
Conversion Of First Order Linear Vector Differential Equations With
Polynomial Coefficient Matrix To Okubo Form
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Abstract: - One can use power series expansions in the solution of the first order linear vector differential
equations as long as the expansion is realized around a regular point of the differential equation. However the
utilizability and the practicality of the expansion depends on the structure of the recursion amongst the coef-
ficents of the expansion and the most preferable case uses a first order (two term) recursion. If the coefficient
matrix of the equation is a polynomial then the recursion between the certain consecutive coefficients remains
finite but its order is generally higher than one. Although there are various tools to handle this situation it is
better to change the structure of the equation by defining new unknowns and to increase its vector dimension
appropriately to get a new first order linear vector differential equation with a matrix coefficient which takes us
to first order recursion amongst the expansion coefficients.
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1 Introduction
The most general form of a first order linear homo-
geneous vector differential equation can be given as

ẋ(t) = A(t)x(t) (1)

wherex(t) stands for a vector valued function with
n elements andA(t) denotes ann × n matrix with t
dependent elements wheret symbolizes the indepen-
dent variable which is considered as time in many
applications. Here we assume that this variable can
take also complex values. This assumption is nec-
essary for the convergence discussions. The differ-
ential equation in (1) may have regular or irregular
singular points in the complex plane oft depending
on the structure ofA(t). Its solution at a regular point
in t complex plane is a Taylor series and converges
in the complex planar disk centered at the expansion
point and having a radius joining the center to the
closest singular point excluding the boundary.

The solutions at regular singular points may have
branch cuts and/or logarithmic singularities depend-
ing on the structure ofA(t) and they converge inside
the complex planar disk centered at the singularity
and having the closest singularity at its boundary. In
this case the center of the disk and its boundary may
have to be discarded from the convergence region.

If the expansion point is an irregular singularity
then the solution is an asymptotic expansion around
the expansion point and diverges everywhere except
the expansion point.

Since our purpose here is just to show how to
convert (1) into Okubo’s more amenable form we
avoid to deal with the regular or irregular singular-
ities. They can be tackled with after gathering suf-
ficient information about and gaining experience on
this task here. Hence we assume thatA(t) can be ex-
panded into a Taylor series at any regular point of (1)
in the complex plane oft. Since it is easier to deal
with the polynomials than the tackling with the infi-
nite series even if they converge everywhere. Hence,

A(t) ≡
m
∑

j=0

t jA j (2)

whereA j, (0 ≤ j ≤ m) stand for the given, con-
stant,n × n type matrices. The matrixA(t) given
in (2) is analytic everywhere in the complex plane
of t except infinity. Hence, with this matrix, the dif-
ferential equation in (1) has no singular point int
complex plane. Therefore the solution for this equa-
tion must be a usual Taylor series expanded around
a given point oft–plane. To simplify the investiga-
tions without losing any generality we assume that
the regular point around which the solution will be
expanded into Taylor series is the origin of thet com-
plex plane. Therefore we assume the following form
for the solution of (1) under the definition of (2)

x(t) ≡
∞
∑

j=0

t jxk (3)
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wherex j, (0 ≤ j < ∞) stand for the constant expan-
sion coefficients which are unknown yet. To evaluate
them we can use (3) and (2) in (1) and get the follow-
ing recursion

( j + 1)x j+1 =

j
∑

k=0

A j−kxk, 0 ≤ j < ∞ (4)

whereA j ≡ 0 if j > m. This recursion can be di-
vided into two sets of equations

( j + 1)x j+1 =

j
∑

k= j−n

A j−kxk, m ≤ j < ∞ (5)

and

( j + 1)x j+1 =

j
∑

k=0

A j−kxk, 0 ≤ j < m (6)

where (5) defines an(m+1)–th order difference equa-
tion (recursion) while (6) defines the initial condi-
tions for (5). There remains(m + 1) unknownx val-
ues,x0,...,xm, in (5) and those values are reduced into
just a single arbitrary vector,x0, through the equa-
tions of (6).

The recursion in (5) would be a nonlocal (order
depends on the index paramater of the recursion) dif-
ference equation ifA(t) were an infinite series int in-
stead of a polynomial. In fact, this was the main rea-
son why we have assumed the polynomial structure.
However we should emphasize on the fact that the
nonlocal recursions can be handled by using infinite
dimensional vectors and matrices in the conversions
to Okubo form.

