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Abstract: In this paper, a new approach is proposed for the design of sharp linear-phase FIR filters using the
α-scaled sampling kernel. The proposed filter design approach provides a closed-form expression for the filter
coefficients by employing theα-scaled (here,α is real-valued) sampling kernel. The design procedure is simpler
and easier compared to well-known sharp linear-phase FIR filter design methods such as interpolated FIR(IFIR)
and frequency-response masking(FRM) technique. We show, by means of examples, that the proposed approach
yields similar filter performance but much simpler design procedures than conventional sharp filter design methods.
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1 Introduction

Digital FIR filters with sharp transition band find
many applications in communication, multimedia,
and biomedical devices. The needs for FIR filters
arise from the requirement of linear phase, stability,
and low coefficient sensitivity. However, a narrow
transition band (or sharp) FIR filter is often associ-
ated with high computational cost due to its long fil-
ter length. To overcome this problem, many com-
putationally efficient approaches have been proposed
in the past decade, which includes the well-known
prefiler-equalizer and the IFIR approaches [1, 2] for
narrow-band sharp filter design, and the FRM tech-
nique for arbitrary bandwidth sharp filter design [3,
4, 5]. It is reported in [4] that a FRM filter is
able to reduce the computational cost by more than
98%. However, the design procedures for these fil-
ters [1, 2, 3, 4, 5] are much more complicated than the
traditional approaches due to the involvement of few
subfilters. It is common that an iterative procedure is
involved to design one subfilter at a time while tak-
ing into account of the contributions from other sub-
filter(s). In such a way, the complexity of the overall
filter is gradually reduced [4, 6]. Further improvement
in terms of number of multipliers is possible if non-
linear optimization techniques are employed to opti-
mize all subfilters jointly [7, 8, 9, 10], which lead to
about additional 20% savings compared to the itera-
tive design procedure.

Although these proposed methods are effective
for the design of fixed coefficient sharp filters, but it

is difficult to apply these methods to programmable
filters. This is because there is no closed-form ex-
pressions for filter coefficients in these filter design
approaches. In this paper, a new approach is proposed
for the design of sharp linear-phase FIR filters by uti-
lizing theα-scaled sampling kernel [11]. In particular,
the proposed design procedure is simpler and easier
than those used for the IFIR and FRM filters. Further-
more, it provides a closed-form expression for filter
coefficients. Note that the scaling factorα as in the
α-scaled sampling kernel [11] can be rational as well
as irrational.

This paper is organized as follows: Theα-scaled
sampling kernel utilized in designing sharp linear-
phase FIR filters is discussed in Section 2. Section
3 provides a new method of designing sharp linear-
phase FIR filters using theα-scaled sampling kernel
and a window function. Section 4 presents the design
examples of the proposed approach. Finally, the con-
clusion is drawn in Section 5.

2 α-scaled Sampling Kernel

Given a continuous-time signalx(t) and its scaled ver-
sionx( t

α) (here,α ∈ <, α > 0 is a real-valued scal-
ing factor), let’s denotex[n] andxα[n] as their respec-
tive sampled discrete-time signals. That is,

x[n] = x(nT ) (1)

xα[n] = x(nT
′
), T

′
=

T

α
(2)

Proceedings of the 6th WSEAS International Conference on SIGNAL PROCESSING, Dallas, Texas, USA, March 22-24, 2007         129



Note thatα > 1 is for interpolation and0 < α < 1 for
decimation. Recently, it was reported thatxα[n] can
be obtained in a single step fromx[n] by utilizing the
following α-scaled up sampling kernelsinc(n

α − k)
[11]:

xα[n] =
∞∑

k=−∞
x[k] sinc(

n

α
− k) (3)

3 The Design of a Sharp Linear-
phase FIR Filter

In this paper, (3) is further exploited and modified
for the efficient design of linear phase FIR filters
with sharp transition. In particular, whenh[n] (n =
0, 1, · · · , N−1) is a linear-phase equiripple FIR filter
of lengthN , consider the following new filterh(α)[n]:

h(α)[n] =
1
α

hα[n] (4)

