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Abstract: In this paper we report our research development on expansion ofC0 semigroups. Here we suppose
that the generator of the semigroup has discrete spectrum which has separability in some sense. According to the
distribution of spectrum, we give various expansion formula. As an application, we give a complete analysis for a
controlled string.
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1 Introduction

Let X be a Banach space andA be a densely defined
and closed linear operator inX. We consider the evo-
lutionary equation inX dΦ(t)

dt
= AΦ(t), t > 0,

Φ(0) = φ0.
(1)

If A generates aC0 semigroupT (t) on X, Then the
solution of (1) can be written as

Φ(t) = T (t)φ0. (2)

Suppose that spectrum ofA is discrete. Thenσ(A) =
{λn;n ∈ N}. Denote byE(λn,A) the Riesz spec-
tral projector. Recent years, we have devoted to study
such a problem that under what conditions one can
expand the solution of (1) into

Φ(t) = T (t)φ0 =
∞∑

n=1

E(λn,A)T (t)φ0 + R(t)φ0,

(3)
whereR(t)φ0 is the residue term.

This assumption is too extensive to study the con-
vergence of the partial sum. In order to obtain more
practice assumption for the spectral distribution ofA,
let us recall an example in control theory.

Consider a controlled Timoshenko beam whose

motion is governed by the partial differential equation
ρẅ(x, t)−K(w′′(x, t)−ϕ′(x, t)) = 0,
Iρϕ̈(x, t)− EIϕ′′(x, t)−K(w′(x, t)−ϕ(x, t)) = 0,
w(0, t) = 0, ϕ(0, t) = 0,
K(w′(`, t)− ϕ(`, t)) = −αẇ(`, t),
EIϕ′(`.t) = −βẇ(`, t),

(4)
whereIρ, ρ, EI, K are physical constants,` is length
of the beam , andα andβ are positive damping con-
stants.

This model was at first studied by Kim and Re-
nardy [1]. Coleman and Wang in [2], Xu and Feng in
[3] analyzed spectrum of this system. They showed
that, whenα 6= ρ1 =

√
ρ/K, β 6= ρ2 =

√
Iρ/EI,

asymptotic spectrum of the system are given by

λ1,n =


1
2` ln

∣∣∣α−ρ1

α+ρ1

∣∣∣ + inπ
` + o

(
1
n

)
, α > ρ1,

1
2` ln

∣∣∣α−ρ1

α+ρ1

∣∣∣ + i (n+1/2)π
` + o

(
1
n

)
, α < ρ1,

(5)

λ2,n =


1
2` ln

∣∣∣β−ρ2

α+ρ2

∣∣∣ + inπ
` + o

(
1
n

)
, β > ρ2,

1
2` ln

∣∣∣ β−ρ2

α+ρ2

∣∣∣ + i (n+1/2)π
` + o

(
1
n

)
, β < ρ2,

(6)
wheren ∈ N. From the above we see that a branch of
spectrum diverges to−∞ if α = ρ1 andβ 6= ρ2, and
both branches of spectrum diverge to−∞ if α = ρ1

andβ = ρ2 hold. There is a similar problem in [4][5].
Based on this practice background, we have pur-

sued our objective in recent years according to the fol-
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lowing three types of spectral distribution:
1). Spectrum ofA is of the formσ(A) = σ1(A)∪

σ2(A), and

sup{<λ, λ ∈ σ1(A)} ≤ α ≤ inf{<λ, λ ∈ σ2(A)}

whereσ(A2) = {λn, n ∈ N} consists of isolated
eigenvalues ofA;

2). Spectrumσ(A) satisfies condition that for any
a, b ∈ R, setσ(A)∩ {λ ∈ C | |a ≤ <λ ≤ b} is finite;

3). σ(A) satisfies the following condition

|<λn| ≤ h, ∀λn ∈ σ(A) = {λk, k ∈ N}.

The first case has more extensive application, the
third can be regarded as a special case of the first
whereσ1(A) = {−∞}. As to the second we need
a special treat.

In our study, we always think that one can ob-
tain less information about eigenvectors and root vec-
tors. The main difficulty we encountered is how to
obtain much more information from spectral distribu-
tion of A. To overcome this difficulty, we employed
the exponential function sequence and generalized di-
vided difference of exponential function. About the
detail of this trick, we refer readers to our recent
contributions[6][7][8][9][11][12].

2 New Research Development

In this section we shall report several new results for
expansion ofC0 semigroups on Banach space and
Hilbert spaces. Let us begin with two basic notions.

