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Abstract: - Compass-and-straightedge constructions have a tmdjtion and still are of very genuine
mathematical interest [1]. Some recent resultshin geometry of conics with remarkable constructvel
engineering applications [2] also suggest origomstructions to obtain the radius of curvatureafics at any
given point using compass and straightedge alohezeTversions of the method are presented withrdggu
descriptions of constructive steps, and justifaagi of their exactitude to solve the problem stated
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1 Introduction the constructions presented in this paper.

Straightedge and compass geometric constructions _'N€ approach proposed here is different and
are classic, dating back to the ancient Greeksy the Original. It is based on a recently found propesty
interest is certainly historical, but also geonuetri ~CONIC sections, namely, thahe cube root of the
and mathematical in a very basic sense [1]. As isradius of curvature of a conic at any of its poifgs
well-known, the operations allowed in these directly proportional to the length of the segment
constructions are only two: to draw a straight line Pérpendicular to the conic from that point to ameo
joining two given points, and to draw a circle waos Of its main axes _ o
center and radius are known. Each point must teen b It may be surprising that such simple new insights

determined as the intersection of two straightdjree N conics can still come to light nowadays. Prauf a
a line and a circle. or two circles. discussion of this property, along with consequence

Conic sections are among the most intensivelyfor the generation of families of surfaces of conic
applied curves in Computational Geometry, Sections with many interesting applications, can be
Computer Graphics and other fields related with found in [2]. More specifically, a particular casé
Geometry and Geometric Design, and the radius ofh€se families of surfaces makes them ruled, which
curvature is a crucial differential property of any greatly facilitates their constructive applications
curve in the above-mentioned fields. This, together(€ven if they do not turn out to be developableyth
with the relevance of straightedge-and-compassc@n be realized by means of straight beams, tis, rod
constructions, makes it worthy to study any new €tC. and |ndeeq many .appllcat'lons 'have already bee
construction finding the radius of curvature ofomic ~ carried out in Civil Engineering, Art and

at any given point by means of straightedge angArchitecture, Geometric Design, etc.) o
compass alone. In this paper, that same property of conics irespir

Bibliography presenting a solution to such an SOMe different, but related,.geometric constryaion
obvious problem of a classic type is not as commonFOr €ach one of them, the figure and a descriifon
as one might expect. Classics in the field like¢8] the successive steps required to draw it are felbw
[4] offer no direct account of it (although it méag by a mathematlcal justification of its exactitude t
possible to infer a solution based on the prinsiple SOIve the straightedge-and-compass problem.
discussed therein). A method to solve the probiem f ~ For the elliptical case, the data are half-aaeh
an ellipse was published in [5]; it has the slight of elllpseE_and its pointP, in which th_e re_ldlus of
disadvantage that it does not work with its vegida ~ CurvatureR is sought, as can be seen in Fig.1. It has
[6] the same method is shown, but two alternativeP®en drawn witha>b (specifically, a/b = 3/2),
constructions are provided to solve the verticeeca although the casé>a can be drawn analogously,

Such alternatives, in contrast, are not necessity w Presenting essentially no difference. The only pért
the figure that cannot be actually drawn with
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straightedge and compass is precisely the elljpse 2.1 First Construction for the Elliptical Case
neverthelessE has also been represented to helpFig.1 shows the first original construction we @rets
visualization, and it is possible —and easy— taiobt to solve the problem for the elliptical case.

any number of arbitrary pointd of E with

straightedge and compass. Fig.3 below shows a well2,1.1 Description of the Constructive Steps

known way to do it: after drawing the main cirde  First, the positions of focF and -F of E are
and the minor circle, of E (only a quarter of which  determined (a construction that has not been
are represented in the figure), draw any straigiet | represented, but is trivial taking into accountttha
from the origin and determine the respective paifits F2+b2:a2). Both foci are joined withP and the
intersectionP; andP,. The horizontal line by, and  bisecting line is drawn, whose segment betwBen
the vertical one by, intersect inP, which is a point  gnd the X axis we calle. Next, e is translated
of the ellipse, as is proved by its parametric é&Qna  horizontally until its bottom end coincides witheth

{x=acost, y=bsint}, where the parameteris the oriai ; =5
) . ) . gin of coordinate®© (the translated segme@R
angle of the straight line P, andP; with the axis
9 ight line 1, P, Wl X has also been labeleg in the figure, to indicate its

of abscissas (incidentally=1rad in Fig.3). length). This, like many other elementary conssuct
is trivially achievable with straightedge and cosga
We callP; its upper end and the straight line byD
andP; (we only draw part of it in the first quadrant).

