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Abstract: Quantization of compressed image file reduces the requirements for memory storage and the 
transmission bandwidth. However, the cost of quantization is loss of information. On the receiver end 
when image is reconstructed from lossy de-quantized file using the wavelet reconstruction coefficients, it 
is impossible to create a perfect image exactly like the original image. This paper records the sensitivity 
analysis of wavelet coefficients to determine which coefficients contribute to the image reconstruction 
and in what way and how they should be changed to reconstruct a perfect image.  Some interesting 
findings have been recorded in the conclusion section. 
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1. Introduction 
 
Raw image data requires large amount of storage 
space and in order to reduce the memory 
requirements many compression algorithms 
have been developed. Historically the discrete 
cosine transform (DCT) used in the JPEG 
compression standard was used. However, with  
 

 
the adoption of Joint photographic Experts 
Group’s JPEG 2000 standard for still image 
compression, which is based on discrete wavelet 
transforms, wavelets have become the most 
popular transforms for image compression.  Fig. 
1 illustrates the image compression and 
reconstruction with wavelet coefficients. 
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Fig. 1: Image Compression with Discrete Wavelet Transforms 
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Wavelets transform continuous or discrete time 
domain signals into frequency domain. DWT 
convolves the signal against specific wavelet 
instances at various time scales and positions 
resulting in a compressed representation of the 
original image. The compression is reversed by 
applying the Inverse discrete wavelet transform 
DWT-1, which convolves the signal against an 
inverted order of the original wavelet instances 
to produce an approximation of the original 
signal. Wavelets conserve energy and 
redistribute most of the energy to the first trend 
sub- signal. The energy outside of the first trend 
signal is insignificant and can be eliminated 
without much significant loss of information 
providing a favorable compression rate at the 
expense of perfect reconstruction. Fig. 2 
illustrates the energy distribution in a 
compressed signal obtained by first level of 
discrete wavelet transform of the AF museum. 
 
Two main components of DWT are the scaling 
function φ(t), and the wavelet function ψ(t), 
which are defined as follows: 
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Where   is the impulse response of the scaling 
filter and is the impulse response of the 
wavelet filters. Moreover, contains the set of 
filter coefficients corresponding to the projection 
of the basis functions for low pass filtering 
section of the DWT, and  contains filter 
coefficients corresponding to the projection of 
the basis functions for high filtering section of 
the DWT.   Once transformed, the analysis of 
signal x(t) results in discrete sets of data in the 
wavelet domain.   The inverse DWT
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transform coefficients from the wavelet domain 
back into the original signal domain. Thus the 
inverse transform produces the original signal 
x(t) from the wavelet and scaling coefficients. 
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Fig. 2a: Original Satellite AF Museum                               Fig. 2b: Compressed Signal of AF Museum after  
                      one level of DWT 
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For Daubehies 4 wavelet coefficients have the 
following values: 
(Lo_D) h1    =    {-0.1294,   0.2241,   0.8365,   
0.4829}  
Lo_D (1:4) in Matlab 
(Hi_D) g1    =    {-0.4830, 0.8365, -0.2241, -
0.1294} 
Hi_D(1:4) in Matlab 
 (Lo_R) h2     =  {0.4830, 0.8365, 0.2241, -
0.1294} 
Lo_R(1:4) in Matlab 
(Hi_R) g2      =   {-0.1294, -0.2241, 0.8365, 
0.4830} 
Hi_ R(1:4) in Matlab   

 h1 is the set of wavelet numbers for the forward 
 discrete wavelet transforms (DWT). 
 g1 is the set of scaling numbers for the DWT. 
 h2 is the set of wavelet numbers for the inverse 
 DWT (DWT-1). 

g2 is the set of scaling numbers for the (DWT-1). 
 
A two-dimensional 2D DWT of a discrete input 
image f with M rows and N columns (M and N 
being even) is computed by first applying the 
one-dimensional (1D) transform defined by the 
coefficients from set h1 and g1 to the columns of 
f, and then applying the same transform to the 
rows of the resulting signal [1]. Similarly, 2D 
DWT-1 is performed by applying the 1D DWT-1 

defined by sets h2 and g2 first to the rows and 
then to the columns of a previously compressed 
signal. 
A one-level DWT decomposes f into M/2 by 
N/2 sub-images h1, d1, a1 and v1, where a1 is the 
trend sub mage where most of the energy of the 
signal is concentrated. h1, d1, and v1 are its first 
horizontal, diagonal, and vertical fluctuation 
subimages, respectively. 

