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Abstract:  A receding horizon filtering problem for nonlinear continuous-time stochastic systems is 
considered. The paper presents the optimal receding horizon filtering equations. Derivation of the equations is 
based on the Kushner-Stratonovich and Fokker-Planck-Kolmogorov equations for conditional and 
unconditional density functions.  This result could be a theoretical basis for the optimal control in nonlinear 
stochastic systems with incomplete information over the most recent time interval. The approximate solutions 
of the optimal receding horizon filtering equations are discussed.  In particular, for linear stochastic systems, 
the optimal linear receding horizon filter represents the combination of the Kalman and Lyapunov equations.  
Simulation result is provided. 
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1 Introduction 
 
 In the literature, the problem of estimating the 
state of a dynamic systems by using only the 
information over the most recent time interval is 
defined in various ways, e.g., finite-memory, 
receding-horizon or sliding-window estimation. 
This problem was originally faced in [1]. Later on, 
the importance of such estimation methods has 
grown in many application areas where model 
uncertainties prevent one from successfully using 
linear Kalman filtering techniques [2]-[8] (see also 
the references cited therein). 
 The design of receding horizon filters for 
general nonlinear systems is still a difficult 
problem. This is because of the high level concepts 
associated to the classical nonlinear approaches. A 
general filtering problem may be stated in a 
deterministic framework or in a stochastic one. In 
[8], the design and convergence of receding 
horizon nonlinear observers for deterministic 
systems are given.  
 In this paper, we address the receding horizon 
filtering problem within nonlinear continuous-time 
stochastic systems. The main goal of this paper is 
to derive optimal receding horizon filtering 
equations. We also demonstrate that these 
equations are the basis for designing of the optimal 

linear and suboptimal nonlinear receding horizon 
filters.  

This paper is organized as follows. The problem 
of receding horizon filtering for nonlinear dynamic 
systems described by Ito stochastic differential 
equations is stated in Section 2. In Section 3, we 
derive an optimal receding horizon filtering 
equations. The derivation is based the Kushner-
Stratonovich and Fokker-Planck-Kolmogorov 
equations for the conditional and unconditional 
density functions. In Section 4, two groups of a 
suboptimal nonlinear receding horizon filtering 
algorithms are discussed. The first group is based 
on a parametrization of density functions by means 
of orthogonal series expansions. And the second 
one is using the Taylor approximation of 
nonlinearities. In Section 5, the optimal linear 
receding horizon filter is derived. We show that in 
order to solve the Kalman filter equations, one 
needs to solve the Lyapunov equations for 
unconditional mean and covariance. In Section 6, 
the linear receding horizon filter is numerically 
tested.  Example demonstrates the high-accuracy 
and robustness of the proposed filter. Finally, 
Section 7 is the conclusion. 

     
2  Statement of Receding Horizon 

Filtering Problem  

Proceedings of the 6th WSEAS International Conference on SIGNAL PROCESSING, Dallas, Texas, USA, March 22-24, 2007         112



 

The nonlinear filtering problem considered here 
is based on the following signal observation model: 

( ) ( )
( ) ,0y,dwdtt,xhdy

0,t,dvt,xgdtt,xfdx

0ttt

tttt

=+=
≥+=

        (1) 

where ttt y,v,x , and tw  are random processes 

with values in mpn ,, ℜℜℜ , and mℜ , respectively, 
and tv  and tw  are independent Wiener processes 

with ( ) dtQdvdvE t
T
tt =  and ( ) dtRdwdwE t

T
tt = . 

The equations (1) are understood in the Ito sense.  

 We assume that the initial condition ,x 0  and 

tt w,v  are independent. A priori distribution 
( )0xp  is assumed given. We refer to tx  as the 

state of the system at time t and ty  as the 
observation at time t .  

   Given the history of the process  

{ }tst:yy s
t
t ≤≤Δ−=Δ−  (2) 

on the horizon [ ] 0,t,t >ΔΔ− , we wish to find 
the best mean square estimate of the state tx .  

 
3 Optimal Nonlinear Receding 

Horizon Filter 
 
3.1 Evolution of the Conditional Density 
 
   The best mean square estimate is given by the 
conditional expectation  

( ) ( )∫
ℜ

Δ−Δ− ==
n

,dxytx,xpyxEx̂ t
t

t
ttt  (3) 

where ( )t
tytx,p Δ− represents the conditional 

density of the state tx  given the observations t
ty Δ− . 

It is well known that ( )s
ts ysx,pp Δ−≡  satisfies the 

Kushner-Stratonovich (KS) equation (see, for 
example, [1],[8]). We have 
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The initial condition (density) at time Δ−= ts  for 
equation (6) represents the unconditional density of 
the state x  at time Δ−t , i.e., 
 

( ).t,xp~pt Δ−=Δ−  (6) 
 
3.2 Evolution of the Initial Density 
  

The initial density ( )ττ ,xp~p~ =  can be 
determined by the Fokker-Planck-Kolmogorov 
(FPK) equation [1], [8]. We get 
 

( ) ( ),xpp~,tτ0,dtp~Lp~d 00ττ =Δ−≤≤=  (7) 
 
where ( )0xp  is the density function of the initial 
state .x 0  Solution of the FPK equation (7) on the 
time interval [ ]Δ−∈ t0,τ  represents the initial 
density (6) for the KS equation (4).  
 Thus, the FPK and KS equations completely 

determine the optimal receding horizon filter 

(ORHF) for the nonlinear system model (1). 