=
N−1∑

k=0

h[k] • 1
α

sinc(
n

α
− k) (5)

In particular, it can be verified that the discrete-time
Fourier transform (DTFT) ofh(α)[n] (i.e., H(α)[ejω],
ω ∈ [−π, π]) can be expressed in terms ofH[ejω]:
i.e.,

H(α)[e
jω] =

{
H[ejαω], ω ∈ [−π

α , π
α ]

o, ω /∈ [−π
α , π

α ]
(6)

For the proof of (6), let’s infer the scaling properties
of the discrete-time Fourier transform (DTFT)[2, 11]:

h[n] DTFT−−−−→ H(ejω) (7)

hα[n] DTFT−−−−→ α H(ejαω) (8)

As in [11], (4) can be also expressed by

h(α)[n] =
1
2π

N−1∑

k=0

h[k]
∫ π

α

− π
α

ej(n−αk)ω′dω′ (9)

By taking the DTFT of both sides of (9), we can com-
plete the proof as follows:

H(α)[e
jω] =

∞∑

n=−∞
h(α)[n]e−jωn

=
1
2π

∫ π
α

− π
α

N−1∑

k=0

h[k]e−jαkω′

︸ ︷︷ ︸
H[ejαω′ ]

•
∞∑

n=−∞
e−jn(ω−ω′)

︸ ︷︷ ︸
2π δ((ω−ω′)

dω′

=

{
H[ejαω], ω ∈ [−π

α , π
α ]

o, ω /∈ [−π
α , π

α ]

From (5)-(6), we can observe that

• When H[z] is a linear-phase lowpass FIR fil-
ter with bandedges atωp andωs (e.g., see Fig.
1), the widths of the passband and the transi-
tion band ofH(α)[z] are 1

α -th of those ofH[z].
Accordingly,h(α)[n] (or H(α)[z]) can be consid-
ered as a linear-phase FIR filter with a narrower
passband and a sharper transition than the parent
linear-phase FIR filterh[n] (or H[z]), and thus
it plays the same role as the conventional IFIR
filters [2].

• The scaling factorα can be a real-valued one,
and the design procedure for theα-scaled filter
(4)-(5) can be completed in a single step with re-
moving unwanted images and avoiding aliasing
simultaneously [11].

• Also, the length of the new filterh(α)[n] in (5)
can be estimated by using the well-known for-
mulas (e.g., Kaiser’s formula, Bellanger’s formu-
lar, Hermann’s formula, etc. [2]) for establishing
the minimum filter length from the given filter
specification. For example, when the Kaiser’s
formula is utilized for the filter length estima-
tion, the minimum value forNα (i.e., length of
h(α)[n]) is given by:

Nα =
−20 log10(

√
δpδs)− 13

14.6(ωs − ωp)/2π
+ 1 (10)

whereδp and δs denote the peak passband and
stopband ripples, andωp andωs correspond to
the normalized passband and stopband edge an-
gular frequencies, respectively, given in the spec-
ification for the filterh(α)[n] . Moreover, when
α is an integer, the overall filter can be efficiently
implemented by using the IFIR structure [1, 2].

• By applying a “lowpass-to-highpass” transfor-
mation toh(α)[n] (or H(α)[z]), a narrow high-
pass linear-phase FIR filter with sharp transi-
tion can be also derived (e.g.,(−1)nh[n] or
H(α)[−z]).
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• The concept of thesingle-lowpassα-scaled sam-
pling kernel (i.e., (4) or (5)) may be further ex-
tended for the derivation of the more general
”single-lowpassplus multi-bandpass” FIR fil-
ters.

• The complementary filter concept as used in the
FRM approaches [2, 3] can be also utilized for
the derivation of the complementary filter of
h(α)[n].

