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Abstract: The system diagnosis has been extensively studied in the literature in connection with fault-tolerant
multiprocessor computer systems. An original graph-theoretical model for system diagnosis was introduced in a
classic paper by Preparata, Metze, and Chien in 1967. Yang and Masson extended the model to the case when
the system has some intermittent faults, and gave a characterization of diagnosability under their model. However,
their proof is not constructive, that is present no diagnosis algorithm for systems. In this paper, we present two
diagnosis algorithms under the model by Yang and Masson: one is a polynomial-time algorithm for system with
high connectivity, and the other is a linear time algorithm for system with high degree.

Key–Words: Fault Diagnosis, Fault Identification, Intermittent Fault, Polynomial-Time Algorithm, t-Connected
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1 Introduction

The system diagnosis has been extensively studied in
the literature in connection with fault-tolerant mul-
tiprocessor computer systems. An original graph-
theoretical model for system diagnosis, which is
called the PMC model, was introduced in a classic
paper by Preparata, Metze, and Chien [6]. In the
PMC model, the testing assignment is represented by
a digraph(directed graph), each vertex of which repre-
sents a processor, and each arc (u, v) of which means
that processor u tests processor v. In this model, each
processor is either faulty or fault-free. The fault-status
of a processor does not change during the diagnosis.
A testing processor evaluates a tested processor as ei-
ther faulty or fault-free. The evaluation is accurate if
the testing processor is fault-free, while the evalua-
tion is unreliable if the testing processor is faulty. A
syndrome is a collection of test results. The model
also assumes that the number of faulty processors is
bounded.

A testing assignment is said to be t-diagnosable if
all faulty processors can be identified uniquely from
any syndrome provided that the number of faulty pro-
cessors does not exceed t. It is well-known that a
testing assignment for system with n processors is
t-diagnosable only if t < n/2 and each processor
is tested by at least t distinct other processors [6].
A complete characterization of t-diagnosable system
was shown by Hakimi and Amin [5].

Yang and Masson [8] extends the PMC model
to the case when a multiprocessor system contains
some intermittent faults. In this paper, this version
of the PMC model is called the YM model. In the
YM model, each processor is either of fault-free, per-
manently faulty (corresponding to faulty in the PMC
model), or intermittently faulty. The fault-status of a
processor does not change during the diagnosis. A
testing processor evaluates a tested processor as ei-
ther faulty or fault-free. When the testing processor is
fault-free, the evaluation is accurate if the tested pro-
cessor is fault-free or permanently faulty, while the
evaluation is unreliable if the tested processor is inter-
mittently faulty. When the testing processor is (per-
manently or intermittently) faulty, the test result is ar-
bitrary. See Fig.1.

In the YM model, no diagnosis algorithm can
identify all intermittently faulty processors because
they might behave as good in every test. Algorithm
A is called an (s, t)-diagnosis algorithm if A outputs
from any syndrome a set F of processors that contains
all permanently faulty processors and some intermit-
tently faulty processors, but no fault-free processors,
provided that the number of intermittently faulty pro-
cessors does not exceed s and that of faulty processors
does not exceed t. A testing assignment D is said to
be (s, t)-diagnosable if there exists an (s, t)-diagnosis
algorithm for D. Notice that if D is t-diagnosable
in the PMC model then D is also (0, t)-diagnosable.
Yang and Masson give in [8] a complete characteri-
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Fig. 1: Test Results

zation of an (s, t)-diagnosable testing assignment by
generalizing a characterization of a (0, t)-diagnosable
testing assignment in [5]. However, the proof by Yang
and Masson is not constructive, that is they present no
(s, t)-diagnosis algorithm for D.

A number of (0, t)-diagnosis algorithms have
been developed in the literature [1–3, 7]. The result
of parallel diagnosis by Fu and Beigel [4] leads to
an (s, t)-diagnosis algorithm for a testing assignment
represented by a complete graph. However, no (s, t)-
diagnosis algorithm for a large class of testing assign-
ments have been developed.

In this paper, we present a polynomial-time (s, t)-
diagnosis algorithm for a testing assignment rep-
resented by a (s + t)-connected digraph, and a
linear-time (t, t)-diagnosis algorithm for any (t, t)-
diagnosable testing assignment.

