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Abstract: We give a polynomial time algorithm to find the population variance of tour costs over the solution
space of the symmetric Traveling Salesman Problem (TSP). In practical terms the algorithm provides a linear time
method, on the number of edges of the problem, for determining the standard deviation of these costs. Application
of the algorithm has produced empirical evidence that there is a clear relationship between the optimal tour cost
and the standard deviation. This suggests that there may be a polynomial time algorithm to estimate the likely
optimal tour cost of a TSP. The method for finding the variance also shows promise of being generalizable to
higher statistical moments.
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1 Introduction

1.1 The TSP

The traveling salesman problem (TSP) is a classic
problem in combinatorial optimization. The problem
is this: given a finite set of cities together with the dis-
tances between these cities, find the tour of shortest
distance which visits each city just once and returns
to the city of origin. Extensive general references in-
clude [9][2][18]. Linear programming reductions are
surveyed in [15], while properties of frequently used
local search heuristics are considered in [3].

It is natural to define the symmetric TSP in terms
of a complete undirected graph Γ = (V, E) with
the vertices V representing cities, and the edges E
representing the connections between cities. We la-
bel the set of n vertices as {1, 2, . . . , n}, and an
n-cycle permutation as a tour or solution, π. The
set of all tours, the solution space, is denoted Θ.
The distance between cities (or cost of an edge), is
a function c : E → < which we extend to the
function,π : Ω → <, defined as the cost of a tour
Ω(π) =

∑n
i=1 c({π(i), π((i mod n) + 1)}).

The TSP then, is to find some n-cycle permuta-
tion π of V for which Ω(π) is smallest, and such a
permutation π∗ is called a global minimum tour or op-
timal tour. The central difficulty in finding a global
minimum tour is that the number of tours increases
in proportion to the factorial of the number of cities.

Specifically, if there are n cities then the number of
tours is |Θ| = (n − 1)!/2. It is well known that the
existence of a polynomial time algorithm to find the
global minimum cost of a TSP would imply the ex-
istence of a polynomial time algorithm to find a tour
with this cost [18, p10].

1.2 Importance of this Research

The TSP is of interest for three interrelated reasons.
Firstly the problem and its obvious variations have nu-
merous practical applications, secondly it is known to
be NP-complete [18, p9], and so is of theoretical in-
terest, and lastly it is, comparatively, well studied and
so makes a good test application for new optimiza-
tion algorithms [14]. Novel optimization heuristics
are typically motivated by observation of the behavior
of complex systems, for example, evolution by nat-
ural selection is mimicked in genetic algorithms, the
hardening of metals in simulated annealing [11, Chap-
ter 6]. However our normal three dimensional world
provides poor guidance to the characteristics of com-
binatorial problems. A good example is the properties
of local minima of the TSP under the 2-opt move [18].
It is shown in [6] that each local minimum has a cost
of no more than the average cost of solutions over the
solution space. So whereas in the real world, we may
have crater lakes on high mountains no such traps can
occur in this landscape of the TSP (although many
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others can). The chief purpose of the research dis-
cussed here is to provide more insight into the solution
space of the TSP.

The remainder of this paper is organized as fol-
lows. In Section 1.3 we briefly review the statistical
concepts used. In Section 2 we prove that it is pos-
sible to find the variance of tour costs over the solu-
tion space of a TSP of size n cities in O(n2). Section
2.2 considers the generalization of our main result to
higher statistical moments. Finally in Section 3.1 we
apply our main result to an empirical study of the re-
lationship between, the cost of optimal solutions, the
standard deviation of costs and the problem size.

