
Implicit Computational Complexity and the Exponential
Time-Space Classes

Salvatore Caporaso
Università di Bari

Dipartimento di Informatica
Via Orabona, I-70125 Bari

Italy
caporaso@di.uniba.it

Emanuele Covino
Università di Bari

Dipartimento di Informatica
Via Orabona, I-70125 Bari

Italy
covino@di.uniba.it

Paolo Gissi
Università di Bari

Dipartimento di Informatica
Via Orabona, I-70125 Bari

Italy
gissi@di.uniba.it

Giovanni Pani
Università di Bari

Dipartimento di Informatica
Via Orabona, I-70125 Bari

Italy
pani@di.uniba.it

Abstract: We extend the Implicit Computational Complexity program, promoted by Leivant and by other scholars,
to all complexity classes DTIMESPACEF(f(n), g(n)), between DTIMEF(n) and DSPACEF(nnc

). Let clps(α, n) denote
the result of replacing ω by n in Cantor normal form for α < ωωω

. A hierarchy T Sαβ is defined by means of
a very restricted form of substitution, and of two un-limited operators (simultaneous predicative recurrence and
constructive diagonalization), and it is proved that DTIMESPACEF(nclps(β,n), nclps(α,n)) = T Sαβ . For example
DTIMESPACEF(n2, nn) = T Sωω ,2.

Key–Words: Implicit Computational Complexity, Exponential time, Exponential space, Time-Space Classes

1 Introduction

In terms of Implicit Computational Complexity, there
are at least two ways to deal at the same time with time
and space. One may add to the usual forms of safe
PR on notations a stronger scheme which, though sav-
ing the distinction between harmless and harmful po-
sitions, repeats the recursion invariant for all values of
the recursion variable, and not only for those coming
from destruction (that is, 2O(n) steps instead of O(n)).
This approach is not fully satisfactory, since we wish
to have few definition schemes, but, if adopted to-
gether with safe recursion only, doesn’t allow to reach
the higher classes. Add that modulating the power of
such scheme in order to cope with the intermediate
classes may be not trivial.

On the other hand if safe recursion alone is
used, essentially unary counters are involved in proofs
by simulation, which are too large for some space
classes. Of course one might look for proofs discard-
ing simulation in favour of a very insight to the com-
plexity classes. This approach actually works with
single classes; however, it appears to be beyond the
present understanding of the complexity phenomenon

when applied to the problem of a unified taxonomy.
These difficulties are solved in the present paper

by integrating safe recursion with an use from below
of diagonalization.

2 T-functions

Constants Define B := {1, 2}. X, . . . , Z are words
in B∗. The dyadic (modified) numeral n for n =
Σ0≤i≤mbi2i is b0 . . . bm (thus 0 is the empty word).
T+ is the class of all ternary numerals p, . . . , s, that
is of all words over T := {0, 1, 2} which are 0 or
do not begin by 0. Following a method in Schwicht-
enberg [2], we use the ternary numerals to represent
n-ples of dyadic numbers, with the zero playing the
role of comma.

Definition 1 Given a word s in the form
Xm0Xm−10 . . . X20X1, we call Xi the i-th com-
ponent of s, we denote it by (s)i, and we say that
the number of components cn(s) of s is m. If s is a
word over B, then s is its only component, and hence
cn(s) = 1. If s is 0 then 0 is its only component.

Proceedings of the 6th WSEAS Int. Conference on TELECOMMUNICATIONS and INFORMATICS, Dallas, Texas, USA, March 22-24, 2007 65

Variables and functions a, b, a1, . . . are digits of
the current alphabet. Unlike X, s,X1, s1, . . . which
form a potential infinity of informal variables, x, y, z
are three fixed syntactic objects, called, respectively,
the auxiliary variable, the parameter, and the recur-
sion variables. They play a distinct and precise role
in the construction of the T-functions (see Note 14 for
the rationale of this convention). u, v, w are variables
defined on the syntactic objects x, y, z and u, w are
tuples of such variables.

When we write f(u) we always assume that some
of the indicated variables may be absent. Given
f(x, y, z), we denote by f(s, t, r) the value of f when
the values s, t, r are assigned to x, y, z.

Though in principle a T-function takes n ≤ 3
ternary numerals into a numeral, in practice we un-
derstand it as taking n tuples of dyadic numerals into
a tuple of dyadic numerals.