The(m+1)–th order recursion in (5) can be con-
verted to a first order recursion with higher dimen-
sional vectors through order reducing methods. We
do not prefer these approches. Instead, we use an
appropriate space extension approach for converting
the equation (1) with the matrix coefficient given by
(2). The space extension is somehow a partition-
ing of the Taylor series into subseries in powers of
a new independent variable which is in fact an in-
teger power of the present independent variable such
that each subseries is multiplied by a different integer
power of the original independent variable.

The paper is organized as follows. The second
section contains the space extension[1-9] approach
to reduce the equation under consideration to Oku-
bo’s form. To this end, we give all important details
and especially correspondences. The third section
involves the construction of the Okubo form. We

give basic ideas to this end although explicit expres-
sions of certain final entities are not given. The so-
lution of Okubo form is also not given. They will be
focused on in a different paper. The fourth section
briefly covers the concluding remarks.

2 Space Extension
We define a new independent variable as follows

θ ≡ tm+1 (7)

and then write

x(t) ≡ ξ1(θ) + tξ2(θ) + · · · + tmξm+1(θ) (8)

This equation defines a polynomial int with vector
coefficients if we forget the dependence ofθ on t.
Hence we can consider the coefficients of this poly-
nomial as the block components of a vector. We
write

ξ(θ) ≡
[

ξ1 (θ) ... ξm+1 (θ)
]

(9)

Thereforeξ(θ) will be replaced withx(t) in our fur-
ther formulations. However, we need to establish
a rule for the differentiation with respect tot. This
rule will contain the differentiation with respect toθ.
We also need the multiplication ofξ(θ) with a matrix
polynomial int.

Although we can take the first derivative of the
both sides of (8) for differentiation rule it is better to
deal with the following form instead of (8).

x(t) ≡

















m+1
∑

j=1

t j−1
(

e j ⊗ In

)T

















ξ(θ) (10)

wheree j, (1 ≤ j ≤ m), stands for the cartesian unit
vector whose all elements except thej–th one which
is 1 vanish and⊗ symbolizes the direct matrix prod-
uct which is defined such that each element of its left
operand is multiplied by its right operand and the re-
sulting entity is replaced with the element under con-
sideration. HereIn represents then × n identity ma-
trix.

Now the differentiation of the both sides of (10)
by keeping thet dependence ofθ in mind gives the
following equation after some reorganizations to get
read oft’s explicit powers higher thanm

ẋ(t) =
m
∑

j=1

jt j−1eT
j+1ξ(θ) + tmeT

1 ξ̇(θ)

+

m
∑

j=1

t j−1e j+1θξ̇(θ) (11)
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whereξ̇(θ) stands for the derivative ofξ with respect
to θ and

e j ≡ e j ⊗ In, 1 ≤ j ≤ m + 1 (12)

Now we can write the following vector differen-
tiation rule which has no explicitt dependence.

dξ (θ)
dt

=

















m
∑

j=1

je je
T
j+1

















ξ(θ) + em+1eT
1 ξ̇(θ)

+

















m
∑

j=1

e je
T
j+1

















θξ̇(θ) (13)

If we define

D0 ≡

m
∑

j=1

je je
T
j+1

D1 (θ) ≡ θ
m
∑

j=1

e je
T
j+1 + em+1eT

1 (14)

then (13) can be written as follows

dξ (θ)
dt

= D0ξ(θ) + D1 (θ) ξ̇(θ)

= D (θ) ξ(θ) (15)

where apparently

D (θ) ≡ D0 + D1 (θ)
d
dθ

(16)

This equation means that the differentiation with re-
spect tot in the original vector space (that iṡx(t))
is corresponded by the operatorD (θ)’s action in the
extended space (that isD (θ) ξ(θ)). This is the differ-
entiation correspondence and we also need the corre-
spondence for multiplication by a matrix.