1.3 Statistical Preliminaries

We recall [20, Chapter 4][5, Chapter 5] that the ex-
pected value, Ex, or mean value of a discrete random
variable X is Ex(X) =

∑
x xp(x), where p(x) is the

probability of X taking the value x. The rth moment
about the mean is defined as

mmr(X) = Ex((X − Ex(X))r). (1)

The second moment about the mean, mm2(X), is
the well known population variance1 and reflects the
spread of values around the mean of X. The square
root of the variance is the standard deviation. In terms
of a TSP with solution space Θ, cost function Ω and
mean tour cost µ, (1) can be written

mmr(Θ) =

∑
π∈Θ

((Ω(π)− µ)r)

|Θ| . (2)

It is reported in [16], and a simple proof follows
from Lemma 1 below, that the mean tour cost over the
solution space of a problem of size n cities with edge
set E is µ = 2

n−1

∑
e∈E

c(e).

2 Finding the Variance of Tour Costs
in Polynomial Time

We begin with three technical lemmas concerning the
number of edges in the solution space. Each is easily
proved.

Lemma 1 There are (n− 2)! tours containing a par-
ticular edge {u, v} for a TSP of size n ≥ 3 cities. ¤

Lemma 2 There are (n−3)! tours containing the two
adjacent edges {u, v}, {v, x} for TSP of size n ≥ 3
cities. ¤

1For the remainder of this paper we will simply refer to this
statistic as the variance

Lemma 3 There are 2(n − 3)! tours containing the
two non-adjacent edges {u, v}, {x, y}, with u, v, x, y
distinct, for a TSP of size n > 3 cities. ¤

2.1 Proof of Variance Theorem

In order to prove our central theorem we provide some
notational machinery. Let Θ be the solution space of
a TSP with edge set E and cost function Ω. We index
each π in Θ with an integer k ∈ [1 . . . |Θ|], similarly
we label the edges of E as ei with i ∈ [1 . . . |E|]. We
define the function [1 . . . |Θ|]×[1 . . . |E|] : t → {0, 1}
as

tki =

{
1 if edge ei is in tour k

0 otherwise.

Under this arrangement if k is the index of a tour π,
then the cost of π is

Ω(π) = tk1c(e1) + tk2c(e2) . . . tk|E|c(e|E|),

and specializing (2) to r = 2, the variance of the tour
costs over a solution space with mean tour cost µ is

mm2(Θ) =

|Θ|P
k=1

((tk1c(e1)+tk2c(e2)...tk|E|c(e|E|)−µ)2)

|Θ| .

(3)
Now |Θ| is of course factorial on n and so this for-

mulation is impractical for all but the smallest prob-
lems. In Theorem 4 we give a polynomial time solu-
tion to the problem.

Theorem 4 The variance of tour costs over the solu-
tion space of a TSP of size n cities and with edge set,
E is

var =
2β1

(n− 1)
− 4β1 + 2β2

(n− 1)(n− 2)
(4)

with the functions β1, β2 being defined as

β1 =
∑
e∈E

c0(e)2

β2 =
∑
e∈E

[
c0(e)

∑
f∈A(e)

c0(f)

] (5)

where c0(e) = c(e)−µ/n and A(e) is the set of edges
adjacent to an edge e.
Proof: Each tour has only n edges, so for a given tour
k, only n of the tki are 1, the remaining are 0. This
gives (3) as

var(Θ) =

|Θ|P
k=1

((tk1c0(e1)+tk2c0(e2)...tk|E|c0(e|E|))2)

|Θ| ,
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=

|Θ|P
k=1

|E|P
i=1

|E|P
j=1

tkitkjc0(ei)c0(ej)

|Θ| .

Expanding the numerator we have

|Θ|∑
k=1

|E|∑
i=1

|E|∑
j=1

tkitkjc0(ei)c0(ej) (6)

= α11c0(e1)c0(e1) + . . . + α1|E|c0(e1)c0(e|E|)
+ α21c0(e2)c0(e1) + . . . + α2|E|c0(e2)c0(e|E|)

...
+ α|E|1c0(e|E|)c0(e1) + . . . + α|E||E|c0(e|E|)c0(e|E|)

where αij =
∑|Θ|

k=1 tkitkj , is the number of tours
which contain both edges ei and ej .

