of the above
methods in agent systems. The experimental stud-
ies include two parts. We first compare the perfor-
mances of our document classifier with tree edit dis-
tance, and, then, compare our heuristic recommender
method with the user-based and item-based method.

We also tested the classification system on the
benchmark data from XML Mining Challenge [18].
There are 3 sets of data for structure oriented clas-
sification in the benchmark. Each set consists of 11
classes of documents. The order of noises is increas-
ing from set 1 to set 3. We use about 90% of the doc-
ument to train the classifier, and the remaining 10%
for testing. The number of correctly classified files
and the number of total files are listed in Table 1. The
results show that the distance between an XML doc-
ument and a schema is a effective similarity measure
for XML documents.

For the second part of experimental studies, we
use a dataset from MovieLens[11]. In this database,
there are about 43000 users who have given ratings
on 3500 different movies. Before the training process,
some data, e.g., some users who just rated on very few
movies and some movies which were rated by very
few users, have to be cleaned out. The remaining data
were randomly divided into training set and test set

dataset A (%) dataset B (%)
LIBSVM 75.35 74.81

User-based 64.23 63.57
Item-based 65.17 63.62

Table 2: Recommendation Results

according to 90/10 ratio. Two training set dataset A
and dataset B were created.

We use LIBSVM [7] to solve the multiclass clas-
sification problem and compare it with the user-based
and item-based algorithms aforementioned (all miss-
ing values are initialized with zeros). The metric we
used to evaluate the performance of algorithms is the
average accurate rate, defined as the percentage of cor-
rect ratings. ε is selected as 0.005 in the entire exper-
iment. The results achieved by three algorithms for
two datasets are given in Table 2. As we can see, the
accurate rates of the SVM methods are higher than the
user-based and item-based approaches.

5.1 Conclusion

In this paper, we proposed an agent framework to in-
tegrate services of information retrieval and recom-
mendation. The proxy servers, which are close to
the users, host agents to collect Web pages, decom-
pose them, store useful information in relational ta-
bles, and then recommend interesting items to users.
In order to improve the query performance, we cate-
gorized XML documents according to the structural
information. The similarity of two XML documents
is measured by tree edit distance. We provide an effi-
cient solution for approximating matching between an
XML document and a schema.
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