
New Geometric Constructions to Determine the  
Radius of Curvature of Conics at any Point 

FELIPE JIMÉNEZ, FRANCISCO GRANERO 
Department of Applied Mathematics 

University of the Basque Country (UPV/EHU) 
Escuela Técnica Superior de Ingeniería; Alda. Urquijo s/n; 48013 Bilbao 

SPAIN 
  

Abstract: - Compass-and-straightedge constructions have a long tradition and still are of very genuine 
mathematical interest [1]. Some recent results in the geometry of conics with remarkable constructive and 
engineering applications [2] also suggest original constructions to obtain the radius of curvature of conics at any 
given point using compass and straightedge alone. Three versions of the method are presented with figures, 
descriptions of constructive steps, and justifications of their exactitude to solve the problem stated. 
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1 Introduction 
Straightedge and compass geometric constructions 
are classic, dating back to the ancient Greeks; their 
interest is certainly historical, but also geometrical 
and mathematical in a very basic sense [1]. As is 
well-known, the operations allowed in these 
constructions are only two: to draw a straight line 
joining two given points, and to draw a circle whose 
center and radius are known. Each point must then be 
determined as the intersection of two straight lines, or 
a line and a circle, or two circles. 
 Conic sections are among the most intensively 
applied curves in Computational Geometry, 
Computer Graphics and other fields related with 
Geometry and Geometric Design, and the radius of 
curvature is a crucial differential property of any 
curve in the above-mentioned fields. This, together 
with the relevance of straightedge-and-compass 
constructions, makes it worthy to study any new 
construction finding the radius of curvature of a conic 
at any given point by means of straightedge and 
compass alone. 
 Bibliography presenting a solution to such an 
obvious problem of a classic type is not as common 
as one might expect. Classics in the field like [3] or 
[4] offer no direct account of it (although it may be 
possible to infer a solution based on the principles 
discussed therein). A method to solve the problem for 
an ellipse was published in [5]; it has the slight 
disadvantage that it does not work with its vertices. In 
[6] the same method is shown, but two alternative 
constructions are provided to solve the vertices case. 
Such alternatives, in contrast, are not necessary with 

the constructions presented in this paper. 
 The approach proposed here is different and 
original. It is based on a recently found property of 
conic sections, namely, that the cube root of the 
radius of curvature of a conic at any of its points is 
directly proportional to the length of the segment 
perpendicular to the conic from that point to any one 
of its main axes. 
 It may be surprising that such simple new insights 
on conics can still come to light nowadays. Proof and 
discussion of this property, along with consequences 
for the generation of families of surfaces of conic 
sections with many interesting applications, can be 
found in [2]. More specifically, a particular case of 
these families of surfaces makes them ruled, which 
greatly facilitates their constructive applications 
(even if they do not turn out to be developable, they 
can be realized by means of straight beams, tie rods, 
etc., and indeed many applications have already been 
carried out in Civil Engineering, Art and 
Architecture, Geometric Design, etc.) 
 In this paper, that same property of conics inspires 
some different, but related, geometric constructions. 
For each one of them, the figure and a description of 
the successive steps required to draw it are followed 
by a mathematical justification of its exactitude to 
solve the straightedge-and-compass problem. 
 For the elliptical case, the data are half-axes a, b 
of ellipse E and its point P, in which the radius of 
curvature R is sought, as can be seen in Fig.1. It has 
been drawn with a > b (specifically, a/b = 3/2), 
although the case b > a can be drawn analogously, 
presenting essentially no difference. The only part of 
the figure that cannot be actually drawn with 
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straightedge and compass is precisely the ellipse E; 
nevertheless, E has also been represented to help 
visualization, and it is possible –and easy– to obtain 
any number of arbitrary points P of E with 
straightedge and compass. Fig.3 below shows a well-
known way to do it: after drawing the main circle ca 
and the minor circle cb of E (only a quarter of which 
are represented in the figure), draw any straight line 
from the origin and determine the respective points of 
intersection P1 and P2. The horizontal line by P2 and 
the vertical one by P1 intersect in P, which is a point 
of the ellipse, as is proved by its parametric equations 
{ x = a cos t, y = b sin t}, where the parameter t is the 
angle of the straight line by O, P2 and P1 with the axis 
of abscissas (incidentally, t = 1 rad in Fig.3). 

2 Justified Constructions 
In this section, all constructions are fully explained, 
including figures, with justified constructive steps. A 
first construction for the elliptical case will be 
followed by a solution to the hyperbolic one. The 
parabolic case is similar to them; instead of showing 
its solution explicitly, a more interesting, optimized 
version for the case of an ellipse will be presented. 

2.1 First Construction for the Elliptical Case 
Fig.1 shows the first original construction we present 
to solve the problem for the elliptical case. 

