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Abstract: Application of the computer simulation for solving the incompressible flow problems motivates 
developing efficient and accurate numerical models. In this paper, the accuracy of two-dimensional 
incompressible flow solver of the Numerical Analyzer for Scientific and Industrial Requirements (NASIR) for 
the solution flow around circular cylinder at supercritical Reynolds number is assessed by comparison of 
computed results with experimental coefficient of pressure measurements. 2D Navier-stokes equations for an 
incompressible fluid combined with a SGS eddy viscosity model to simulate turbulent viscosity flow and 
satisfactory results are obtained by the use of proper boundary conditions.The computed results are presented 
in terms of color coded maps of pressure and velocity fields as well as velocity vectors on boundary surfaces 
of the solution domain. 
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1   Introduction 
The availability of high performance digital 
computers and development of efficient numerical 
models techniques have accelerated the use of 
Computational Fluid Dynamics. The control over 
properties and behavior of fluid flow and relative 
parameters are the advantages offered by CFD 
which make it suitable for the simulation of the 
applied problems. Consequently, the computer 
simulation of complicated flow cases has become 
one of the challenging areas of the research works. 
The usage of evolutionary computing in partial 
differential equations is also a promising idea and 
has been introduced by Mastorakis [12], [13]. 
In this paper, the ability of the NASIR (Numerical 
Analyzer for Scientific and Industrial Requirements) 
finite volume solver is applies to simulate wind flow 
at supercritical Reynolds number ( ) 
on the pressure distribution on circular cylinder is 
presented and discussed. In this software the 
governing equations for incompressible wind flow 
are solved on unstructured finite volumes. By 

application of the pseudo compressibility technique, 
the equation of continuity can be simultaneously 
solved with the equations of motion in a coupled 
manner for the steady state problems. This technique 
helps coupling the pressure and the velocity fields 
during the explicit computation procedure of the 
incompressible flow problems. The Sub-Grid Scale 
model is used to compute the turbulent eddy 
viscosity coefficient in diffusion terms of the 
momentum equations. The discrete form of the two-
dimensional flow equations are formulated using the 
Galerkin Finite Volume for unstructured mesh of 
triangles. Using unstructured meshes provides great 
flexibility for modeling the flow in geometrically 
complex domains. Some research has been done by 
Salvett on large eddy simulations of the flow around 
circular cylinders [10]. Also Murakami has done 
useful researches on numerical modeling of flow 
past 2D cylinders and CFD analysis of wind [11].  
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2   Model Formulation  
 
2.1 Governing Equations 
In this paper, The Navier-Stokes equations for an 
incompressible fluid combined with a sub grid scale 
(SGS) turbulence viscosity model are used for the 
large eddy simulation (LES) of the flow around 
circular cylinder. The non-dimensional form of the 
governing equations in Cartesian coordinates can be 
written as: 
         
                                                                                   (1) 

0)()( =
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

y
G

x
F

y
G

x
F

t
W vvcc

       
     

Where, 
 

 

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=
v
u

p

W

2
0

β
ρ

, 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+=
uv

pu
u

F c
0

2 ρ

,
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+

=

0
2 ρpv

uv
v

G c

, 

⎟⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

∂
∂
∂
∂

=

x
v
x
uF

T

T
v

ν

ν

0

,

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

∂
∂
∂
∂

=

y
v
y
uG

T

T
v

ν

ν

0

           

       
W represents the conserved variables while,  
are the components of convective flux vector and 

cc GF ,

vv GF ,  are the components of viscous flux vector 
of W in non-dimensional coordinates x and y,  
respectively. Components of velocity u, v and 
pressure p, are three dependent variables. Tν Is the 
summation of kinematic viscosity ν  and eddy 
viscosity tν . 
The variables of above equations are converted to 
non-dimensional form by dividing x and y by L , a 
reference length, u and v by , upstream wind 

velocity, and p by .  
oU

2
ooUρ

The parameter β  is introduced using the analogy to 
the speed of sound in equation of state of 
compressible flow. Application of this pseudo 
compressible transient term converts the elliptic 
system of incompressible flow equations into a set 
of hyperbolic type equations [1]. Ideally, the value 
of the pseudo compressibility is to be chosen so that 
the speed of the introduced waves approaches that of 
the incompressible flow. This, however, introduces a 
problem of contaminating the accuracy of the 
numerical algorithm, as well as affecting the 
stability property. On the other hand, if the pseudo 
compressibility parameter is chosen such that these 
waves travel too slowly, then the variation of the 
pressure field accompanying these waves is very 
slow. Therefore, a method of controlling the speed 
of pressure waves is a key to the success of this 
approach. The theory for the method of pseudo 
compressibility technique is presented in the 
literature [2].  
Some algorithms have used constant value of pseudo 
compressibility parameter and some workers have 
developed sophisticated algorithms for solving 
mixed incompressible and compressible problems 
[3]. However, the value of the parameter may be 
considered as a function of local velocity using 
following formula proposed [4]  

|)|( 22
min

2 UCorMaximum ββ =    
 In order to prevent numerical difficulties in the 
region of very small velocities (ie, in the vicinity of 
stagnation points), the parameter is considered 
in the range of 0.1 to 0.3, and optimum C  is 
suggested between 1 and 5 [5]. 