Notation 2 Let a class C of T-functions be given,
together with a collection Σ1, . . . ,Σn of definition
schemes (i.e. of functionals taking tuples of T-
functions into a new function). We write

(C; Σ∗
1, . . . ,Σ

∗
l ,Σl+1, . . . ,Σn) (0 ≤ l ≤ n)

for the class of all functions definable from C by clo-
sure under Σ1, . . . ,Σl and by at most one application
of each of the Σj’s for l + 1 ≤ j ≤ n.

Definition 3 (1) The basic functions are the the
constructors ca

i (x) and the destructors di(x) (a =
1, 2) which by input s:

(a) return 0 if n 6= cn(s), or (s)i = 0, or s = 0;
(b) respectively add digit a at the right of, and

cancel the rightmost digit of (s)i, in all other cases.
(We don’t formulate here the marginal clauses like
c1
1(0) = 1, needed to make this definition consis-

tent with the part of Def. 1 which doesn’t allow non-
significant left zeroes.)

(2) The simple (definition) schemes smpl are:
f = cmp(g, h) is the composition g(h(u)) of

h(u) with g(u), provided that g is an initial function
(i.e., it belongs to the class T0 below);

f = casea
j (g, h) is defined by branching in g and

h if we have

f(s, t, r) = if (s)j = Xa
then g(s, t, r) else h(s, t, r)

f = extu(g) (u = x, z) is the result of the explicit
transformation of u into y in g.

f = agn(s, g) is the result of the assignment of con-
stant s to x in g.

(3) A modifier is an element of the closure M
of the basic functions under cmp.

(4) The starting class of our hierarchy is T0 :=
(M; cmp∗, case∗, agn∗).

Example 4 1. Sometimes, to improve readability, we
write hg for cmp(g, h). Define the dummy function
by du := c1

1d1 = cmp(d1, c
1
1). We have du(s) = s

unless (s)i = 0.
2. Define the modifiers wr[X] (one for each X) by
wr[b] := cb

1;wr[bm+1 . . . b1] := c
bm+1

1 wr[bm . . . b1].

Coding To describe our functions we use expres-
sions which may be regarded as readable transcrip-
tions of words in Polish suffix form over the alphabet

U := {ca, d, agn, extu, cmp, isbst, casea,
sr, sr2, cdiag, ◦, ∗, nagn, 0, 0, 1, 2},

where an arity is implicitly associated to each letter.
cdU will denote the cardinality of U. In particular,
when coding a B-word X , arity 0 is associated with
the left-most letter of X , and arity 1 to its other letters
(if any).

Definition 5 The code dLe for the h-th letter of U is
1h2cdU−h.

Every subscript n + 1 occurring in the construc-
tion of a function is coded by ◦∗n.

For all L ∈ U of arity m ≥ 0, and for all
E = E1 . . . EmL define the code for E by dE e :=
dE1

e . . . dEm
e dLe; however, to save space (cf. No-

tat. 23 and Lemma 30: a code for the assignment
agn(dX e, f) of dX e to x in f is dX e df e dnagne too.

Example 6 We have X := dc1
3
e = d◦e d∗e d∗e dc1

3
e.

Define f := agn(dc1
3
e, sr(c3

1, c
3
1)). f is coded by

Y := dX eXX dsre dagne. and by XXX dsre dnagne.

Note 7 Univocal parsing of the codes is not disturbed
by this use of nagn, since the leftmost letter of dX e is
associated in U with a letter of arity 0.

Notation 8 {X} is the function coded by X . We of-
ten use the identities { df e} = f and d{X}e = X .

Definition 9 (1) The rate of growth rg(f) of function
f ∈ T0 is m−n if f is a modifier built-up from m ≥ 0
constructors and n ≥ 0 destructors; it is rg(g)+rg(h)
if we have f = cmp(g, h); it is max(rg(gi)) for f =
case(g1, g2); and it is rg(g) for f = agn(s, g1).

(2) The length |E| of word E ∈ U∗ is the number
of letters of U occurring in E.

Lemma 10 For all f ∈ T0 we have |f(s)| ≤ |s| +
rg(f) (cut-off subtraction if rg(f) < 0).