The rule for the multiplication with the coeffi-
cient matrix can be constructed in a similar way. To
this end we need to construct an extended matrix
notation acting onξ(θ). For this purpose we con-
sider the matrixA(t) in (2) as an infinite sum un-
der the constraintA j = 0, j ≥ m and the vec-
tor x(t) in (8) as an infinite sum under the constraint
ξ j = 0, j ≥ m + 1. This enables us to use the
Cauchy Product Formula for infinite series and to
write

A(t)x(t) =
∞
∑

j=0

t j
j
∑

k=0

A j−kξk+1(θ) (17)

which turns out to be

A(t)x(t) =
2m
∑

j=0

t j
j
∑

k=0

A j−kξk+1(θ)

=

m
∑

j=0

t j
j
∑

k=0

A j−kξk+1(θ)

+

2m
∑

j=m+1

t j
j
∑

k=0

A j−kξk+1(θ)

(18)

where

2m
∑

j=m+1

t j
j
∑

k=0

A j−kξk+1(θ)

=

m−1
∑

j=0

t j
j+m+1
∑

k=0

A j+m+1−kθξk+1(θ)

=

m−1
∑

j=0

t j
m
∑

k=0

A j+m+1−kθξk+1(θ)

=

m−1
∑

j=0

t j
m
∑

k= j+1

A j+m+1−kθξk+1(θ)

=

m
∑

j=0

t j
m
∑

k= j+1

A j+m+1−kθξk+1(θ) (19)

These results enable us to write

A(t)x(t) =
m+1
∑

j=1

t j−1
m+1
∑

k=1

A j k (θ) ξk(θ) (20)

where

A j k (θ) =

{

A j−k 1 ≤ k ≤ j
θA j−k+m+1 j + 1 ≤ k ≤ m + 1

(21)

If we define

tT
≡ [ In t In ... tm In ] (22)

then we can write

A(t)x(t) = tT
A (θ) ξ(θ) (23)

Therefore we conclude that the image ofx(t) under
A(t) is equivalent the image ofξ (θ) underA (θ) in
the extended space.
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The equations (15) and (23) can be formally re-
written as follows to get the correspondences for the
input and output spaces of the space extension

d
dt
=⇒ D (θ) ,

A(t) =⇒A (θ) (24)

The equations in (24) are the fundamental corre-
spondence rules for theSpace Extension. We will
use them to get Okubo form.

3 Okubo Form
Now the correspondences in (24) enables us to write

D (θ) ξ (θ) =A (θ) ξ (θ) (25)

and a careful investigation shows that
















m
∑

j=1

e j+1eT
j + θe1eT

m+1

















D1 (θ) = θ (Im ⊗ In) (26)

















m
∑

j=1

e j+1eT
j + θe1eT

m+1

















D0 =

m
∑

j=1

je j+1eT
j+1 (27)

















m
∑

j=1

e j+1eT
j + θe1eT

m+1

















A (θ) −
m
∑

j=1

je j+1eT
j+1

= B0 + θB1 (28)

whereB0 andB1 are certain constant matrices. All
these definitions urges us to write the ultimate Okubo
form as follows

dξ (θ)
dθ

=

[

1
θ

B0 + B1

]

ξ (θ) (29)

This equation has a regular singularity atθ = 0
and the asymptotic solution around that point can be
written as

lim
θ→0
ξ (θ) = θB0ξ0 (30)

whereξ0 is an arbitrary constant vector. This asymp-
totic form implies that the singularity of the solution
atθ = 0 is determined completely by the eigenvalues
of the matrixB0. We are not going to prove anything
about this spectrum here. However, it is quite natu-
ral to expect eigenvalues0, 1

m+1, ..., m
m+1 to reflect the

branching nature in the definition ofθ in terms oft.

(29) has an irregular singularity atθ = ∞ and the
asymptotic solution around that point can be written
as

lim
θ→∞
ξ (θ) = eθB1ξ

∞
(31)

whereξ
∞

is an arbitrary constant vector. This
asymptotic form implies that the singularity of the
solution atθ = ∞ is determined completely by the
eigenvalues of the matrixB1. We do not intend to
deal with the asymptotic solution around this point.

4 Concluding Remarks
The main goal of this paper has been to convert a
linear first order ordinary vector differential equation
to Okubo form via a space extension. The basic fo-
cus here has been on the space extension. Although
we do not give the series solution of the Okubo form
it is quite straightforward to get them by using stan-
dard methods of series expansion. We do not give
these details although they will be included during
the presentation in the conference.

Here the space extension is realized around a reg-
ular point of the original differential equation which
is assumed not to have singularities in finite domains
of t complex plane. The cases where regular or ir-
regular singular points exist have been left to future
investigations. We also have not been focused on any
asymptotic behavior here.
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