2
minβ

The method of the pseudo compressibility can also 
be used to solve unsteady problems. For this 
propose, by considering additional transient term. 
Before advancing in time, the pressure must be 
iterated until a divergence free velocity field is 
obtained within a desired accuracy. The approach in 
solving a time-accurate problem has absorbed 
considerable attentions [6]. In present paper, the 
primary interest is to develop a method of obtaining 
steady-state solutions. 
 
 
2.2 Numerical Formulations 
The governing equations can be changed to discrete 
form for the unstructured meshes by the application 
of the Galerkin Finite Volume Method. This method 
ends up with the following 2D formulation: 
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Where,  represents conserved variables at the 
center of control volume Ωi.  

iW

Here, are the mean values of convective 
fluxes at the control volume boundary faces and  

 are the mean values of viscous fluxes which 
are computed at each triangle. Superscripts n and 
n+1 show nth and the n+1th computational steps. Δt 
is the computational step (proportional to the 
minimum mesh spacing) applied between time 
stages n and n+1. In present study, a three-stage 
Runge-Kutta scheme is used for stabilizing the 
computational process by damping high frequency 
errors, which this in turn, relaxes CFL condition. 

cc GF ,

vv GF ,

In this study, the Smagorinsky model is used for the 
Sub-Grid Scale (SGS) turbulence viscosity. Eddy 
viscosity tν SGSν=  is computed as follow [7]: 
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Where, 2,1, =ji  are for the two-dimensional 
computation in this paper. The Sub-Grid Scale 
model is used for definition of SGSν , where Δ  is the 
area of a triangular cell and the are used. 
In equation 4, 

15.0=sC
vu , are mean values of velocity in 

each edge of the triangular element. ,xΔ yΔ for 
edge k of control volume Ω  are computed as 
follow: 
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In order to damp unwanted numerical oscillations 
associated with the explicit solution of the above 
algebraic equation a fourth order (Bi-Harmonic) 
numerical dissipation term is added to the 
convective,  and viscous,  terms. 
Where; 
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The numerical dissipation term, is formed by using 
the Laplacian operator as follow;    
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The Laplacian operator at every node i, is computed 
using the variables W at two end nodes of all  
edges (meeting node i). 

edgeN
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In equation 6,  iλ , the scaling factors of the edges 
associated with the end nodes i of the edge k. This 
formulation is adopted using the local maximum 
value of the spectral radii Jacobian matrix of the 
governing equations and the size of the mesh 
spacing as [6]: 
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3   Solution Results 
In order to assess the changes of pressure 
distribution on the circular cylinder with standard 
geometrical feature, the flow solver is applied to 
solve the turbulent flow on a mesh of unstructured 
triangles (Fig.1).   
In this work, No-slipping condition is considered at 
the solid wall nodes by setting zero normal and 
tangential components of computed velocities at 
wall nodes. At inflow boundaries unit free stream 
velocity and at outflow boundaries unit pressure is 
imposed. The free stream flow parameters (outflow 
pressure and inflow velocity) are set at every 
computational node as initial conditions. 
Accuracy of the developed turbulent flow solver is 
examined by solving case with experimental 
solutions which is done in Peking University. The 
tunnel has an open circular test section of 2.25 m in 
diameter and 3.65 m long. Maximum speed was 50 
m/s[9].  
The results on the cylinder wall at supercritical 
Reynolds number ( ) are plotted in 5105.4Re ×=
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terms of velocity vectors in (Fig.2). Distribution of 
the coefficient of pressure on cylinder wall are 
compared with the experimental measurements [9] 
in (Fig. 3) and (Fig. 4), for the computations without 
and with SGS turbulent eddy viscosity model, 
respectively. Table 1 shows the percentage of 
changes in pressure coefficient due to application of 
SGS turbulent eddy viscosity model. 
 
4   Conclusion 
The NASIR (Numerical Analyzer for Scientific and 
Industrial Requirements) flow-solver is successfully 
used for investigation of SGS turbulent eddy 
viscosity model on computation of wind pressure at 
supercritical Reynolds number ( ). 
From the computed results, it can be stated that 
complicated physical conditions around a 
geometrically complex object can accurately 
modeled using the presented flow solver.  

5105.4Re ×=

The computed results of the two-dimensional model 
show that, there are differences in computed 
pressure fields on the wall surface of the circular 
cylinder due to application of SGS turbulent eddy 
viscosity model. Such an efficient algorithm for 
computation of both velocity and pressure fields on 
certain Cartesian unstructured grid facilitates future 
modeling of the incompressible flow problems. 
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         Fig. 1, Computational domain of the problem 
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Fig.2, Computed velocity vectors at 105.4Re ×=   
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Fig.3, Coefficient of pressure on cylinder walls, 
(Numerical results without turbulent viscosity)  
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Fig. 4, Coefficient of pressure on cylinder walls, 
(Numerical results with SGS turbulent viscosity)  
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