One-level DWT may be repeated k ≤ log2 
(min (M, N)) times. The size of the trend signal 
ai at level i of decomposition is 1/4i times the 
size of the original image f (e.g., a three-level 
transform produces a trend sub image a3 that is 
1/64th the size of f). Nevertheless, the trend sub 
image will typically be much larger than any of 
the fluctuation sub images; for this reason, the 
MRA scheme computes a k-level DWT by 
recursively applying a one-level DWT to the 
rows and columns of the discrete trend signal ak-

1. Similarly, a one-level DWT-1 is applied k 

times to reconstruct an approximation of the 
original M-by-N signal f. [2] 

 
2: Impact of Reconstruction 
Coefficients on the Reconstructed 
Image  

The wavelet reconstruction coefficients 
based on Daubechies 4 wavelets (db2 in Matlab) 
are used for the reconstruction of compressed 
images. The image reconstructed with these 
wavelets has certain amount of error expressed 
in mse  (mean squared error). 
However, there is no knowledge base available 
which tells in what way each of the eight 
reconstruction wavelet coefficients Lo_R (1:4) 
and Hi_R (1:4) impact the reconstruction of the 
image. Each time the coefficients are evolved 
they evolve to some numbers which depend on 
the image. For each image the evolved 
coefficients are different but we do not 
understand the relationship between the 
properties of the image and the evolved 
coefficients. This study is a step in that 
direction.  
Approach to the Problem:  In order to see the 
impact of each coefficient only one parameter 
was varied and all the other coefficients were 
fixed to the values obtained as the wavelet 
coefficients. The following “wfilters function” 
on the wavelet toolbox gives the coefficients: 
 
[Lo_D,Hi_D,Lo_R,Hi_R] =filters (wave_type); 

 
Each of the reconstruction coefficients is varied 
from -1.5 to 1.5 in steps of .02 and image is 
reconstructed using each of these values. The 
mean squared error of the reconstructed image 
was computed for each step value of the 
parameter.  The value which gives the minimum 
mse is chosen for each coefficient and compared 
with standard wavelet coefficient. The first run 
of the study was done on the fruits.bmp image. 
Later it was extended to other images. 
Fig. 3a illustrates the best value (the value for 
which the error is minimum) for the Lo_R (Low 
Frequency Wavelet Reconstruction 
Coefficients). 
Fig. 3b illustrates the best value for Hi_R (High 
Frequency Wavelet Reconstruction 
Coefficients). 
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Figure: Lo_R(1) Best Value Analysis Figure: Lo_R(2) Best Value Analysis 

Figure: Lo_R(3) Best Value Analysis Figure: Lo_R(4) Best Value Analysis 
Fig. 3a: The Best Value Analysis of Inverse Low Frequency Wavelet Coefficient

The experiments were repeated with more 
images to get reasonable data to arrive at some 
conclusion.  Images in two different categories 
were analyzed. Some images fall in the category 
of satellite and others are called no-satellite.  
It was observed from these experiments that the 
low frequency coefficients were very close to 
the standard wavelet coefficients which have the 
fixed value of: 
 
 Lo_R(1:4):0.4830    0.8365    0.2241   -0.1294 
 
The last two digits are always 00 as in .xx00. 
These discrepancies are because the step size 
was chosen to be .02. If the step size chosen was 
.0001 then we can get an exact value up to the 

four decimal places, however, the computation 
time would increase 220 times.  
The best values obtained for the Hi_R 
coefficients were different from the fixed one 
level wavelet coefficients. The standard Hi_R 
coefficients are: 
 
Hi_R(1:4) -0.1294   -0.2241   0.8365   -0.4830 
 
Since these reconstruction coefficients work on 
compressed and de-quantized image which has 
lost information because of quantization, these 
Hi_R wavelet coefficients have to adapt in order 
to reconstruct image which is as close to the 
original image.
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Fig. 3b: The Best Value Analysis of Inverse High Frequency Wavelet Coefficients 
 
 
If the best value for each reconstruction wavelet 
coefficient Lo_R (1:4) and Hi_R (1:4) is picked 
for reconstructing the image, the overall quality 
of the image worsens as is shown in Fig. 4a of 
Fruits where the mse of the best value 
coefficient became 140.4532 in comparison to 
the mse of 131.1139 for the image constructed 
with wavelet coefficients. 
However, if only those coefficients for the best 
value are picked for which the error was less 
than the wavelet coefficients then there is small 
improvement in the image over the image 
constructed with the wavelet coefficients. The 
following Fig. 4b shows that the mse of the  

 
reconstructed image reduced to 128.1626 when 
the best values for Hi_R (1:4) were picked and 
the rest were left with the standard wavelet 
coefficients. The above experiments show that 
the reconstruction wavelet coefficients are not 
independent.  
The best value for each reconstruction parameter 
is best only when the other seven were fixed. 
When the other seven parameters are changed 
best value for a particular parameter does not 
remain best. This shows that all the parameters 
should be taken in unison for finding the best 
value which will minimize the error of the 
reconstructed image.                    
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Fig. 4a: Image Reconstruction with best value for 
                    Lo_R(1:4) and Hi_R (1:4) Parameters 
 

Fig. 4b: Image Reconstruction with best values 
from Hi_R(1:4) 
 

3. Conclusion 
The experiments in this study conclude that 
wavelet coefficients are not independent of each 
other. The best value for Reconstruction 
Coefficients Lo_R and Hi_R deviate from the 
original discrete wavelet coefficients 
substantially. This is because the reconstruction 
coefficients work on the quantized compressed 
image to reconstruct the image. There is loss of 
information in the quantized compressed image. 
Therefore in order to minimize the error in the 
reconstructed image the best value 
reconstruction parameters have to deviate from 
the standard constant values of discrete wavelet 
coefficients. Hi_R coefficients deviate the most 
and that explains why the error in the 
reconstructed image is mostly confined around 
the edges.  
The techniques to reduce the error in the 
reconstructed image should focus on finding the 
best value of all the reconstruction coefficients 
taken together and not taken individually. 
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