
Distributed Database Statistics Collection Using Mobile Agents

NUTLADA RATTANAVIJAI, SUPHAMIT CHITTAYASOTHORN
Department of Computer Engineering, Faculty of Engineering

King Mongkut’s Institute of Technology, Ladkrabang
Bangkok 10520, THAILAND

Abstract: - Mobile agents are programs that can move and work on computers in computer networks without
any program pre-installation. At present, mobile agents are employed by various networked applications. An
application domain which is believed to be suitable for agent deployment is distributed database. In this paper,
we use mobile agents for distributed database statistic collection. The collected database statistics will be used
by the cost-based query optimizer of each site to determine the best physical access plan for a given database
query. Statistics collection even though useful is time consuming and could slow down other database
operations. Mobile agents are employed to find suitable time for statistic collection in order to reduce the
interference.

Key-Words: - Mobile Agents, Distributed Database, Database Statistics, Query Optimization

1 Introduction
Database statistics collection is an important activity
which ensures correct decision making by the cost-
based optimizer. Statistics such as number of rows
of a table, number of distinct values in a column,
availability of indexes etc. are either collected
manually by database administrators or collected
automatically for each preset time interval. The
major problem is the statistics collection activity is
time and resource consuming and could interfere
with normal users’ database operations. Proper
database statistics collection timing is required. The
most common timing is to collect statistics at night
where the system is assumed to have lighter loads.
 Some attempts have been made by researchers.
The Piggyback Method [1] collects database
statistics each time a query is issued. The newly
collected statistics, even though specific to a
particular query, is used to update the main
statistics. A major drawback of this method is the
added overhead imposed on each database query.
Another statistics collection method is the
Automated Statistics Collection [2]. This method
observes database statistics by checking query
results and collects only out-of-date ones. However,
this method only refers to centralized databases.
 In a distributed database system that comprises
several database sites, we introduce agents to
perform database collection and accumulate these
statistics for global query optimization. The agents
use information from the system catalog of each site
to determine if new database statistics need to be
collected and choose to collect them when the
system does not have heavy loads.

2 Mobile Agents
Mobile agents are programs that can move and work
on computers in computer networks without any
program pre-installation. At present, mobile agents
are employed by various networked applications
[3,4,5]. Mobile agents may record their status
before moving to the next computer and can resume
operations upon arrival [6,7].

2.1 Characteristics of Mobile Agents
Mobile agents are software that can work and move
in the network. It can be programmed to work on
specific tasks and can communicate with other
agents in the network.
 Each agent may have its own characteristics and
independent of other agents. It can make its own
decision in order to reach its objectives without
human intervention. Human users only give initial
values and watch the agent’s operations.
 Mobile agents can work on any computers in the
network regardless of hardware and operating
systems and there is no need to install the agent code
on the machine. There only need to be a Java Virtual
Machine (JVM) installed on it and the agents will
work on the JVM platform. Thus, the agent
approach to solve problems in a networked
environment becomes popular.

2.2 Mobile Agent Lifecycle
A mobile agent can be in one of the following states.
- Creation: This is the state that occurs only once for
each agent. An agent id is uniquely created and
individually assigned to each agent.

Proceedings of the 6th WSEAS Int. Conference on TELECOMMUNICATIONS and INFORMATICS, Dallas, Texas, USA, March 22-24, 2007 42

- Starting: This is the starting state that takes place
when the agent moves to a new host computer.
- Deactivation: This is the state that the agent stops
all the works and saves its current status.
- Disposal: This is the state that the agent finishes all
the work and returns it resources.
Fig. 1 shows the state diagram of mobile agent
lifecycle.

Fig. 1 Lifecycle of a mobile agent

2.3 Communications between Agents
Mobile agents can communicate with one another
using one of the three techniques namely procedure
call, callback and mailbox. The procedure call is a
synchronous communication mode where agent A
contacts agent B for a work assignment. While it
waits for B to complete the task A cannot perform
other tasks and has to wait for the result from B
before it can resume operation.
 The callback is an asynchronous mode where
agent A contacts agent B for a work assignment and
let B perform the task without waiting for B. After B
finishes the task, it will send the result to A. The
mailbox mode is similar to the callback except that
when agent A wants B to perform a task it will write
the request in B’s mailbox. When B opens its
mailbox and finds the request, it will perform the
task and finally put the result into A’s mailbox.