Proceedings of the 6th WSEAS Int. Conference on TELECOMMUNICATIONS and INFORMATICS, Dallas, Texas, USA, March 22-24, 2007 66

Proof. Induction on |f |. Step. Assume for example
that we have f(s) = g(h(s)), and that g is a modifier,
since else the result is an obvious consequence of the
ind. hyp. Define t := h(s), and assume t 6= 0, since
else f(s) = 0. By the ind. hyp. we have |t| ≤ |s| +
rg(h). g consists of n destructors and m constructors,
with rg(f) = (m−n)+rg(h). Either each destructor
of g actually erases a digit of t, or some of them return
0. In the former case we have |f(s)| ≤ |s|+ rg(h) +
m− n ≤ |s|+ rg(f). In the latter, all constructors of
g return 0 too.

Definition 11 f = sr(g, h) is defined by safe-
recursion in g(x, y) and h(x, y, z) if we have{

f(s, t, a) = g(s, t)
f(s, t, ra) = h(f(s, t, r), t, ra).

Sometimes, given h(x, y), we write sr∗(h) for
extz(sr(h, h)).

Notation 12 The n-th (left) iterate of function
F (E, . . .) (not necessarily a T-function) is given
by F 1(E, . . .) := F (E, . . .); Fn+1(E, . . .) :=
F (Fn(E, . . .), . . .).

Example 13 1. Given g(x, y), define h := sr(g, g).
We have h(s, t, a) = g(s, t) and h(s, t, ra) =
g(h(s, t, r), t). Thus, by definition of extz and by a
straightforward induction on |r|we may conclude that
we have h(s, t) = g|t|(s, t) for all g(x, y), s, t.
2. For every Y define (cf. Ex. 4 for wr[X])
e[Y] := sr(wr[Y], wr[Y]). We have e[Y](X, r) =
XY |r| (= XY . . . Y) (|r| times). Since e[Y] is de-
fined by sr in two modifiers, it belongs to the class T1

to be defined below.

Note 14 By ext and agn we may take g(x, y, z) into
functions like, say, g(y, y, z), g(x, y, y) or g(10, y, z).
However we cannot obtain g(x, y, x). In general, the
restriction of substitution to explicit transformations
which, in turn, do not allow renaming x as z avoids
affecting the recursion variable of a safe recursion
with the previous value of the function being recursed
upon. In this way a variable which is safe or dormant
according to Simmons or Bellantoni & Cook keeps
such.

Notation 15 Ordinals (1) α, β, γ, δ, λ, µ, ν, ξ are or-
dinals below ωωω

. In particular, λ, µ and ν are limits.
(2) Given an ordinal function θ(α), define

θω(α) := supn<ω{θn(α)}.
(3) TH is the smallest class of ordinal functions

definable by closure of 0 and the identity under suc-
cessor, sum and θω for all θ ∈ TH . θ, η, ζ will denote

elements of TH . The continuity property (θω(α))n =
θn(α) holds for all θ ∈ TH .

(4) For all α > 0, we write α =NF β + ωγ when
ωγ ≥ 1 is the rightmost term of the Cantor normal
form CNF(α) for α, and β ≥ 0 is the sum of the other
terms.

(5) α#β is the natural, or commutative, or
component-wise sum of α and β, such that, for exam-
ple, 1#ω = ω + 1, and ω#(ωω + 1) = ωω + ω + 1.

(6) The collapse of α at n is the function
clps(α, n) obtained by replacing all occurrences of ω

in CNF(α) by n. For example clps(ωω3
+ ω + ω +

ω0 + ω0 + ω0, n) is nn3
+ 2n + 3.

(7) The standard assignment of fundamental se-
quence λm to the limit λ =NF α + ωγ is α + ωδm if
γ = δ + 1, and is α + ωµm if γ = ωµ.

We shall deal with couples (α, β) of ordinals,
whose left-side element (α, β)τ := α refers to time
and whose right one (α, β)σ := β refers to space. We
now fix some conventions allowing to deal with the
elements of these couples, using ρ as a meta-variable
defined on the meta-constants τ, σ.

Notation 16 1. (α, β)#τγ = (α#γ, β), and
(α, β)#σγ = (α, β#γ).
2. (γ, δ) ≺τ (α, β) := γ < α ∧ δ ≤ β; (γ, δ) ≺σ

(α, β) := γ ≤ α ∧ δ < β.
3. Limρ is the class of all couples (α, β) such that
(α, β)ρ is a limit.
4. If (α, β) ∈ Limρ then (α, β)ρ,n is the result of
replacing λ = (α, β)ρ with λn in (α, β).
For example (ω, ω)τ,1 = (1, ω).