From (5), we can design sharp lowpass FIR fil-
ters with arbitrary passband width. However, since
thesinc function is involved in (5), the designed filter
length can be long. To solve this problem, the Gaus-
sian window function is employed to obtain desired
FIR filters by minimizing the performance degrada-
tion of the filter characteristics. With the introduction
of a Gaussian window function, (5) can be rewritten
into:

hf
(α)[n] = h(α)[n]w[n], n = 0, · · · ,M − 1 (11)

where the Gaussian windoww[n] is given by

w[n] = e
− 1

2
β(

n−M−1
2

M−1
2

)2

, n = 0, · · · ,M − 1 (12)

In particular, the width ofw[n] (here, β > 2) is
inversely related to the value ofβ: a larger value ofβ
produces a narrower window. In this paper,β is set to
2.5 (default). To illustrate the proposed approach, the
narrow-passband sharp FIR filter example is shown
in Fig. 1, where Fig. 1(a) is the frequency response
of a model filter and Fig. 1(b) corresponds to the
frequency response of the designed FIR filter.

To design a filter using the proposed method, the
following procedure can be used:

• For a given set of filter specification, we should
determine the value ofα and bandedges of a
model filter. The value ofα depends on the fil-
ter structure being used. It can be either IFIR or
FRM.

• The corresponding model filter should be de-
signed by using any conventional filter design al-
gorithm such as Remez. The coefficients of over-
all filter can be calculated by applying (5) and
(11). Note that the length of Gaussian window
is about the same of the effective length of IFIR
filter or FRM filter according to our experience

Fig. 2 illustrates the design of a lowpass filter design
using above procedure, whereα =

√
7. Fig. 2(a)

showsh(α)[n] = h[n]: i.e., α = 1; Fig. 2(b)
corresponds toh(α)[n] : α =

√
7; and Fig. 2(c) is the

final filter hf
(α)[n] obtained after windowing.

It is possible to extend the proposed method to
the design of frequency-response masking filter. We
demonstrate this by applying our method to the mod-
ified FRM structure presented in [5], as shown in Fig.
3. The design starts with a model filter as in Fig. 3(a).
Interpolating the model filter by a factor ofα results
a filter Hs1[z] with compressed frequency response
as shown in Fig. 3(b). Applying IFIR technique to
Hs1[z] and selecting a proper pair of masking filters, a
sharp FIR filter is produced as shown in Figs. 3(c)-(e).

Figure 1: Design of a narrow-band sharp FIR filter.

Figure 2: The sharp FIR filter design procedures: ((a)
h(α)[n] = h[n] : i.e., α = 1, (b) h(α)[n] : α =

√
7

, and (c) the final filterhf
(α)[n] obtained after win-

dowing).

4 Design Examples

To illustrate the proposed filter design approach,
the following lowpass FIR filter is considered:
ωp = 0.25π, ωs = 0.3π, δp = 0.002, andδs = 0.001.
If this filter is designed using the IFIR technique as in
[2], the interpolation factor is 2 and the filter lengths
for model filter and masking filter are 68 and 15,
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Figure 3: Design of a wide-band sharp FIR filter using
masking filters with real number scaling factor.

respectively. The frequency response is shown in Fig.
4 in solid lines. If the same filter is designed using
the proposed approach, the filter length of the overall
designed type-I FIR filterhf

(α)[n] is 149 as shown in
Table 1. It is clear from Fig. 4 that both FIR filters,
obtained by the IFIR technique and the proposed
approach, satisfy the given filter specification. Note
that the filter length of the overall cascade in the
IFIR filter case is almost same as that in the proposed
approach.

Figure 4: A sharp FIR filter with narrow lowpass band
(i.e., Fig. 3(b)).

The proposed approach can be applied to the de-
sign of FRM filter as well. Let us consider the design
of a lowpass filter. The passband and stopband edges
are atωp = 0.537π andωs = 0.538π, respectively, as
in [5], where the passband ripple is at most0.001 and
the minimum stopband attenuation is80 dB. Applying

the modified FRM design technique in [5], it is easy to
find that the bandedges of the bandedge shaping filter,
as shown in Fig. 3(a), are:θ = 0.6π andφ = 0.62π,
respectively. In the proposed approach, the optimum
interpolation factorL is set to10 for the FRM filter
and the IFIR filter pair uses an interpolation factor
of 2. The lengths ofHMa[z] andHMc[z] are55 and
121, respectively. The length of the Gaussian window
is chosen to be483, which is equal to the length of
the overall filter obtained by the IFIR technique for
the comparison purpose. Also, it is verified in Fig.
5 that the designed FIR filter obtained by the pro-
posed approach satisfies the filter design specification.