 An efficient and exact solution of the optimal 
receding horizon filtering problems is only 
possible in some simple cases of the model (1). 
Naturally, equations (4) and (7) give an exact 
solution of the optimal receding horizon filtering 
problem in the general case for any nonlinear 
equations (1). But as well as in the standard 
nonlinear filtering this solution is not efficient 
because it cannot be realized in practice [1], [8]. 
 To find the optimal receding horizon estimate of 
the state vector (3) it is necessary at first to solve 
the FPK equation (7) for the initial density (6) and 
then to solve the KS equation (4) for the 
conditional density of the state tx . The FPK 
equation does not contain the observation data (2) 
therefore it can be pre-computed. However the KS 
equation (4) depends on the observation data 
therefore we may calculate the conditional density 
and the optimal estimate of the state by formula (3) 
only after obtaining the results of observations (2).  
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 There exist no methods yet for the exact 
solution of equations (4) and (7) in the general case. 
The numerical solution of these equations is also 
impossible in practical problems, as it is very time 
consuming. Moreover the FPK and KS equations 
represent complex partial integro-differential 
equations, especially for the high-dimension 
models (1). Thus, we are forced to consider 
approximate methods for solution of the nonlinear 
receding horizon filtering problem. 
 
4 Suboptimal Receding Horizon 

Filtering 
 
 

4.1   Parameterization of density functions 
 
 Some of the approximate methods are based on 
an approximate solution of the FPK and KS 
equations by means of the orthogonal series 
expansions of the conditional sp  and 
unconditional τp~ densities, and the others are based 
on simplification of the exact equations for the 
optimal state estimate ( )s

tss yxEx̂ Δ−=  and 

conditional error  covariance ( )s
t

T
sss yx~x~EP Δ−= , 

sss x̂xx~ −= by means of  the Taylor series 
expansion of the functions gf, and h in the signal 
model (1). Here we give short survey of the 
modern methods of approximate solution of the 
FPK and KS equations.  
 The simplest and widely used approximate 
method of solution of the FPK equation (7) is the 
normal approximation method (NAM) [8]. The 
generalization of the NAM are the method of 
moments, method of quasi-moments and other 
approximate methods based on parametrization of 
the density function, when the unknown density 

τp~  is approximated by a segment of the orthogonal 
expansion of the density, in particular, a segment 
of the expansion in Hermite polynomials or a 
segment of the Edgeworth expansion  [1], [8].  
 As is well-known, the most widely used 
suboptimal filter is the extended Kalman filter 
(EKF) for nonlinear filtering problems. The EKF 
has been successfully applied to numerous 
nonlinear filtering problems. If nonlinearities are 
significant, however, its performance can be 
substantially improved. Such efforts have also been 
reported in [1], [8]. 
 

4.2   Receding Horizon Filter based on EKF 
and NAM 
 
 To design the receding horizon filter we propose 
to use the EKF and NAM. Then the receding 
horizon estimate sx̂  and error covariance sP  are 
determined by the following EKF equations: 
 

( ) ( )[ ]
( )

( ) ( )
( ) ( )

t.st

,
x

sx,hH,
x

sx,fF

,s,x̂gQs,x̂gQ~,RHPB

ds,Q~PHRHPFPPFdP

,dss,x̂hdyBdss,x̂fx̂d

ss x̂x
s

x̂x
s

T
ssss

1
s

T
sss

sss
1

s
T
ss

T
sssss

sssss

≤≤Δ−

∂
∂

=
∂

∂
=

==

+−+=

−+=

==

−

−

(8) 

 
We propose to calculate the initial conditions 

( )

( )[ ]
Δ−Δ−Δ−

Δ−Δ−Δ−Δ−

Δ−Δ−Δ−

−=

==

==

tt
0
t

T0
t

0
t

def

tt

t
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tt

mxx

,xxEKP
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 (9) 

for the EKF equations (8) by using the NAM 
equations. We have 
 

( )[ ]
( )( )[ ]

( ) ( )[ ]
( ) ( )[ ],τ,xgQτ,xgE

τ,xfmxE

mxτ,xfEK

,tτ0,τ,xfEm

T
τττN

T
τττN

T
τττNτ

τNτ

+

−+

−=

Δ−≤≤=
&

&

 (10) 

 
where the initial conditions ( )00 xEm =  and 

( )T
00000 )m-)(xm-(xEK =  are given. And the 

subscript N  at the sign of expectation ( )NE  means 
that it is calculated for the normal distribution 
( )ττ K,mN  of the random state vector τx . 