Definition 17 Assume defined the elements of a hi-
erarchy C(α,β) for all (α, β) ≺ρ (γ, δ) ∈ Limρ.
f = cdiagρ(e) is defined by ρ-(constructive) diag-
onalization at (γ, δ) in the enumerator e ∈ T1 if for
all s, t, r we have

f(s, t, r) = {e(r)}(s, t, r) and {e(r)} ∈ C(γ,δ)ρ,|r| .

Definition 18 (1) f = isbst(g, h) is the result of
the inessential substitution of h(x, y, z) for x in
g(x, y, z).

The degree dg(f) of f ∈ T0 is 0 if rog(f) ≤ 0, and is
1 otherwise.

For all f defined by smpl,isbst,sr in g1, g2, define
dg(f) := max(dg(g1, g2)).)

For all f = cdiag(e) define dg(f) :=
sup(dg({e(r)}).

(2) Function f = nisr(g, h) is defined by not-
increasing safe recursion in g and h if we have f =
sr(g, h) and dg(h) = 0.

Proceedings of the 6th WSEAS Int. Conference on TELECOMMUNICATIONS and INFORMATICS, Dallas, Texas, USA, March 22-24, 2007 67

2.1 The hierarchy and the result

Definition 19 For all β < ωωω
, and for all α < ωω

define the time-space hierarchy T S(α,β) by

T S(α,β) := T S(α,α) if α < ω;

T S(0,0) := T0

and in all other cases:

T S(α,β)#ρ1 := (T S(α,β); smpl∗, cmp∗, isbst∗, sr)
(sr=nisr when ρ = σ)

T(α,β) := (
⋃

(γ,δ)≺ρ(α,β) T(γ,δ);
smpl∗, cmp∗, cdiagρ, isbst

∗)
(α, β) ∈ Limρ.

Definition 20 B0(n) := 1;
Bα(n) := max(2, nclps(α,n)) (0 < α).

Under an appropriate notion of equivalence, we have
the following result.

Theorem 21 DTIMESPACEF(Bβ(n), Bα(n)) ⊆ 3
T S(α,β) ⊆ DTIMESPACEF(Bβ(n+1), Bα(n+1)).

Proof. By the simulations of next sections (see Lem-
mas 35 and 33).

3 Simulation of TM’s

Without any loss of generality, we may restrict our-
selves to tm’s MkQ with Q+1 states and k semi-tapes
over the tape alphabet B. 0 (1) is its initial (final) state.

In one step MkQ executes an instruction of the
form (i,X, i∗, j, h) where

(i, i∗ ≤ Q; j ≤ k;X = b1 . . . bk;h = −1, 0, b)

to be understood as: if the current state is i and if the
observed symbols of (tapes) 1, . . . , k are b1, . . . , bk

then enter stater i∗ and move left, right, write b on
tape j∗.

An instantaneous description (id) of MkQ is a
word

1U1, . . . , 1UQ, Y1, . . . , Yk, 1O1, . . . , 1Ok, 1Z1, . . . , 1Zk

such that:
Ui is 2 if the current state is i + 1 and is 1 other-

wise;
Yj is the part of tape j at the left of the observed

symbol Oj (excluded);
Zj is the contents of j at the right of Oj , read in

reverse order.

Lemma 22 (1) For all MkQ a function nxtM can be
defined in T0 which takes the id’s of M into the next
ones.

(2) We may replace nxtM by a new function 0-
nxtM such that rog(0-nxtM) = 0, and which works
under the assumption that M in its next step, will not
enter a right-side part of tape represented by the empty
word.

Proof. 1. Define the functions ex[I](s) which ex-
ecute instructions I = (i, b1 . . . bk, i

∗, h) of a given
M (kQ) by composition of two destructors and two
constructors taking i into i∗ with: (a) one destructor
and one constructor, if h = a; or (b) one case, two
destructors and two constructors if h = −1; or (c) if
h = 0 then (cf. Ex. 4 for the dummy function du)

d2k−j+1c
bj

3k−j+1case1
k−j+1

(c1
2k−j+1, c

2
2k−j+1)dk−j+1

case0
k−j+1(c

1
k−j+1, du).

