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Abstract: - One can use power series expansions in the solution of the first order linear velgoendial
equations as long as the expansion is realized around a regular point offénerdial equation. However the
utilizability and the practicality of the expansion depends on the structure of the recursion amongst the coef-
ficents of the expansion and the most preferable case uses a first order (two term) recursion. ffitentoe
matrix of the equation is a polynomial then the recursion between the certain consecufiivéeras remains

finite but its order is generally higher than one. Although there are various tools to handle this situation it is
better to change the structure of the equation by defining new unknowns and to increase its vector dimension
appropriately to get a new first order linear vectdfetiential equation with a matrix céieeient which takes us

to first order recursion amongst the expansiorfibtents.
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1 Introduction
The most general form of a first order linear homo- Since our purpose here is just to show how to

geneous vector derential equation can be givenas  gnvert (1) into Okubo’s more amenable form we
: avoid to deal with the regular or irregular singular-
x(t) = A(Dx(1) (1) ities. They can be tackled with after gathering suf-
_ . ficient information about and gaining experience on
wherexX(t) stands for a vector valued function with this task here. Hence we assume ) can be ex-
n elements and\(t) denotes am x n matrix witht  panded into a Taylor series at any regular point of (1)
dependent elements whergymbolizes the indepen- jn the complex plane of. Since it is easier to deal
dent variable which is considered as time in many with the polynomials than the tackling with the infi-
applications. Here we assume that this variable camite series even if they converge everywhere. Hence,
take also complex values. This assumption is nec-
essary for the convergence discussions. Tliedi j
ential equation in (1) may have regular or irregular Al = Zt Aj (2)
singular points in the complex plane bllepending =0
on the structure oA\ (t). Its solution at a regular point

in t complex plane is a Taylor series and CONVErgeSgiant 1 x n type matrices. The matriA(t) given

in the complex planar disk centered at the expansion;, (2) is analytic everywhere in the complex plane

point and having a radius joining the center to the f  except infinity. Hence, with this matrix, the dif-
closest singular point excluding the boundary. ferential equation in (1) has no singular pointtin
The solutions at regular singular points may have complex plane. Therefore the solution for this equa-
branch cuts andr logarithmic singularities depend-  tion must be a usual Taylor series expanded around
ing on the structure cA(t) and they converge inside g given point oft—plane. To simplify the investiga-
the complex planar disk centered at the singularity tions without losing any generality we assume that
and having the closest singularity at its boundary. In the regular point around which the solution will be
this case the center of the disk and its boundary mayexpanded into Taylor series is the origin of treem-
have to be discarded from the convergence region. plex plane. Therefore we assume the following form
If the expansion point is an irregular singularity for the solution of (1) under the definition of (2)
then the solution is an asymptotic expansion around .
the expansion point and diverges everywhere except X(t) = Z tix, 3)
j=0

m

whereAj, (0 < j < m) stand for the given, con-

the expansion point.
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wherex;, (0 < | < o) stand for the constant expan- give basic ideas to this end although explicit expres-

sion codficients which are unknown yet. To evaluate sions of certain final entities are not given. The so-

them we can use (3) and (2) in (1) and get the follow- lution of Okubo form is also not given. They will be

ing recursion focused on in a dierent paper. The fourth section
briefly covers the concluding remarks.

j
i+ D= ) Ajix, 0<j<oo  (4)
k=0 2 Space Extension

whereA; = 0if j > m This recursion can be di- We define a new independent variable as follows

vided into two sets of equations

0= tm+1 (7)
j .
(j+ 1)Xje1 = Z AiXe mM<j<c (5) and then write
k=j-n X(t) = €,(0) + t£,(0) + - -+t 1(0) ()
and This equation defines a polynomial irwith vector

codficients if we forget the dependence éfon t.
Hence we can consider the ¢heients of this poly-

j
(J+ X1 = ;Aj‘kx"’ O<j<m ()  ,omial as the block components of a vector. We

write
where (5) defines afim+1)-th order diference equa- _
tion (recursion) while (6) defines the initial condi- §0) = [£1(6) - éma (6)] ©)
tions for (5). There remaingn+ 1) unknownx val-  Therefore£(6) will be replaced with(t) in our fur-

Ues Xo,... Xm, in (5) and those values are reduced into ther formulations. However, we need to establish

just a single arbitrary vectoxy, through the equa- 3 ryle for the diferentiation with respect tb This

tionsof (6). rule will contain the diferentiation with respect t
The recursion in (5) would be a nonlocal (order e also need the multiplication g6) with a matrix

depends on the index paramater of the recursion) d'f'polynomial int.

ference equation i\(t) were an infinite series iin- Although we can take the first derivative of the

stead of a polynomial. In fact, this was the main rea- hoth sides of (8) for dierentiation rule it is better to
son why we have assumed the polynomial structure.deal with the following form instead of (8).