In this section, all constructions are fully expled, ity center aD, P, is rotated onto axi¥”, callingP,
including figures, with justified constructive stepA the point obtained.

first construction for the elliptical case will be Let us call Py, Pox, Pay Py the points of
axy 1 ayYs

followed by a solution to the hyperbolic one. The .4 dinates4.0 0). (0 0b). respectivelv. B
parabolic case is similar to them; instead of shogwi b I Ia( % ) (d A ( b)'.l P Y- By
its solution explicitly, a more interesting, optirad 2 @ parallel toR, R Is drawn until intersecting at

version for the case of an ellipse will be presente ~ Ps, Which is in turn rotated upoM, calling P, the

2 Justified Constructions

PaY v

o PbX Pax

Fig.1. Radius of curvature of an ellipse with gjtdeédge and compass: First Construction.
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point obtained. Again the parallel 8,R by P, is  parallels untilr —P,P, and P,R, which are drawn

drawn to meet atPs. L parallel to R, R -) and then to multiply the resulting
Besides, the parallel t&, P,, by Paxis drawn to  ratio by the radius of curvature &y (which is

meetY" at Ps. And finally, the parallel toR, R is  achieved by the two dash-dotted parallels in Fig.1,

drawn byPs until intersecting at P;. The radius of i.€., RyR andRPR).

curvature of atP is exactly distanc©P, .

2.1.2 Mathematical Justification of the First 2.2 Construction for the Hyperbolic Case
Construction Fig.2 shows the construction to solve the problem f

It is well-known that the two bisecting lines ofeth the case of a hyperbola. As will be apparent, dea. i

straight lines joiningP with both foci of E are the  Pehind it is very similar to the previous one. &sh

tangent and the normal Bby P (only the normak, been drawp fom=4, b=3. PointP, of coordinates

is drawn in Fig.1; its perpendicular By not drawn is ~ (COsht,asinht), has been drawn for0.48.

tangent tce). Therefore, by virtue of the above-stated o _

property taken from [2], the length o&, is 221 Description of the Constructive Steps

proportional to the cube root the radius of curvai ~ Adain, the positions of fock and —F of H are

of E atP. More precisely: the ratio betweepand the ~ determined in the first place (which has not been

cube root oR (searched) is equal to the ratio between represented, but is trivial sinéé = a”+b°). Both foci
half-axis b and the cube root of the radius of are joined withP and the bisecting line is drawn, the

curvature aP,y. This is well-known to b@¥ b, so it  length of whose segment betweerand theOY axis

can be easily obtained, by the Theorem of Thales, b at P. we call e,. Using this distance, poir®, is
means of the two dotted parallels in Fig.1 (i.e th drawn on they axis with ordinates,. With center at
parallel to B, P., by Pu S0 as to obtairPs, of O, P, is rotated onto axiX", calling P; the point

ordinatea’/b). Therefore, to solve the problem, it is obtained. — . - :
enough to raise the ratie,/b to the third power By P; a parallel toP,a is drawn until intersecting
(which is achieved by means of the two dashedthe OY axis atP,, which is in turn rotated upoX’,
rotations uponY* —from P, and P, to P, and Ps, calling Ps the point obtained. A second parallel By
respectively— followed by the corresponding dashedis drawn to meet th@Y axis atPs.

|
. T L o A \‘
-F (@] b2/a a FP P

Fig.2. Radius of curvature of a hyperbola at anyptpwith straightedge and compass.
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Besidesb is rotated onto th®X axis, from where  while Fig.3 is drawn witha=2, b =1 (and equally

a parallel toab is drawn to meet th@Y axis. When ~ t=1rad), so the largest radius of curvature has
this last point is rotated again onto & axis, its ~ effectively changed froma®/b = 15/1=2.25 to
abscissa ib%a. Drawing from this point a parallel to 2 /1=4. This means that Fig.1, if drawn with the

. . . , data of Fig.3, would have needed a considerable
previously obtainedza meets th@Y axis at a point reduction to fit in the page, while Fig.3 can bers&®

whose ordinate is exactly the searched radius Ofjt qyite comfortably even in just one text column.
curvatureR of the hyperbola at its poift
Y P
222 Mathematical Justification of the y