The code above may be translated into

begin erase Oj and append it to Yj ;
if the first symbol b of Zj is 1 then Oj := 1

else Oj := 2; erase b;
if Zj = 0 then Zj := 1 else Zj := Zj end.

We see from the translation that the purpose of last
line is to grant new space when M visits for the first
time a cell on the right-side of tape j.

We can now build-up function nxtM from func-
tions ex[I] by means of a sequence of at most Q + k
case’s allowing to know i and b1 . . . bkk, and to select
the appropriate ex[I] accordingly.
2. The rate of growth of nxtM is +1, since the rate
of growths of part (a),(b), (c) and of lines 1 and 2 of
the translation is 0. Thus the overall rate of growth
of nxtM raises by one only when we grant new space
to M . Thus function 0-nxtM can be obtained by just
dropping the part case0

k−j+1(c
1
k−j+1, c

1
k−j+1dk−j+1)

from part (d) of the definition of nxtM . Note that a
consequence of this change is that, if M moves right
on a tape whose right-side representation is empty,
the corresponding destructor dk−j+1 causes 0-nxtM
to return 0. Obviously, further applications of 0-nxtM
would not work.

Notation 23 In view of further work with the codes
we adopt the following abbreviations. For all Y and
U define (cf. Ex. 13 for e[Y])

R := dsr2
e;

Ỹ := de[Y]e dnagne dcdiage drenz
e;

Y ∗
−1 := Y Y ;

Y ∗
n := Ỹ ∗

n−1 (n ≥ 0).

Proceedings of the 6th WSEAS Int. Conference on TELECOMMUNICATIONS and INFORMATICS, Dallas, Texas, USA, March 22-24, 2007 68

Definition 24 1. An α-ρ-iterator for h(x, y) is a
function [h;α]ρ(x, y) ∈ T S(γ,δ), with (γ, δ)ρ =
α, such that for all s, t we have

(a) [h;α]ρ(s, t) = hBα(|t|)(s, t);
(b) dg(h) = 0, when ρ = τ.

(1)

2. X is an α-open code if for all [h;β]ρ ∈
T S(γ,δ) we have { d[h;β]ρeX} = [h;α#β]ρ ∈
T S(γ,δ)#ρα.

Note 25 By inspection to next definitions and proofs
one sees that the hypothesis (b) of equation (1) allows
ignoring in definition R := dsr2

e the distinction be-
tween sr and nisr.

Notation 26 Cα denotes any class T Sγδ such that
(γ, δ)ρ = α. If α is (γ, δ)ρ then Cα#η is T S(γ,δ)#ρη.

Note 27 1. We have [[g;α];β](s, t) =
((gBα(|t|))Bβ(|t|))(s) = gBα(|t|)Bβ(|t|)(s) = [g;α#β].
2. The concatenation XY of an α-open code X with
a β-open code Y is an α#β-open code. Indeed,
by part 1, for all γ-ρ-iterator [h; γ] ∈ Cγ , we have
{ dheXY } = [h; γ#α#β] ∈ Cγ#α#β .

We now associate each α with a B-word 〈α〉; we then
show that each 〈α〉 is an α-open code.

Definition 28 For α = 0 and for all α =NF β+ωγ <
ω3 define inductively 〈α〉 by:

1 〈0〉 := 0
2 〈β + 1〉 := 〈β〉R
3 〈β + ωγ〉 := 〈β〉〈ωγ〉 (0 < β, γ)
4 〈ωδ+ωn〉 := 〈ωδ〉∗n

(δ ≥ ωn or δ = 0; n ≥ 0).

Example 29 1. 〈0〉 is a 0-open code. Indeed we have
{ dhe〈0〉} = h = [h; 0] (since B0(n) = 1).
2. 〈1〉 is a 1-open code. Indeed the Ex. 13 gives
{ dhe〈1〉} = [h; 1] ∈ Cα+1 for all h(x, y) ∈ Cα.
3. Note that line 4 says that 〈R〉∗n is an ωωn

-open code.

Lemma 30 If for a given θ and for all α-open codes
X we have that XY is a θ(α)-open code, then Ỹ is a
θω(α)-open code.