3 Distributed Database System
A typical distributed database system comprises
several autonomous computers with an autonomous
DBMS and databases connected together in a
computer network. Such a system allows local
applications that use only resources from only one
site and global applications that may use resources
from several sites. Hence, global query optimization
becomes an interesting issue. Global query
optimization that utilizes cost-based technology
requires global database statistics from all related

sites. A typical distributed database system is shown
in Fig. 2.

Fig.2 A Typical Distributed Database System

 Global query processing in a distributed
database system is performed by the query optimizer
of the site where the request is originated (the
coordinator). In principle, the global statistics should
be available at all participating sites. However, this
is not the case in practice and the coordinator
normally has access only to its own database
statistics. Global queries are decomposed in to
several smaller ones and sent to the sites that have
the data. Local query optimization is done at each
site and results are sent back to the coordinator site
for the final assembly.

4 Query Optimization
Query optimization is the process of transforming a
user’s logical query to the most efficient physical
access path to the result. Nowadays most DBMSs
employ one of the two popular query optimization
techniques namely rule based (or heuristic based)
and cost based optimizers.
 The rule based optimizer is the older technology.
Programmers are required to know the preference
choice of the optimizer and write SQL statements
accordingly to encourage the optimizer. The cost
based optimizer requires almost no human choice of
the access plan but requires database statistics for
decision making.

Creating

Deactivation Starting

Disposal

DB1

DB3

Site A

DB2

Site B

Site C

Proceedings of the 6th WSEAS Int. Conference on TELECOMMUNICATIONS and INFORMATICS, Dallas, Texas, USA, March 22-24, 2007 43

Fig. 3 Steps of cost based optimization

 Fig. 3 shows steps of cost based query
optimization. A user’s logical query enters the
system, has the syntax checked by the parser and
then translated into relational algebra statements.
The cost based optimizer then consults pre-collected
database statistics to find the access path with
minimum calculated cost. The final execution plan
is executed by the evaluation engine. Some DBMSs
keep the plan for later usage.

5 Database Statistics
Database statistics are collected and kept in the
system catalog of the DBMS. It is used by the cost-
based optimizer and at least has the following
information:

• Table statistics
o Number of rows
o Number of blocks
o Average row length

• Column statistics
o Number of distinct values in column
o Number of null in column
o Data distribution (histogram)

• Index statistics
o Number of leaf blocks
o Levels
o Clustering factor

• System statistic
o I/O performance and utilization
o CPU performance and utilization

 Each cost based DBMS is supplied with a
database statistics collector or database analyzer
which can be manually activated by the database
system administrator. However, there are problems
that database administrators must be aware of. The
problems are listed as follow:

- Heavy system load: During statistics
collection, tables are scanned to find information
about the databases thus disturb and slowdown
other activities.

- Out-of-date Statistics: In the case that the
database has many insert, delete and update
activities, the database statistics may not reflect
the correct status of the database. In this case,
database statistics should be collected more
often or the query optimizer may make
incorrect decisions regarding the best physical
access plan.
- Incomplete Statistics: Most DBMSs allow
only parts of the database to have statistics
collected to reduce the statistics collection
overheads. However, when the database table
that does not have statistics collected are use in
the same query with those with statistics
collected, most DBMSs will invoke the cost
based optimizer and activate the statistics
collection process for the table. This process
will significantly slow down the query
processing.
- High Cost for Analyzing Large Database:
Since statistics collection is an expensive task,
in the case that the majority of the database is
unchanged, statistics should not be collected
for those parts.
- Inconvenience for Users: All in all, the
database statistics collection process should be
automated for user’s conveniences and to
achieve up-to-date statistics with minimum
interference with other users’ activities.

6 Mobile Agents and Distributed
Database Statistics
This research project presents the use of mobile
agents for distributed database statistics collection.
The mobility of the agents and the ability to work on
any computers without program installation make
them suitable to be employed in the networked
environment. Three kinds of agents are adopted
namely, the UDI agent, the QF agent and the
scheduler agent.

6.1 The UDI Agent
This kind of agent performs the task of watching
Update/Insert/Delete (UDI) operations on the
database. It performs the following steps:

- The agent observes a system table that
keeps the number of update, insert and delete
operations on tables. This system table is
maintained by the DBMS [9]. It also counts
number of rows of each table.
- It calculates the percentage of changes made
to each table by comparing the number of

Query

Query
Output

Parser &
Translator

Evaluation

Optimizer

Relational
Algebra Expression

Execution
Plan

Statistics

Proceedings of the 6th WSEAS Int. Conference on TELECOMMUNICATIONS and INFORMATICS, Dallas, Texas, USA, March 22-24, 2007 44

activities and the number of rows. In the case
that the percentage of change is grater than a
margin value, the data which are related to the
table are sent to another agent that performs
statistics collection scheduling.