 Thus, the EKF equations (8) for receding 

horizon estimate and covariance ( )ss P,x̂ , and the 

NAM equations (10) for initial conditions (9) 

completely establish the suboptimal  receding 

horizon filter (SRHF) for the nonlinear signal 

model (1). 

 

4.3 Example of SRHF 

Proceedings of the 6th WSEAS International Conference on SIGNAL PROCESSING, Dallas, Texas, USA, March 22-24, 2007         114



 

Consider the scalar signal observation model 
 

 
.0y,dwdtxdy

0,t,dvdtxdx

0ttt

t
3
tt

=+=
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 (11) 

 
We assume that ( ) qdtvdE t

2 =  and 

( ) rdtwdE t
2 = , and ( )2

000 σ,xN~x . Then the 
SRHF (8)-(10) takes the following form: 
 

( )

,KP,mx̂,tst

,dsqP
r
1Px̂6dP

,dsx̂dyP
r
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where the initial conditions Δ−tm  and Δ−tK  are 
determined by NAM equations (10), 
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.σK,xm,-t0

,qKm6K

qmxx2EK

,mK3mxEm

2
0000

τ
2
ττ

ττ
3
τNτ

3
τττ

3
τNτ

==Δ≤τ≤

++−=

+−−=

−−=−=
&

&

 (13) 

 
5 Optimal Linear Receding 

Horizon Filter 
 
The optimal receding horizon filtering problem 
may be solved completely in the case of linear 
equations 
 

,0y,dwdtxHdy
,0t,dvGdtxFdx

0ttty

ttttt

=+=
≥+=

 (14) 

 
where nm

t
pn

t
nn

t H,G,F ××× ℜ∈ℜ∈ℜ∈ , and 
initial state 0x  is normal, i.e., ( )000 P,xN~x . In 
this case as is well-known, the conditional and 
unconditional densities are normal, i.e., 
 
( ) ( )
( ) ( ).K,mN~τ,xp~

,P,x̂N~ysx,p

ττ

ss
s
-t Δ   (15) 

 
And the conditional mean sx̂  and covariance sP  
are determined by the standard Kalman filter 
equations 
 

( )
( )

,KP,mx̂
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where the initial conditions Δtm −  and ΔtK −  are 
described by the Lyapunov equations 
 

.Δtτ0
,PK,GQGFKKFK

,xm,mFm

00
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6 Numerical Examples 
 
   In this section, two numerical examples are 
given to illustrate the proposed method. Two 
examples help us to understand the proposed 
method compared to the existing method. In the 
first example, we consider the problem in section 
4.3. In the second part, example from section 5 is 
considered. 
 
 6.1 Numerical Example of SRHF 
 

The same model with (11) is considered with 
uncertainty in the system dynamics. Basically, the 
performance of EKF is better than SRHF in mean-
square error sense. However, the receding horizon 
strategy gives us advantages when uncertainty is 
considered in the model [6]. In the example, a 
system has temporary uncertainty during the 
interval 30t20 ≤≤ .  
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Fig.1 Comparison of MSEs of EKF and SRHF 

 
To compare SRHF with the EKF, Monte-Carlo 
method is used to calculate mean-square errors. In 
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the simulation, 1000 experiments are done for    
Monte-Carlo method. Here, Fig. 1 shows us the 
MSE comparison of two filters: the EKF and 
SRHF. 
In the figure, during the time interval when the 
uncertainty occurs, SRHF is superior to the EKF. 
Because of the limited memory property, SRHF 
converges to the steady state relatively faster than 
the EKF when the uncertainty disappears. 
 
6.2 Numerical example of the optimal linear 
receding horizon filter 
 
   The second example considers a linear receding 
horizon filtering problem in section 5. We take real 
example from the reference [6]. 
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Fig.2 State & two estimates 

 
The Fig.2 gives us quite similar result to that of the 
previous example. When the temporary uncertainty 
occurs during the time interval 10t5 ≤≤ , the 
optimal receding horizon filter (ORHF) gives 
better estimates and performance. As the 
uncertainty becomes severer the performance of 
Kalman filter is getting worse. In other words, 
ORHF is robust than the Kalman filter against the 
uncertainty in the model regardless of its degree. 
 
7 Conclusion 
 
 The optimal receding horizon filtering equations 
for nonlinear systems described by Ito stochastic 
differential equations have been derived. These 
equations have two-level hierarchical structure.  
The first level contains the FPK equation for the 
initial unconditional density, and the second one 
includes the KS equation for the conditional 
density. In parallel with the optimal solution of the 
receding horizon filtering problem we have been 
proposed the suboptimal solution of this problem 

based on the EKF and NAM equations. In 
particular, for linear continuous-time systems we 
have been derived exact equations for receding 
horizon filter, which is described by the standard 
Kalman filtering and Lyapunov equations.   Finally, 
we have been compared the EKF and SRHF for 
nonlinear case and the Kalman filter and receding 
horizon filter for linear case in the presence of 
uncertainty in the dynamics.  The simulation 
example has been demonstrated the high-accuracy 
and robustness of the proposed filter on the interval 
of uncertainty. 
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