Proof. Notation. Assume given an α-open code X;
and a β-iterator {U} = [h;β] ∈ Cβ (cfr. notation
26). By Def. 24 we have {UX} = [h;β#α] ∈ Cβ#α.
Define W := de[Y]e dcdiage dagne. We have to show
that {UXWrenz} = [h;β#θω(α)] ∈ Cβ#θω(α).

Indeed since {UXW}(s, t, r) =
cdiag(agn(UX, e[Y]))(s, t, r) =
{e[Y](UX, r)}(s, t, r), we have

{UXW}(s, t, r) = {UXY |r|}(s, t, r)
by Ex. 13

= { d[h;β#θ(α)]eY |r|−1}(s, t, r)
hyp. on Y and θ

= { d[h;β#θ|r|(α)]e}(s, t, r)
as above for |r| − 1 times

= [h;β#θ|r|(α)](s, t)
z is absent in all [h;β]

= h
B

β#θ|r|(α)
(|t|)(s, t)

definition of h-α-iterator
{UXỸ }(s, t) = {UXW}(s, t, t)

by definition of W and Ỹ

= [h;β#θ|t|(α)](s, t) ∈ Cβ#θ|t|(α)

hyp. on θ and Y

= hBβ#θω(α)(|t|)(s)
continuity of θ and #

= [h;β#θω(α)](s, t) ∈ Cβ#θω(α)

since defined by cdiag and renz

in functions in C(β#θω(α))|r| .

Lemma 31 1. Define η−1(α) := α#α; ηn+1(α) :=
ηω

n (α). We have ηn(α) = αωωn
for all n ≥ 0.

2. If Y is an α-open code, then Y ∗
n is an ηn(α)-open

code.

Proof. 1. Induction on n. Basis. We have ηm
−1(α) =

αm. Hence η0(α) = sup{αm} = αω.
Step. We show by induction on m that we have
ηm

n (α) = ωωnm. Indeed, ηm+1
n (α) = ηn(ηm

n (α)) =
(ind. hyp. on n) ηm

n (α)ωωn
= (ind.hyp. on m)

αωωnmωωn
.

2. We obtain the basis by applying last lemma with
η−1 as θ and (cf. Note 27) with Y ∗

−1 as Y . Step. n =
m + 1. Again by last lemma, with Y ∗

m as Y and ηm as
θ.

Lemma 32 Every 〈α〉 is an α-open code. Hence, for
all h ∈ T0 we can define in Tα function [h;α]σ; and,
for all h ∈ T0 such that dg(h) = 0, we can define in
Tα function [h;α]τ .

Proof. Induction on α and cases like in Def. 28. Case
1 (basis of the induction) and case 2. Already proved
in Ex. 29. Case 3. By Note 27 and the ind.hyp. Case
4. By last lemma, with ωδ ≥ 1 as α.

Lemma 33 DTIMESPACEF(Bβ(n), Bα(n)) ⊆
T S(α,β).

Proceedings of the 6th WSEAS Int. Conference on TELECOMMUNICATIONS and INFORMATICS, Dallas, Texas, USA, March 22-24, 2007 69

Proof. Notations like in sect. 3. Let function f(y)
be computed according to an appropriate standard by
a k-tapes tm M in time cBβ(n) and in space cBα(n)
for a constant c. Let M1 be a tm which by input t
moves right on all tapes for Bα(n) steps and comes
back to the input. Clearly f is also computed by the
composition of M1 with M .

For all functions nxtM of Lemma 22, let nxtcM
be the function (defined by c cmp’s) which simulates
c steps by M . By last lemma we may define:
(a) a function g(x, y) := [nxtM1 ;α]σ(x, y) ∈
T S(α,α) which, by input s, t, returns the id of M1 by
input s after Bα(|t|) steps.
(b) a function h(x, y) := [0-nxtM ;β]τ (x, y) ∈
T S(1,β), which, by input s, t, returns the id of M by
input s after Bβ(|t|) steps, provided that M doesn’t
require new space.

Define e(x, y) := [h(g(x, y), y)]. f(y) is com-
puted by e(y, y). We have e(y, y) ∈ T S(α,β) because
this function is defined by renx in a function which,
in turn, is defined by isbst of g ∈ T S(α,α) ⊆ T S(α,β)

for x in h ∈ T S(1,β) ⊆ T S(α,β).

4 Simulation by TM’s

We first estimate the size of the functions in our hier-
archy.