2 Preliminaries

Let D be a digraph(directed graph), and let V (D) and
E(D) be the vertex set and arc(directed edge) set of
D, respectively. Let

Γ−D(v) = {u : (u, v) ∈ E(D)}, (1)

δ−D(v) = |Γ−D(v)|, (2)

Γ+
D(v) = {u : (v, u) ∈ E(D)}, (3)

δ+
D(v) = |Γ+

D(v)| (4)

for any vertex v ∈ V (D), and

Γ−D(X) =
⋃

v∈X

Γ−D(v)−X, (5)

δ−D(X) = |Γ−D(X)|, (6)

Γ+
D(X) =

⋃

v∈X

Γ+
D(v)−X, (7)

δ+
D(X) = |Γ+

D(X)| (8)

for any X ⊆ V (D). Define that

δ−(D) = min
v∈V (D)

δ−D(v), (9)

δ+(D) = min
v∈V (D)

δ+
D(v) (10)

Let σ be a syndrome on D, that is a mapping of
E(D) onto {0, 1}. A partition (H, I, P ) of V (D) is
said to be consistent with σ if the following two con-
ditions are satisfied:

• u, v ∈ H , (u, v) ∈ E(D)⇒ σ(u, v) = 0;

• u ∈ H , v ∈ P , (u, v) ∈ E(D)⇒ σ(u, v) = 1.

Then, σ is also said to be consistent with (H, I, P ).
An (s, t)-diagnosis algorithm for D is one that,

for any partition (H, I, P ) of V (D) with |I| ≤ s and
|I|+ |P | ≤ t, finds F with P ⊆ F ⊆ P ∪ I from any
syndrome σ consistent with (H, I, P ). D is (s, t)-
diagnosable if there exists an (s, t)-diagnosis algo-
rithm for D. The following theorem is proved in [8].

Theorem I [8] D is (s, t)-diagnosable if and only if
the following three conditions are satisfied:

• n = |V (D)| ≥ 2t + 1;

• δ−(D) ≥ t + s;

• δ+
D(X) > p+2s for any X ⊂ V (D) with |X| =

n− 2t + p (0 ≤ p < t− s). ut
Notice that the proof of Theorem I is not construc-
tive. Therefore, it is very important to design a (s, t)-
diagnosis algorithm.

Let DD(σ, s, t) denote the set of partitions
(H, I, P ) of V (D) consistent with σ such that |I| ≤ s
and |P |+ |I| ≤ t.

Theorem 1 D is (s, t)-diagnosable if and only if the
following condition is satisfied:

Let σ be any syndrome such that DD(σ, s, t) 6=
∅, and let (H1, I1, P1) and (H2, I2, P2) be any two
partitions in DD(σ, s, t). Then, H1 ∩ P2 = ∅ and
H2 ∩ P1 = ∅.
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Proof: It is easy to see the necessity of the theorem.
Let σ be any syndrome such thatDD(σ, s, t) 6= ∅.

Then, define F as the set of vertices v such that v ∈ P
for some (H, I, P ) ∈ DD(σ, s, t). Then, it is easy to
see that P ′ ⊆ F for any (H ′, I ′, P ′) ∈ DD(σ, s, t).
Moreover, H ′ ∩ F = ∅ for any (H ′, I ′, P ′) ∈
DD(σ, s, t) because of the assumption. Hence, D is
(s, t)-diagnosable. ut

By Theorem 1, we obtain a simple (s, t)-
diagnosis algorithm in Fig. 2. However, the time com-
plexity of the algorithm is O(3|V (D)| · |E(D)|), that is
the algorithm is an exponential-time algorithm. So,
we present two polynomial-time diagnosis algorithms
in the next section. The one is a polynomial-time
(s, t)-diagnosis algorithm for an (s+ t)-connected di-
graph, and the other is a linear-time (t, t)-diagnosis
algorithm.

algorithm Simple-(s, t)-Diagnosis
Input: Digraph D, Syndrome σ;
Output: Faulty Set F ;

begin
Htemp ← ∅;
for ∀ partition (H, I, P ) of V (D) do

if |I| ≤ s and |I|+ |P | ≤ t
and (H, I, P ) is consistent with σ

then Htemp ← Htemp ∪H;
F ← V (D)−Htemp;

end

Fig. 2: (s, t)-Diagnosis Algorithm for (s + t)-
Connected Graph

3 Diagnosis Algorithms

3.1 (s, t)-Diagnosis Algorithms for (s + t)-
Connected Digraphs

A dipath (w0, w1, . . . , wl) from w0 to wl is called a
disagreed dipath on σ if σ(wi, wi+1) = 0 for each
i ∈ {0, 1, . . . , l − 2} and σ(wl−1, wl) = 1. Fig. 3
shows a disagreed dipath from u to v. In the PMC
model, if u is fault-free then v is faulty while if v is
fault-free then u is faulty. On the other hand, in the
FB model, we cannot determine the status of v even if
u is fault-free, because w can be intermittently faulty.

v is called a disagreed vertex with a vertex u if
there exist at least (s + 1) internally vertex-disjoint

0 0 0 1

u vw

Fig. 3: Disagreed path

disagreed dipath from v to u. Fig. 4 shows that u is a
disagreed vertex with v

0

0

0

0

0 0 0 0
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0 0 0 0
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0 0 0 0

1

1

1

u v

Fig. 4: Disagreed vertex

Lemma 2 Assume that u is a disagreed vertex with
v. If u is fault-free then v is (intermittently or par-
manently) faulty. Moreover, If v is fault-free then u is
(intermittently or parmanently) faulty.