Definition 1 A sequence{Hj}∞j=1 of subspace of a
Hilbert spaceH is called a Riesz basis of subspaces (
or subspace Riesz basis, see [10]), if any vectorf ∈
H can be uniquely represented as a series

f =
∞∑

j=1

fj , fj ∈ Hj , (7)

and there exist positive constantsC1 andC2 such that,

for eachf ∈ H, f =
∞∑

k=1

fk,

C1

∞∑
k=1

‖fk‖2 ≤ ‖f‖2 ≤ C2

∞∑
k=1

‖fk‖2. (8)

If subspace sequence{Hj}∞j=1 is a Riesz basis for

span{Hj ; j ≥ 1}, then {Hj}∞j=1 is said to be sub-
space basis sequence, denote byL-basis.

Obviously, if dimHk ≡ 1, k ∈ N, then there is
a sequence{ek, k ∈ N} with ‖ek‖ ≈ 1 such that,
for any f ∈ H, there exists uniquely a collection of

coefficients{ck(f)}k∈N such thatf =
∞∑

k=1

ck(f)ek

converges inH and

C1

∞∑
k=1

|ck(f)|2 ≤ ‖f‖2 ≤ C2

∞∑
k=1

|ck(f)|2.

Definition 2 Let Λ = {λn;n ∈ Z} be a sequence
in C. The sequenceΛ is said to be essential space
finite separated if there exists a sequence of con-
nected bounded open set,G(p), p ∈ N, such that
G(p) ∩G(m) = ∅,m 6= p and

Λ ⊂
⋃
p∈N

G(p), inf
p6=m

dist(Λ(p),Λ(m)) > 0, (9)

whereΛ(p) = Λ ∩ G(p) and the number of elements
including its multiplicity inΛ(p) is uniformly bounded.

2.1 The first case
In this subsection we introduce a new result for ex-
pansion of semigroup on Hilbert space.

Theorem 3 LetA be the generator of aC0 semigroup
T (t) on a separable Hilbert spaceH. Suppose that
the following conditions are satisfied:

1). The spectrum ofA has a decomposition

σ(A) = σ1(A) ∪ σ2(A); (10)

2). There exists a real numberα ∈ R such that

sup
λ∈σ1(A)

<λ ≤ α ≤ inf
λ∈σ2(A)

<λ; (11)

3). The setσ2(A) = {λk}k∈N consists of the iso-
lated eigenvalues ofA of finite multiplicity and is es-
sential space finite separated (see, definition 2)

Then the following statements are true:
i). There exist twoT (t)-invariant closed sub-

spacesH1 andH2,

H2 = span{
∑

λ∈σ2(A)

E(λ,A)H}, (12)

andH1 = {f ∈ H, | E(λ,A)f = 0, λ ∈ σ2(A)},
H1 ∩ H2 = {0} and H = H1 ⊕H2 such that
σ(A|H1

) = σ1(A) andσ(A|H2
) = σ2(A),

ii). There exists a finite collection,Ωk, of el-
ements inσ2(A), the corresponding Riesz projector
E(Ωk,A)

E(Ωk,A) =
∑

λ∈Ωk∩σ2(A)

E(λ,A), (13)
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such that{E(Ωk,A)H}k∈N forms a Riesz basis of
subspaces forH2. Therefore, for eachf ∈ H1 +H2,
f = f1 + f2, we have

T (t)f =
∞∑

k=1

E(Ωk,A)T (t)f2 + T (t)f1. (14)

iii). If sup
k≥1

||E(λk,A)|| < ∞, then

D(A) ⊂ H1 ⊕H2 ⊂ H. (15)

iv). H has the topological direct sum decomposi-
tionH = H1 ⊕H2, if and only if

sup
n≥1

‖
n∑

k=1

E(Ωk,A)‖ < ∞. (16)

When it holds, then for eachf ∈ H, we havef =
f1 + f2, fj ∈ Hj , j = 1, 2, and

T (t)f =
∞∑

k=1

E(Ωk,A)T (t)f2 + T (t)f1. (17)

The following corollary gives a condition such
that (16) holds.

Corollary 4 Let A be the generator of aC0 semi-
groupT (t) onH. Suppose that the conditions in The-
orem 3 are fulfilled. In addition, if{λ ∈ C | <λ =
α} ⊂ ρ(A)} and

sup
<λ=α

||R(λ,A)|| < ∞. (18)

Then we have decompositionH = H1 ⊕ H2 and
T (t) = T1(t) + T2(t) whereTj(t) = T (t)|Hj

. In
this situation,T2(t) is in fact aC0 group onH2 and
T1(t) is aC0 semigroup onH1.

As a special case of Theorem 3, the following result is
evident.

Corollary 5 Suppose thatA is resolvent compact
and the spectrum ofA distributes in a vertical strip
|<λ| ≤ h and is essential space finite separated. If
the eigenvectors and generalized eigenvectors ofA is
complete inH, Then there is a sequence of general-
ized eigenvectors ofA that forms a Riesz basis with
parentheses forH and henceA generates aC0 semi-
group onH. Therefore for anyf ∈ H, it holds that

T (t)f =
∞∑

k=1

E(Ωk,A)T (t)f. (19)

If A generates aC0 group, then the following re-
sult is evident.