However we should emphasize on the fact that the
nonlocal recursions can be handled by using infinite _ T
dimensional vectors and matrices in the conversions X(t) = [Z -1 (ej ® In)
to Okubo form. =1

m+1

£(6) (10)

The(m+ 1)-th order recursion in (5) can be con- wheree;, (1 < j < m), stands for the cartesian unit
verted to a first order recursion with higher dimen- vector whose all elements except theth one which
sional vectors through order reducing methods. Weis 1 vanish and® symbolizes the direct matrix prod-
do not prefer these approches. Instead, we use amct which is defined such that each element of its left
appropriate space extension approach for convertingoperand is multiplied by its right operand and the re-
the equation (1) with the matrix cficient given by  sulting entity is replaced with the element under con-
(2). The space extension is somehow a partition-sideration. Heré,, represents tha x n identity ma-
ing of the Taylor series into subseries in powers of trix.

a new independent variable which is in fact an in- Now the diferentiation of the both sides of (10)
teger power of the present independent variable suctby keeping thd dependence of in mind gives the
that each subseries is multiplied by &drentinteger  following equation after some reorganizations to get

power of the original independent variable. read oft’s explicit powers higher tham
The paper is organized as follows. The second m. .
section contains the space extension[1-9] approach X(t) = Z jt"léJ-T+1§(9) + tmélf(e)
to reduce the equation under consideration to Oku- =1
bo’s form. To this end, we give all important details m
and especially correspondences. The third section +Zti-1§j+19'§(9) (11)

involves the construction of the Okubo form. We =1
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Where.f;‘(e) stands for the derivative @ with respect  which turns out to be

to # and . j
m
g=¢ol, 1<j<m+1 (12) AX() = Z t Z Aji€i1(0)
=0 ke
Now we can write the following vector fieren- m j
tiation rule which has no explicttdependence. = Z ti Z INEYINC)
j=0 k=0
df (9) QI ~ T 2 ]
= | D, J88).1 | £(6) + BnuaBlE(0) LNy 2 A érl6)
— - +
_1m j=m+l k=0
+| D &8 ] 6E(6) (13) (18)
=1 where
If we define
m Z tJZAJ kEk1(0)
DO = Z Jéj_j+1 j=m+1 k=0
j=1 m-1 j+m+l
SN 1 = th Z Ajsme1-k0€ 1,1 ()
D, () = HZ 88, +8mi®  (14) R
=1
= t) A & 6
then (13) can be written as follows JZ; Z:] jrme1-k06icia (0)
d¢ (0) - .
= D(O)E0) (15) = ke
where apparently = Z t Ajimik06i.1(6)  (19)
=0 k=j+1
d
D () = Do + D1 (0) a0 (16) These results enable us to write
1
This equation means that thef@rentiation with re- _ IS -1
spect tot in the original vector space (that ¥t)) AX(t) = Z;t Z; Ajk (6) £(6) (20)
j

is corresponded by the operator(6)’s action in the
extended space (thatd3 (0) £(0)). This is the difer-
where

entiation correspondence and we also need the corre-
spondence for multiplication by a matrix.

The rule for the multiplication with the céi@é Ajk (0) = {
cient matrix can be constructed in a similar way. To
this end we need to construct an extended matrlxIfWe define
notation acting oré(6). For this purpose we con-
sider the matrixA(t) in (2) as an infinite sum un- T _ m
der the constraind; = 0, j > mand the vec- t =0l th o o] (22)
tor X(t) in (8) as an infinite sum under the constraint then we can write
& =0, j>=m+1 Thisenables us to use the
Cauchy Product Formula for infinite series and to A)x(t) = t" A (6) £(6) (23)
write

Therefore we conclude that the imagex¢f) under

A(t) is equivalent the image &f (6) underA (6) in

00 j
— J .
A(x(t) = Eot k§0 Ajk€ii1(6) (17) " ihe extended space.
J: =
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(29) has an irregular singularity @t= co and the

written as follows to get the correspondences for theasymptotic solution around that point can be written

input and output spaces of the space extension
d
— Do),
57— 20
Alt) = A(OH) (24)

The equations in (24) are the fundamental corre-

spondence rules for tHgpace Extension. We will
use them to get Okubo form.

3 Okubo Form

as

lim £(6) = &®i¢, (31)
whereé . is an arbitrary constant vector. This
asymptotic form implies that the singularity of the
solution atf = oo is determined completely by the
eigenvalues of the matriB;. We do not intend to

deal with the asymptotic solution around this point.

4 Concluding Remarks
The main goal of this paper has been to convert a

Now the correspondences in (24) enables us to writelinear first order ordinary vector fierential equation

D(O)£(0) = AO)£(0)

and a careful investigation shows that

(25)

[ Z éj+1éjT + QélérTml ] D1(0) =60(m®1y,) (26)
=

818l (27)

>,

=1

—

m
> 8uE] + 6B, } Dy =
=1

m
AH) - Z 8184
=1
= Bo + QB]_ (28)

m
[ > 8uE + eélé,Tml]
=1

whereBgy and B, are certain constant matrices. All
these definitions urges us to write the ultimate Okubo
form as follows

M_[
do

This equation has a regular singularityfat 0

1
—-Bg + B4

: (29)

]f(e)

and the asymptotic solution around that point can be

written as

lim £ (6) = 676, (30)
where&, is an arbitrary constant vector. This asymp-
totic form implies that the singularity of the solution
atd = Ois determined completely by the eigenvalues
of the matrixBy. We are not going to prove anything
about this spectrum here. However, it is quite natu-
ral to expect eigenvalués ﬁ % to reflect the
branching nature in the definition 6fin terms oft.

to Okubo form via a space extension. The basic fo-
cus here has been on the space extension. Although
we do not give the series solution of the Okubo form
it is quite straightforward to get them by using stan-
dard methods of series expansion. We do not give
these details although they will be included during
the presentation in the conference.

Here the space extension is realized around a reg-
ular point of the original dferential equation which
is assumed not to have singularities in finite domains
of t complex plane. The cases where regular or ir-
regular singular points exist have been left to future
investigations. We also have not been focused on any
asymptotic behavior here.
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