Table 1 shows the sample data which is collected
and calculated by UDI agents.

6.2 The QF Agent
This kind of agent performs the task of watching the
query optimizer cost estimation performance in
order to suggest new statistics collection. For each
query that enters the system, the query optimizer
estimates the cost and keeps the estimated value in a
system table [9]. The QF agent performs the task of
submitting the queries to the DBMS at suitable time
and compares the actual cost with the estimated one.
In the case that the estimated value is different from
the actual value by a wide margin, it is possible that
the cost estimation process uses an out-of-date
statistics and new statistics need to be collected. The
QF agent then informs another agent that performs
statistics collection scheduling.

6.3 The Scheduling Agent
This kind of agent performs statistics collection
scheduling. It accepts input data from the UDI
agents and QF agents and arranges scheduling
priorities. It also checks database utilization and
collects database statistics of tables based on
information in the priority queues. There are five
priority queues. They are as follow:

Table 1 UDI-driven data

Table 2 shows the sample data which is collected by
QF agents.

a) The useful queue: Tables in this queue have been
modified by less than 50% according to the UDI
agent report.
b) The need queue: Tables in this queue are those
reported by the QF agents.
c) The pressing queue: Tables in this queue have
been modified by more than 50% according to the
UDI agent report.
d) The urgent queue: Tables in this queue have been
modified by more than 50% according to the UDI
agent report and also reported by the QF agents.
e) The critical queue: Tables in this queue have been
modified but have never had statistics collected.
 The critical queue is the highest priority queue.

7 Some Experimental Results
Two identical distributed database systems are set
up and identical insert/delete/update operations are
performed. The difference is one system employs
mobile agents for statistics collection but the other
one collects statistics based on preset time intervals.
Twenty different queries are applied to both
databases and the response time obtained from the
agent-based one is shown to be smaller than the
interval one. This is due to the fact that the optimizer
has more up-to-date statistics than the interval one.
Fig 4 shows the comparison results.
 The second experiment demonstrates the case
when queries are issued during the statistics
collection time against the case of queries on
databases that use mobile agents for statistics
collection. From Fig. 5 the interval statistic
collection starts when query number 4 starts. The
difference between the response times is shown in
wide margin.

TABLE_NAME INSERTS UPDATES DELETES SUM NUM_ROWS CHANGE_RATE
PART 5 2 0 7 20 35%

SUPPLIER 10 0 0 10 10 100%

SQL TABLE_NAME COL_NAME ESTIMATED REAL
SELECT * FROM
LINEITEM WHERE
L_SHIPDATE<=’1998-05-27’

LINEITEM L_SHIPDATE 17626 20899

SELECT * FROM
CUSTOMER WHERE
C_MKTSEGMENT=’BUILDING’

CUSTOMER C_MKTSEGMEN
T

2941 2941

Proceedings of the 6th WSEAS Int. Conference on TELECOMMUNICATIONS and INFORMATICS, Dallas, Texas, USA, March 22-24, 2007 45

Fig. 4 The comparison between systems without and
with mobile agents

Fig. 5 The comparison between queries issued
during statistics collection and the ones which have
agents

8 Conclusion
This paper presents the application of mobile agents
for statistics collection in distributed databases.
Agents choose statistics collection timing according
to the characteristics of individual tables and try to
avoid interference with other users’ activities.
Agents observe changes made to tables and collect
statistics accordingly. Experiments show convincing
results.
Please, follow our instructions faithfully, otherwise
you have to resubmit your full paper. This will
enable us to maintain uniformity in the conference
proceedings as well as in the post-conference
luxurious books by WSES Press. The better you
look, the better we all look. Thank you for your
cooperation and contribution. We are looking
forward to seeing you at the Conference.

References:
[1] Q. Zhu, B. Dunkel, N. Soparkar, S. Chen, B.

Schiefer, T. Lai, “A piggyback method to collect

 statistics for query optimization in database

management systems,” Proc. 1998 Conf. Center
for Advanced Studies on Collaborative Research
(CASCON ’98), 1998.

[2] A. Aboulnaga, P. Haas, M. Kandil, S.Lightstone
IBM Almaden Research Center, G. Lohman,
V.Markl, I. Popivanov, V. Raman IBM Toronto
Development Labe, “Automated Statistics
Collection in DB2 UDB,” In Proceeding of 30th
VLDB Conference, Toronto, Canada, 2004.