Let ei and ej be any two edges of a TSP, either
these edges are equal, they are adjacent or they are
neither equal nor adjacent. Thus each constant αij is
one of three values.

case 1 αii. By Lemma 1 each edge ei appears in
(n− 2)! tours over the solution space, thus
αii = (n− 2)!.

case 2 αij such that edge ei is adjacent to ej . By
Lemma 2 any two adjacent edges appear in
(n− 3)! tours so in this case αij = (n− 3)!.

case 3 αij such that edge ei is non adjacent to ej . By
Lemma 3 the two edges appear in 2(n− 3)! tours
so αij = 2(n− 3)!.

We recall that A(e) is the set of edges adjacent to
an edge e and we define N(e) to be the set of edges
neither adjacent to e nor equal to e. So (6) becomes,

= (n− 2)!
( ∑

e∈E

c0(e)2
)

+ (n− 3)!

(
∑
e∈E

[
c0(e)

∑
f∈A(e)

c0(f)

])

+ 2(n− 3)!

(
∑
e∈E

[
c0(e)

∑
f∈N(e)

c0(f)

])
,

= (n− 2)!β1 + (n− 3)!β2 + 2(n− 3)!β3,

where

β3 =
∑
e∈E

[
c0(e)

∑
f∈N(e)

c0(f)

]
.

Giving the variance as

var(Θ) = 2((n−2)!β1+(n−3)!β2+2(n−3)!β3)
(n−1)!

= 2β1

(n−1) + 2β2+4β3

(n−1)(n−2)

However it’s easy to see that β3 = −β1 − β2,
since for any e in E we have E = A(e)

⋃
N(e)

⋃{e}
and

∑
e∈E

c0(e) = 0 (by the definition of c0). Therefore

we have

var(Θ) = 2β1

(n−1) − 4β1+2β2

(n−1)(n−2) (7)

as required. ut
Corollary 5 It is possible to calculate the variance of
tour costs over the solution space of any TSP with n
cities in O(n2).

Proof: The function β1 above can clearly be found
in O(n2), since |E| = (n2 − n)/2. Let Ix be the set
of edges incident to a city x. Let e = {x, y} be an
edge, then A(e) = (Ix − {e})

⋃
(Iy − {e}). Thus to

find β2 first compute and store Sx =
∑

f∈Ix

c0(f) for

each of the n cities of the instance. The complexity of
this phase is O(n2). The sum β2 is then

β2 =
∑

e={x,y}∈E

[c0(e)(Sx + Sy − 2c0(e))] ,

(8)
and this can clearly be performed in O(n2). ut

2.2 Generalization to Higher Moments

The square term in the calculation of the variance en-
sures that it is sensitive only to the magnitude of a
value’s difference from the mean. The third moment
is significant since it is sensitive to both the sign and
magnitude of the difference. It thus encapsulates in-
formation about the symmetry of a distribution about
the mean.

In terms of generalizing Theorem 4 to the rth mo-
ment, Lemmas 2 and 3 would need to be expanded to
consider the number of tours in which r edges can
occur, taking into account their various adjacency re-
lationships. This seems a tractable task and will be the
subject of future investigation.

3 The Relationship between the
Depth and Problem Size

By the depth of a solution, π, we mean the number
of standard deviations from the cost, Ω(π), of the so-
lution to the mean cost of all tours. This motivates
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the following definition: the depth of a solution π of a
TSP with mean tour costs µ and standard deviation of
costs σ is

depth(π) =
µ− Ω(π)

σ
. (9)

3.1 Real World Problems

We examine two sets of real world problems. In the
first case, 95 problem instances were taken from the
well known TSPLIB database[17]. The second set,
of 39 instances, originates from the genomics com-
munity and arises from the requirement to sort Radi-
ation Hybrid (RH) data into likely gene sequences [7,
Chapter 16][1]. The RH data problems are signifi-
cant because they have no low dimensional embed-
ding and because the problem domain requires large
numbers of good, although not necessarily optimal so-
lutions to be generated. The specific data set used was
obtained from the RHDF9000 dog radiation hybrid
panel [10][4], with each of the 39 TSP instances cor-
responding to the RH data over a single canine chro-
mosome.