Lemma 34 f(x, y, z) ∈ T S(α,β) implies
|f(s, t, r)| ≤ |s| + | df e|Bβ(|t| + |r| + 1)dg(f), for
all s, t, r.

Proof. Define m := |s|;n := |t| + |r|; c :=
| df e|dg(f). Induction on α, β and on the construction
of f . Basis. Immediate. Step of the three inductions.
Case 1. f begins by a simple scheme or isbst. Imme-
diately by the ind. hyp. on f .
Case 2. f = sr(g1, g2) and β = γ + 1. Define ci :=
dg(gi)|dgi

e|. We show that we have |f(s, t, r)| ≤ m+
cBγ(n + 1)|r| (≤ m + cBβ(n + 1)). Induction on
|r|:

|f(s, t, 0)| = |g1(s, t)| ≤ m + c1Bγ(n + 1)
by the ind. hyp. on β

|f(s, t, ra)| = |g2(f(s, t, r), t, ra)|
≤ |f(s, t, r)|+ c2Bγ(n + 2)

by the ind. hyp. on β
≤ m + cBγ(n + 1)|r|+ c2Bγ(n + 2)

by the ind.hyp. on |r|
≤ m + cBγ(n + 2)(|r|+ 1)
≤ m + cBβ(n + 2)

since Bγ(l)l = Bγ+1(l).

Case 3. f = nisr(g1, g2). Define ci as under case 2.
α or β is a successor, and we have c2 = 0. Assume

for example that: c1 > 0 and hence c > 0 too; and
that β = γ + 1, with g1, g2 ∈ T S(α,γ). We show that
|f(s, t, r)| ≤ |g1(s, t)|. The result then follows by the
ind. hyp. on β, since c1 < c. Induction on |r|. Basis.
Immediate. Step. We have

|f(s, t, ra)| = |g2(f(s, t, r), t, ra)| ≤ |f(s, t, r)|
ind. hyp. on β, since dg(g2) = 0

≤ |g1(s, t)|
ind. hyp. on |r|.

Case 4. f = cdiagρ(e). Assume for example ρ = τ .
We have α = λ. We have |f(s, t, r)| =

|{e(r)}(s, t, r)| ≤ m + | d{e(r)}e|Bλ|r|(n + 1)
ind. hyp. on λ|r|

≤ m + | df e|B1(|r|+ 1)Bλ|r|(n + 1)
ind. hyp. for β = 1 and | dee| < | df e|.

The result follows since we have B1(n + 1)Bλn(n +
1) ≤ Bλn+1(n + 1) = Bλ(n + 1), as one sees by
considering that in the worst case (λ = ω), this is
tantamount to (n + 1)(n + 1)n ≤ (n + 1)n+1.

Lemma 35 T S(α,β) ⊆ DTIMESPACEF(Bβ(n +
1), Bα(n + 1)).

The proof of this lemma is based on an analysis of
the time and space complexity of two interpreters. We
don’t report it here for brevity (they will be included
in the final version of this work). The reader might be-
lieve now our assertion by considering that: (a) Sim-
ulation of f = sr(g, h) for g, h ∈ dtimef(f(n))
requires time f(n)n (n repetitions of h on an argu-
ment in a safe position); standard of computation by
means of stacks may be adopted which allow the com-
putation to be carried-out on site, in the safe position,
thus avoiding the waste of time to move the value of
f back and forth between the safe area and the area
reserved to the arguments of h. (b) By Lemma 34,
simulation of f = nisr(g, h) respects the promised
space bounds. (c) Simulation of f = cdiag(e) re-
quires neglectable resources for e since this function
is in lintimef; and resources for the computation of
{e(r)} may be checked by a straightforward transfi-
nite induction on α and β.

References:

[1] D. Leivant, Ramified recurrence and computa-
tional complexity I: word recurrence and poly-
time. In P. Clote and J. Remmel (eds), Feasible
mathematics II. (Birkhäuser, 1994).320-343.

[2] H. Schwichtenberg, Eine Klassification der ε0-
rekursiven Funktionen, Zeitschr. math. Logik u.
Grundl. d. Math. 17(1971)61-74.

Proceedings of the 6th WSEAS Int. Conference on TELECOMMUNICATIONS and INFORMATICS, Dallas, Texas, USA, March 22-24, 2007 70