Table 1: Filter Coefficientshf
(α)[n] (n = 0, · · · , 148)

g[0]=g[148] 0.000195170 g[38]=g[110] -0.001503600
g[1]=g[147] 0.000073628 g[39]=g[109] -0.004758800
g[2]=g[146] -0.000137060 g[40]=g[108] -0.004874700
g[3]=g[145] -0.000261390 g[41]=g[107] -0.001347900
g[4]=g[144] -0.000189210 g[42]=g[106] 0.003655600
g[5]=g[143] 0.000041020 g[43]=g[105] 0.006577900
g[6]=g[142] 0.000284830 g[44]=g[104] 0.004954200
g[7]=g[141] 0.000372550 g[45]=g[103] -0.000598170
g[8]=g[140] 0.000197090 g[46]=g[102] -0.006435400
g[9]=g[139] -0.000184130 g[47]=g[101] -0.008218600
g[10]=g[138] -0.000520480 g[48]=g[100] -0.004073600
g[11]=g[137] -0.000519420 g[49]=g[99] 0.003682000
g[12]=g[136] -0.000100290 g[50]=g[98] 0.009718900
g[13]=g[135] 0.000486230 g[51]=g[97] 0.009279200
g[14]=g[134] 0.000808690 g[52]=g[96] 0.001804000
g[15]=g[133] 0.000567830 g[53]=g[95] -0.008078900
g[16]=g[132] -0.000156840 g[54]=g[94] -0.013291000
g[17]=g[131] -0.000901670 g[55]=g[93] -0.009238100
g[18]=g[130] -0.001094700 g[56]=g[92] 0.002407200
g[19]=g[129] -0.000477360 g[57]=g[91] 0.014032000
g[20]=g[128] 0.000623300 g[58]=g[90] 0.016865000
g[21]=g[127] 0.001438100 g[59]=g[89] 0.007327200
g[22]=g[126] 0.001286800 g[60]=g[88] -0.009470600
g[23]=g[125] 0.000125780 g[61]=g[87] -0.022081000
g[24]=g[124] -0.001320200 g[62]=g[86] -0.020114000
g[25]=g[123] -0.001994800 g[63]=g[85] -0.002134600
g[26]=g[122] -0.001261100 g[64]=g[84] 0.021539000
g[27]=g[121] 0.000547000 g[65]=g[83] 0.034008000
g[28]=g[120] 0.002221100 g[66]=g[82] 0.022717000
g[29]=g[119] 0.002464400 g[67]=g[81] -0.010404000
g[30]=g[118] 0.000875180 g[68]=g[80] -0.046527000
g[31]=g[117] -0.001609200 g[69]=g[79] -0.058159000
g[32]=g[116] -0.003235700 g[70]=g[78] -0.024400000
g[33]=g[115] -0.002653200 g[71]=g[77] 0.055232000
g[34]=g[114] 0.000010102 g[72]=g[76] 0.156920000
g[35]=g[113] 0.003038200 g[73]=g[75] 0.241930000
g[36]=g[112] 0.004199800 g[74] 0.274980000
g[37]=g[111] 0.002361100

5 Conclusion
In this paper, we have presented a new filter de-
sign approach for sharp linear-phase FIR filters. A
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Figure 5: A sharp FIR filter with wide lowpass band
(i.e., Fig. 3(e)).

closed-form expression for filter coefficients is given
by employing theα-scaled sampling kernel (here,
α is real-valued) and a window function. The ap-
proach is simple and easy for the design of sharp
FIR filters compared with the conventional IFIR and
FRM technique. The proposed approach may be
extended further to design various types of linear-
phase FIR filters with sharp transition (e.g., wide-
lowpass, narrow-bandpass, wide-bandpass, wide-
highpass, multi-bandpass, etc.) as required in digital
communications, multirate signal processing, biomet-
ric signal processing, speech and audio signal process-
ing.
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