2.1.1 Description of the Constructive Steps 
First, the positions of foci F and −F of E are 
determined (a construction that has not been 
represented, but is trivial taking into account that 
F2

 + b
2 = a2). Both foci are joined with P and the 

bisecting line is drawn, whose segment between P 
and the X axis we call ex. Next, ex is translated 
horizontally until its bottom end coincides with the 

origin of coordinates O (the translated segment 1OP  
has also been labeled ex in the figure, to indicate its 
length). This, like many other elementary constructs, 
is trivially achievable with straightedge and compass. 
We call P1 its upper end and r the straight line by O 
and P1 (we only draw part of it in the first quadrant). 
With center at O, P1 is rotated onto axis Y 

+, calling P2 
the point obtained. 
 Let us call PaX, PbX, PaY, PbY the points of 
coordinates (a,0), (b,0), (0,a), (0,b), respectively. By 

P2 a parallel to 1bYP P  is drawn until intersecting r at 
P3, which is in turn rotated upon Y, calling P4 the 
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Fig.1. Radius of curvature of an ellipse with straightedge and compass: First Construction. 
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point obtained. Again the parallel to 1bYP P  by P4 is 
drawn to meet r at P5. 

 Besides, the parallel to bX aYP P  by PaX is drawn to 

meet Y+ at P6. And finally, the parallel to 5bYP P  is 
drawn by P6 until intersecting r at P7. The radius of 

curvature of E at P is exactly distance 7OP . 

2.1.2 Mathematical Justification of the First 
Construction 

It is well-known that the two bisecting lines of the 
straight lines joining P with both foci of E are the 
tangent and the normal to E by P (only the normal ex 
is drawn in Fig.1; its perpendicular by P, not drawn is 
tangent to E). Therefore, by virtue of the above-stated 
property taken from [2], the length of ex is 
proportional to the cube root the radius of curvature R 
of E at P. More precisely: the ratio between ex and the 
cube root of R (searched) is equal to the ratio between 
half-axis b and the cube root of the radius of 
curvature at PbY. This is well-known to be a2/ b, so it 
can be easily obtained, by the Theorem of Thales, by 
means of the two dotted parallels in Fig.1 (i.e, the 

parallel to bX aYP P  by PaX so as to obtain P6, of 
ordinate a2/b). Therefore, to solve the problem, it is 
enough to raise the ratio ex / b to the third power 
(which is achieved by means of the two dashed 
rotations upon Y 

+ –from P1 and P2 to P4 and P3, 
respectively– followed by the corresponding dashed 

parallels until r – 2 3P P  and 4 5P P , which are drawn 

parallel to 1bYP P –) and then to multiply the resulting 
ratio by the radius of curvature at PbY (which is 
achieved by the two dash-dotted parallels in Fig.1, 

i.e., 5bYP P  and 6 7P P ). 

2.2 Construction for the Hyperbolic Case 
Fig.2 shows the construction to solve the problem for 
the case of a hyperbola. As will be apparent, the idea 
behind it is very similar to the previous one. It has 
been drawn for a = 4, b = 3. Point P, of coordinates 
(a cosh t, a sinh t), has been drawn for t = 0.48. 

2.2.1 Description of the Constructive Steps 
Again, the positions of foci F and −F of H are 
determined in the first place (which has not been 
represented, but is trivial since F2 = a2

 + b
2). Both foci 

are joined with P and the bisecting line is drawn, the 
length of whose segment between P and the OY axis 
at P1 we call ey . Using this distance, point P2 is 
drawn on the Y axis with ordinate ey . With center at 
O, P2 is rotated onto axis X 

+, calling P3 the point 
obtained. 

 By P3 a parallel to 2P a  is drawn until intersecting 
the OY axis at P4, which is in turn rotated upon X+, 
calling P5 the point obtained. A second parallel by P5 
is drawn to meet the OY axis at P6. 
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Fig.2. Radius of curvature of a hyperbola at any point with straightedge and compass. 
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 Besides, b is rotated onto the OX axis, from where 

a parallel to ab  is drawn to meet the OY axis. When 
this last point is rotated again onto the OX axis, its 
abscissa is b2/a. Drawing from this point a parallel to 

previously obtained 6P a  meets the OY axis at a point 
whose ordinate is exactly the searched radius of 
curvature R of the hyperbola at its point P. 

2.2.2 Mathematical Justification of the 
Construction for the Hyperbolic Case 

It is well-known that the two bisecting lines of the 
straight lines joining P with both foci of H are the 
tangent and the normal to H by P; therefore, by virtue 
of the property stated in Section 1, the length ey is 
proportional to the cube root the radius of curvature R 
of H at P. More precisely: the ratio between ey and 
the cube root of R (searched) is equal to the ratio 
between half-axis a and the cube root of the radius of 
curvature at (a,0). This is well-known to be b2/ a, so it 
can be easily obtained, by the Theorem of Thales, by 
means of the dotted lines in Fig.2. Therefore, to solve 
the problem, it is enough to raise the ratio ey / a to the 
third power (which is achieved by means of the two 
dashed rotations upon X 

+ followed by the 
corresponding dashed parallels until OY) and then to 
multiply the resulting ratio by the already obtained 
radius of curvature at (a,0). 
 A very similar construction based on the same 
principles may be derived for the parabolic case. 
However, we think it is more interesting to show how 
the first construction presented, for example, may be 
optimized in the two senses explained below. 