[3] Brewington, B., Gray, R., Moizumi. K., Kotz,
D., Cybenko, C., & Rus, D., “Mobile agents for
distributed information retrieval,” Intelligent
information agents, Springer-Verlag, 1999, pp.
355- 395.

[4] Sahuguet, A., B. Pierce and V. Tannen,
“Distributed Query Optimization: Can Mobile
Agents Help?,” Unpublished draft.

[5] Thandia Win, Khin Mar Lar Tun, “Mobile Agent
Cooperation Methods in Hybrid Query
Optimization,” In APSITT 2005 Proceedings. 6th
Asia-Pacific Symposium on Information and
Telecommunication Technologies, 2005, pp 71-
76.

[6] Alf Inge Wang and Carl-Fredrik Sørensen, “A
Comparison of Two Different Java Technologies
to Implement a Mobile Agent System,” In
proceedings of the IASTED International

0
10
20
30
40
50
60
70
80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Query

tim
e

(s
)

Interval

Mobile Agent

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Query

tim
e

(s
)

Interval

Mobile Agent

Proceedings of the 6th WSEAS Int. Conference on TELECOMMUNICATIONS and INFORMATICS, Dallas, Texas, USA, March 22-24, 2007 46

Conference on Applied Informatics 2003
(AI'2003), 2003.

[7] Damir Horvat, Dragana Cvetkovic, Veljko
Milutinovic, Petar Kocovic and Vlada
Kovacevic, “Mobile Agents and Java Mobile
Agents Toolkits,” In Proc. of the 33rd Hawaii
International Conference on System Sciences
,2000.

[8] C.J. Date, An Introduction to Database Systems,
Addison-Wesley 1995.

[9] Performance Tuning Guide, http://download-
west.oracle.com/docs/cd/B14117_01/server.101/
b10752 /title.htm

Appendix A: Sample SQL queries that are used

in the experiments
Query 1
select l_returnflag,l_linestatus,
 sum(l_quantity) as sum_qty,
 sum(l_extendedprice) as sum_base_price,
 sum(l_extendedprice * (1 - l_discount)) as

sum_disc_price,
 sum(l_extendedprice * (1 - l_discount) * (1 +

l_tax)) as sum_charge,
 avg(l_quantity) as avg_qty,avg(l_extendedprice)

as avg_price,
 avg(l_discount) as avg_disc,count(*) as

count_order
from
 lineitem
where
 l_shipdate <= date '1998-12-01' - interval '96'

day (3)
group by
 l_returnflag,l_linestatus
order by
 l_returnflag,l_linestatus;

Query 2
select s_acctbal,s_name,n_name,p_partkey,

 p_mfgr,s_address,s_phone,s_comment
from part,supplier,partsupp,nation,region
where
 p_partkey = ps_partkey
 and s_suppkey = ps_suppkey
 and p_size = 28
 and p_type like '%STEEL'
 and s_nationkey = n_nationkey
 and n_regionkey = r_regionkey
 and r_name = 'MIDDLE EAST'
 and ps_supplycost = (
 select min(ps_supplycost)
 from partsupp,supplier,nation,region

 where
 p_partkey = ps_partkey
 and s_suppkey = ps_suppkey
 and s_nationkey = n_nationkey
 and n_regionkey = r_regionkey
 and r_name = 'MIDDLE EAST')
 and rownum <= 100
order by
 s_acctbal desc, n_name,s_name,p_partkey;

Query 3
select l_orderkey,sum(l_extendedprice * (1 -

l_discount)) as revenue,
 o_orderdate,o_shippriority
from customer,orders,lineitem
where
 c_mktsegment = ' BUILDING'
 and c_custkey = o_custkey
 and l_orderkey = o_orderkey
 and o_orderdate < date ' 1995-03-31’
 and l_shipdate > date ' 1995-03-31'
 and rownum <= 10
group by
 l_orderkey,o_orderdate,o_shippriority
order by
 revenue desc,o_orderdate;

Query 4
select o_orderpriority,count(*) as order_count
from orders
where
 o_orderdate >= date ' 1997-10-01'
 and o_orderdate < date ' 1997-10-01' + interval

'3' month
 and exists (select * from lineitem where

l_orderkey = o_orderkey
 and l_commitdate < l_receiptdate)
group by
 o_orderpriority
order by
 o_orderpriority;

Proceedings of the 6th WSEAS Int. Conference on TELECOMMUNICATIONS and INFORMATICS, Dallas, Texas, USA, March 22-24, 2007 47