Proof: Assume that neither u nor v is intermittently
faulty. Since u is a disagreed vertex with v, there exist
at least (s + 1) internally vertex-disjoint disagreed di-
path from v to u. Since D has at most s intermittently
faulty vertices, there there exists a disagreed dipath
from v to u containing no intermittently faulty vertex.
Hence, provided that neither u nor v is intermittently
faulty, we conclude that u is fault-free if and only if
v is parmanently faulty, which completes the proof of
the lemma. ut

Let Φσ(v) denote the set of disagreed vertices
with v.

Lemma 3 If v is permanently faulty then |Φσ(v)| ≥
t + 1.

Proof: Let F denote the set of faulty vertices on D,
and let F− = F − {v}. Since D is (s + t)-connected
and |F−| ≤ t− 1, we obtain that D − F− is (s + 1)-
connected. Hence, for any u ∈ V (D)−F , there exist
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at least (s + 1) internally vertex-disjoint dipaths from
u to v on D − F−. All of these dipaths are disagreed
with v since every vertex of D−F is fault-free. Hence
V (D) − F ⊆ Φσ(v). Since |V (D)| ≥ (2t + 1) and
|F | ≤ t, we conclude that |Φσ(v)| ≥ |V (D) − F | ≥
(2t + 1)− t = t + 1. ut

Lemma 4 If v is fault-free then |Φσ(v)| ≤ t.

Proof: Let H denote the set of fault-free vertices
on D, and consider any vertex u ∈ H . If P is a
disagreed dipath from u to v, P must contain an in-
termittent faulty vertex because of the definition of
a consistent syndrome. Since D has at most s in-
termittent faulty vertices, there exist at most s inter-
nally vertex-disjoint disagreed dipaths from u to v,
and hence u 6∈ Φσ(v). Since Φσ(v) ⊆ V (D)−H , we
conclude that |Φσ(v)| ≤ |V (D)−H| ≤ t. ut

From lemmas 3 and 4, we obtain an (s, t)-
diagnosis algorithm shown in Fig. 5.

algorithm (s, t)-Diagnosis
Input: Digraph D, Syndrome σ;
Output: Faulty Set F ;

begin
F ← ∅;
for ∀v ∈ V (D) do

if |Φσ(v)| ≥ t + 1 then F ← F ∪ {v};
end

Fig. 5: (s, t)-Diagnosis Algorithm for (s + t)-
Connected Graph

For example, consider a digraph and a syndrome
in Fig. 6 as an input to algorithm (1, 2)-Diagnosis.
In this example, digraph D has 6 disagreed vertices
with v (See Fig. 7), and so algorithm (1, 2)-Diagnosis
diagnoses v as faulty. Moreover, algorithm (1, 2)-
Diagnosis diagnoses any other vertex as fault-free be-
cause each of these vertices has at most one directed
edge labeled with 1 as an end-vertex.

We can prove the correctness of algorithm (s, t)-
Diagnosis as follows:

Theorem 5 Algorithm (s, t)-Diagnosis in Fig. 5 out-
puts F that contains all permanently faulty vertices
and no fault-free vertex.

Proof: By Lemmas 3 and 4, we conclude that

• if |Φσ(v)| ≤ t then v is not permanently faulty,
and

0

0

0

0

0

1

1

0

0 0
1

01

0

0

v

i

i

i

Fig. 6: Digraph D and Syndrome σ on D

• if |Φσ(v)| ≥ t + 1 then v is not fault-free.

Hence, F contains all permanently faulty vertices and
no fault-free vertex. ut

Next, we present how to decide whether there ex-
ist at least (s + 1) internally vertex-disjoint disagreed
dipaths from u to v on D. For any digraph D and syn-
drome σ on D, Dv

σ=0 is the graph obtained from D as
follows (See Fig. 8):

V (Dv
σ=0) = V (D); (11)

E(Dv
σ=0) = {(x, v) : σ(x, v) = 1}

∪ {(x, y), x, y 6= v, σ(x, y) = 0}.
(12)

By definition, the following lemma can be proved

0

0

0

0

0

1

1

0 0

01

0

v

Fig. 8: Digraph Dv
σ=0 for digraph D and syndrome σ

in Fig. 6

easily:
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Fig. 7: 6 Disagreed Vertices with v

Lemma 6 A dipath P from u to v on D is a disagreed
dipath with v if and only if P is a dipath on Dv

σ=0. ut
In order to determine whether u is a disagreed

vertex with v or not, it suffices to check that Dv
σ=0 has

at least (s + 1) internally vertex-disjoint dipath from
u to v by Lemma 6. Given a digraph D and a pair of
vertices (x, y) onD, it is well known how to count the
number of internally vertex-disjoint paths from x to y
on D. In fact, the following lemma can be proved.