Construction for the Hyperbolic Case
It is well-known that the two bisecting lines ofeth \
straight lines joiningP with both foci ofH are the \
tangent and the normal kbby P; therefore, by virtue \
of the property stated in Section 1, the lengths
proportional to the cube root the radius of curkaRl
of H at P. More precisely: the ratio betweepn and S \
the cube root oR (searched) is equal to the ratio P[]~ T~ \
between half-axia and the cube root of the radius of SNV }
curvature atd,0). This is well-known to bb% a, so it
can be easily obtained, by the Theorem of Thales, b
means of the dotted lines in Fig.2. Therefore oloes b \ NI N N
the problem, it is enough to raise the rajba to the )

third power (which is achieved by means of the two P2
dashed rotations uponX® followed by the

corresponding dashed parallels u@y) and then to

multiply the resulting ratio by the already obtalne

radius of curvature at(0).

A very similar construction based on the same a \ ARERNEERN
principles may be derived for the parabolic case. t \ vy Ja X
However, we think it is more interesting to showho Py Pe Ps P
the first construction presented, for example, mey Fig.3. Radius of curvature of an ellipse with
optimized in the two senses explained below. straightedge and compass: Second Construction.
2.3 Second, Optimized Construction for the This second elliptical construction also requires

less precision in the determination of intersection
because none takes place under small angles, knd al
athe segments to which parallels have to be drawn ar

Elliptical Case

Fig.3 shows the optimized construction proposed.

The main advantage of the first constructions is _ T
pedagogic one, and it lies in the easiness witrchvhi Auite longer tharR F and, especiallyR, R in the
it can be reproduced by simple reasoning justFirst Construction. In other words, the conditianin
knowing that the cube root of the radius of curwatu Of the problem is better with this method.
at P is proportional to the length of normal until any
axis of the conic. 2.3.1 Description of the Constructive Steps

This last construction is a variation that regsiire As with the previous ones, we will first describe
less paper area and less precision in the deteioiina the steps to carry out the construction, and then w
of intersections. It also results in a more harmoni Wwill go on to justify its mathematical exactitudene
(uniform) distribution of lines on the drawing. data are the same as before: half-axds of ellipse

It requires less paper area because the points useéE, and its pointP in which its radius of curvature
are nearer origin of coordinat€3 being all in the  must be calculated. Again, the ellipse itself isoal
same quadrant @(first one, in our case). Besides, it represented for illustrative reasons, even if oaly
is not necessary to draw the largest radius ofdiscrete number of its points may be drawn by the
curvature ofg, which is atP,y if a>b. sole use of straightedge and compass.

To illustrate this difference, it may be notedttha =~ We start by drawing the main circtg and the
Fig.1 was drawn witha=1.5,b=1 (andt=1rad), minor circlec, of E (only their portions in the first
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quadrant are drawn). We cal, and P, their 3 Conclusions and Further Work

respective intersecting points witi. By P a vertical New geometric constructions to find the radius of
line is drawn untik, atPy, and a horizontal untd, at  cyryature of conics at any one of their points by
P; horizontal byP, and vertical by, meet aPs, and  means of straightedge and compass have been
we callr the straight line by coordinate orighand  presented. These constructions are consequenees of

Ps. , . . _ newly discovered property of conic sections with
With center aD, Py is rotated ontX™ atPs; byPs  many engineering and constructive applications [2].
parallel to P,R until r at Ps, which is again rotated Deeper comparison with already existing methods

[5], [6], and a study from the projective viewpojiit

onto Ps, and byPg another parallel td?, R until P,. ) . ) oo
® YFe P a’s ! may constitute the object of further investigation.

Finally, byP, a parallel toR,P, is drawn untilr atPg,

being distanceOR, the exact radius of curvature Bf
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coordinates.
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the length of segmer®P, (i.e.,a), and if the radius

of the osculating circle is th©R, segment drawn,
this will hold whatever length unit is used.

Finally, note that due to the also well-known
equations

cosa =b cos/ (a2 sift+ b’ co?st)l/2 @

sina = asint/(a2 sirf t+ b? co%t)l/2

as e.g. in [2], p. 796, the angle showrpasn Fig.2 is
indeed the one of the normal Eoat P, which would
save the representation 6, perhaps too far on the
left, in the First Construction as well.