2.3 Second, Optimized Construction for the 
Elliptical Case 

Fig.3 shows the optimized construction proposed. 
 The main advantage of the first constructions is a 
pedagogic one, and it lies in the easiness with which 
it can be reproduced by simple reasoning just 
knowing that the cube root of the radius of curvature 
at P is proportional to the length of normal until any 
axis of the conic. 
 This last construction is a variation that requires 
less paper area and less precision in the determination 
of intersections. It also results in a more harmonic 
(uniform) distribution of lines on the drawing. 
 It requires less paper area because the points used 
are nearer origin of coordinates O, being all in the 
same quadrant as P (first one, in our case). Besides, it 
is not necessary to draw the largest radius of 
curvature of E, which is at PbY if a>b. 
 To illustrate this difference, it may be noted that 
Fig.1 was drawn with a = 1.5, b = 1 (and t = 1 rad), 

while Fig.3 is drawn with a = 2, b = 1 (and equally 
t = 1 rad), so the largest radius of curvature has 
effectively changed from a2

 / b = 1.52
 / 1 = 2.25 to 

22
 / 1 = 4. This means that Fig.1, if drawn with the 

data of Fig.3, would have needed a considerable 
reduction to fit in the page, while Fig.3 can be seen to 
fit quite comfortably even in just one text column. 
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Fig.3. Radius of curvature of an ellipse with 
straightedge and compass: Second Construction. 

 This second elliptical construction also requires 
less precision in the determination of intersections 
because none takes place under small angles, and all 
the segments to which parallels have to be drawn are 

quite longer than 1bYP P  and, especially, 5bYP P  in the 
First Construction. In other words, the conditioning 
of the problem is better with this method. 

2.3.1 Description of the Constructive Steps 
 As with the previous ones, we will first describe 
the steps to carry out the construction, and then we 
will go on to justify its mathematical exactitude. The 
data are the same as before: half-axes a, b of ellipse 
E, and its point P in which its radius of curvature 
must be calculated. Again, the ellipse itself is also 
represented for illustrative reasons, even if only a 
discrete number of its points may be drawn by the 
sole use of straightedge and compass. 
 We start by drawing the main circle ca and the 
minor circle cb of E (only their portions in the first 
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quadrant are drawn). We call Pa and Pb their 
respective intersecting points with X+. By P a vertical 
line is drawn until ca at P1, and a horizontal until cb at 
P2; horizontal by P1 and vertical by P2 meet at P3, and 
we call r the straight line by coordinate origin O and 
P3. 
 With center at O, P3 is rotated onto X+ at P4; by P4 

parallel to 3aP P  until r at P5, which is again rotated 

onto P6, and by P6 another parallel to 3aP P  until P7. 

Finally, by Pa a parallel to 7bP P  is drawn until r at P8, 

being distance 8OP  the exact radius of curvature of E 
at P. 

2.3.2 Mathematical Justification of the Second 
Construction 

The coordinates of point P of the ellipse are, as can 
be seen in Fig.2, (a cos t, b sin t). Note that parameter t 
is not the angle defined by the OX axis and the 
position vector of P itself, but of auxiliary points P1 
and P2, which are aligned with the origin of 
coordinates O. 

 By the Theorem of Pythagoras, 
3

3OP  is the 
numerator of well-known equation: 

  
( )3/ 22 2 2 2sin cosa t b t

R
ab

+
=  (1) 

as e.g. in [2], p. 796, so it will be enough to raise 

3OP  to the cube and divide by a b to solve the 
problem. Assuming, to simplify the explanation, 
a = 1, and by the Theorem of Thales, both rotations 

upon X+ followed by parallels until r do raise 3OP  to 
the third power, while the dash-dotted parallels 
achieve the division by a b = b. Finally note that 
assuming a = 1 implies no loss of generality, because 
the unit of length can always be chosen to be equal to 

the length of segment aOP  (i.e., a), and if the radius 

of the osculating circle is the 8OP  segment drawn, 
this will hold whatever length unit is used. 
 Finally, note that due to the also well-known 
equations 

  
( )
( )

1/ 22 2 2 2

1/ 22 2 2 2

cos cos sin cos

sin sin sin cos

b t a t b t

a t a t b t

α

α

 = +

 = +

 (2) 

as e.g. in [2], p. 796, the angle shown as α on Fig.2 is 
indeed the one of the normal to E at P, which would 
save the representation of −F, perhaps too far on the 
left, in the First Construction as well. 

3 Conclusions and Further Work 
 New geometric constructions to find the radius of 
curvature of conics at any one of their points by 
means of straightedge and compass have been 
presented. These constructions are consequences of a 
newly discovered property of conic sections with 
many engineering and constructive applications [2]. 
 Deeper comparison with already existing methods 
[5], [6], and a study from the projective viewpoint [7] 
may constitute the object of further investigation. 
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