Lemma 7 Given a digraph D, a pair of vertices
(x, y) on D, and positive integer s, we can determine
in O(s · (|V (D)| + |E(D)|)) time whether D has at
least (s + 1) internally vertex-disjoint paths from x to
y.

Proof: Let D be a digraph. D′ is the graph defined
as follows (See Fig. 9):

V (D′) = {w−, w+ : w ∈ V (D)}; (13)

E(D′) = {(w−, w+) : w ∈ V (D)}
∪ {(x+, y−) : (x, y) ∈ E(D)}. (14)

w w- w+

Fig. 9: Construction of D′

Then, by corresponding a dipath (x1, x2, . . . , xl) on
D with a dipath (x+

1 , x−2 , x+
2 , . . . , x−l ) onD′, it is easy

to see that D has τ internally vertex-disjoint dipaths
from x to y if and only if D′ has τ edge-disjoint di-
paths from x+ to y−. We can count the maximum
number of edge-disjoint dipaths from x+ to y− on D′
by computing the maximum flow from x+ to y− on
D′ with the capacity of each directed edge as 1. Since
it suffices to determine whether D′ has a flow from
x+ to y− with value of (s + 1) by Ford-Fulkerson al-
gorithm in O(s · (|V (D′)| + |E(D′)|)) time, we can
check in O(s · (|V (D′)|+ |E(D′)|)) time whether D′
has at least (s + 1) edge-disjoint dipaths from x+ to
y−, that is in O(s · (|V (D)|+ |E(D)|)) time whether
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D has at least (s+1) internally vertex-disjoint dipaths
from x to y. ut

Since |V (Dv
σ=0)| = |V (D)|, |E(Dv

σ=0| ≤
|E(D)|, and |E(D)| ≥ (s + t)|V (D)| ≥ |V (D)|,
we can determine in O(s · |E(D)|) time whether u
is a disagreed vertex with v or not by Lemma 7, and
so compute |Φσ(v)| in O(s · |E(D)| · |V (D)|) time
for any v ∈ V (D). Hence, we obtain the following
theorem:

Theorem 8 Let s and t be positive integers with s ≤
t. Then, algorithm (s, t)-Diagnosis in Fig. 5 works in
O(smn2) time, where n = |V (D)| and m = |E(D)|.
ut

3.2 (t, t)-Diagnosis Algorithms

Let Ψi
σ(v) = {u ∈ Γ−D(v) : σ(u, v) = i} for any

i ∈ {0, 1}.
Lemma 9 If v is fault-free then |Ψ1

σ(v)| ≤ t. If v is
permanently faulty then |Ψ1

σ(v)| ≥ t + 1.

Proof: If v is fault-free then every vertex of
Ψ1

σ(v) is permanently or intermittently faulty, and so
|Ψ1

σ(v)| ≤ t.
If v is permanently faulty then at least t + 1 ver-

tices in Γ−D(v) is fault-free since δ−D(v) ≥ 2t. Hence,
|Ψ1

σ(v)| ≥ t + 1. ut

algorithm (t, t)-Diagnosis
Input: Digraph D, Syndrome σ;
Output: Faulty Set F ;

begin
F ← ∅;
for ∀v ∈ V (D) do

if |Ψ1
σ(v)| ≥ t + 1 then F ← F ∪ {v};

end

Fig. 10: (t, t)-Diagnosis Algorithm for (t, t)-
Diagnosable Graph

From Lemma 9, we obtain the following theorem:

Theorem 10 Algorithm (t, t)-Diagnosis in Fig. 10
outputs F that contains all permanently faulty ver-
tices and no fault-free vertex. Moreover, the algorithm
computes F in a linear time.

4 Conclusions

This paper presented two diagnosis algorithms: a
polynomial-time (s, t)-disgnosis algorithm for (s+t)-

connected digraph and a linear-time (t, t)-diagnosis
algorithm for (t, t)-diagnosable digraph.

Here are two open problems. The first one is to
design a polynomial-time (s, t)-diagnosis algorithm
for an (s, t)-diagnosable digraph. The second one is
to develop more faster (s, t)-diagnosis algorithm for
an (s + t)-connected digraph.
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