3.1.1 Empirical Results on TSPLIB Instances

Each of the problems we considered is under 6000
cities in size and has an approximate embedding on
a two dimensional surface. In each case the mean and
standard deviation of tour costs were determined by
application of the methods discussed above.

Known optimal solution costs from [21] for the
95 cases were used to compare the depth of the opti-
mal tours to the size of the problem. Figure 1 shows
the results of this survey. It indicates a striking lin-
ear relationship between the depth of the optimal so-
lutions and the square root of the problem sizes,

√
n.

Indeed the Spearman’s correlation coefficient between
the two is 0.989 with a two tailed level of statistical
significance of less than 0.001. It is also significant
that this correlation is stronger than that observed be-
tween µ/σ and

√
n. The results of curve fitting using a

linear least squares regression model are summarized
in Table 1.

3.1.2 Empirical Results on Canine RH Instances

In each of the 39 cases the RH panel data was con-
verted to a TSP using the CarthaGène package[19].
The resulting TSP instances have sizes ranging be-
tween 68 and 588 cities. For each instance the optimal
solution cost was estimated using the well known Lin-
Kernighan algorithm. Given the size of the problems

it is probable that all of the solutions found are in fact
optimal, and that any that are not, are within a few per-
cent of optimal. This data coupled with the mean and
standard deviation of tour costs was used to approxi-
mate the depth of the optimal solutions in each case.
Again a striking correlation between the depth of the
best solution seen and the square root of the problem
size was found, the relationship being near linear as is
evident in Figure 1. The Spearman’s correlation coef-
ficient between the two is 0.988 with a two tailed level
of statistical significance of less than 0.001. Again the
correlation was stronger than that between µ/σ and√

n. The results of curve fitting with a least squares
regression using a power model on

√
n are summa-

rized in Table 1.

Figure 1: The relationship between the depth of the optimal so-
lution and the square root of the problem size. Left, 95 instances
from the TSPLIB problem set. Right, 39 instances each originat-
ing from canine RH panel data.

Problem best fit df. ρ2

TSPLIB depth = −4.27 + 2.29n0.5 93 0.988
canine RH depth = 0.806n0.796 37 0.982

Table 1: The results of curve fitting using least squares regres-
sion showing the relationship between the depth of the optimal
solution and problem size in cities, n. In the case of the TSPLIB
data a linear model on

√
n was applied. In the case of the canine

RH problems a near linear power model on
√

n provided the best
fit. The resulting best fit expressions are presented here in terms
of n. In both cases the statistical significance is better than 0.001.

3.2 Application of these Relationships

The relationships noted above open the possibility of
producing fast estimates of the likely optimal solu-
tion cost, particularly where there is knowledge of
the application domain or other previously analyzed
similar instances. This situation certainly arises in
many application domains. It is anticipated that ad-
ditional information about the skew of the distribution
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given by the third moment about the mean will im-
prove the models provided above. In practical terms
direct calculation of the third moment may prove to be
too expensive for large problems and it may be neces-
sary to resort to sampling techniques to estimate this
statistic. However an expression giving the third mo-
ment would certainly aid the refinement of such an
approach.

4 Conclusions

In this paper we have demonstrated that the TSP is
well enough constrained to be amenable to statistical
analysis. We have proved that the variance of tour
costs over the solution space of the TSP with n cities
may be found in time O(n2). The method provided
is therefore linear on the number of edges of the in-
stance. The combinatorial techniques employed in-
vite generalization to determining other, higher order
statistical moments and also show promise of being
generalizable to variations of the TSP.

In the case of typically occurring 2 dimensional
problem instances, we provide empirical evidence
that there is a simple linear relationship between the
square root of a TSP’s size and the depth of its opti-
mal solution. The depth in this case being, the number
of standard deviations the optimal tour cost is below
the mean. In other instances with no low dimensional
embedding we find a near linear relationship between
these parameters. In terms of direct application, we
believe refinement of the results herein will provide
a fast method to estimate the likely optimal solution
cost of a problem.
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