Corollary 6 LetA be the generator of aC0 group on
H. Suppose thatA is resolvent compact and the spec-
trum ofA is essential space finite separated. Then
there is a sequence of generalized eigenvectors ofA
that forms a Riesz basis with parentheses forH and
hence, for anyf ∈ H, it holds that

T (t)f =
∞∑

k=1

E(Ωk,A)T (t)f. (20)

The following result gives an estimation of the
residual termT1(t)f in a non-complete case of the
eigenvectors and generalized eigenvectors ofA.

Theorem 7 LetA generate aC0 semigroupT (t) and
let R(λ,A)f is meromorphic function of finite expo-
nential typeη(f) for eachf ∈ H. Suppose that the
spectrum ofA lies in the strip|<λ| < h and essential
space finite separated. LetHj , j = 1, 2, be defined as
in Theorem 3. Then

1. for eachf ∈ H1 +H2, we have

T (t)x =
∞∑

k=1

E(Ωk,A)T (t)f + T1(t)f, (21)

and
T1(t)f ≡ 0 t > η(f),

whereT1(t) is the restriction ofT (t) onH1.

2. if
sup

<λ=−h−ε
‖R(λ,A)‖ < ∞, (22)

is fulfilled, then for anyf ∈ H,

T (t)f = T1(t)f +
∞∑

k=1

E(Ωk,A)T (t)f, (23)

andT1(t)f ≡ 0, t > η(f).

Remark 8 In this case, the separability of spectrum
ofA plays an important role for partial expansion of
semigroup.

2.2 The second case
In this subsection we shall report a result with respect
to expansion of semigroup on Banach spaces. We be-
gin with some basic notations.

Let {T (t)}t≥0 be aC0 semigroup on a Banach
spaceX and A be its generator. Assume thatA
has a discrete spectrum, i.e.,σ(A) = σp(A) =
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{λn;n ∈ N}, and lim
n→∞

<λn = −∞. We define the

T (t)−invariant spectral-subspace ofX by

Sp(A) := span


m∑

j=1

E(λj ,A)x
∣∣∣ x ∈ X;∀ m ∈ N

,

and anotherT (t)−invariant subspace by

M∞ := {x ∈ X | E(λ;A)x = 0,∀λ ∈ σ(A)}.

Clearly.Sp(A) ∩M∞ = {0}, andSp(A) +M∞ ⊆
X.

For eachλn ∈ σ(A), denote bymn the algebraic
multiplicity of λn, and define operators

Dn := (A− λn)E(λn,A) andD0
n = E(λn,A).

Then for eachn ∈ N, Dn is a bounded linear operator
with the property that

Dk
n = (A− λn)kE(λn,A) and Dmn

n = 0.

Now we state main result in Banach space.

Theorem 9 LetT (t) be aC0 semigroup on a Banach
spaceX andA be its generator. Suppose thatA sat-
isfies the following conditions:

(c1). there exist positive constantsM1 , ρ1 andρ3

such that
mn∑
k=0

tk‖Dk
n‖

k!
≤ M1e

−ρ1<λneρ3t, ∀n ∈ N. (24)

(c2). there exists aτ0 > 0 such that the series
∞∑

n=1
e<λnτ0 converges.

Then we can define two family of operators parame-
terized on[τ0 + ρ1,∞),

T2(t) : X → Sp(A) and T1(t) : X →M∞,

where

T2(t) =
∞∑

n=1

E(λn,A)T (t), (25)

such that
1). T2(t) is a compact operator,T1(t) andT2(t)

are strongly continuous;
2). Tj(t)T (s) = T (s)Tj(t) = Tj(t + s) for t ≥

τ0 + ρ1, s ≥ 0, j = 1, 2;
3). T (t) has a decompositionT (t) = T1(t) +

T2(t), t ≥ τ0 + ρ1.
In addition, if the following spectral condition holds:

(c3). there exist constantsM2 > 0 and ρ2 > 0
such that

|=λn| ≤ M2e
−ρ2<λn ,

then, for eachx ∈ X, T2(t)x is differentiable in(τ0 +
ρ1 + ρ2,∞).

Remark 10 In theorem 9, the condition (c1) is a con-
dition on the action ofA on each root subspace. If we
taket = 0, then we condition (c1) is

‖E(λn,A)‖ ≤ M1e
−ρ1<λn .

Therefore, the condition (c1) includes the case that
sup

n
||E(λn,A)|| = ∞. Also, it requires that

‖E(λn;A)‖ grows not faster thane−ρ1<λn as<λn →
−∞.

The conditions (c2) and (c3) are requirements on
the spectral distribution ofA. The condition (c3) is
also a spectral condition for the differentiable semi-
group (see, [13]). It is equivalent to the condition

|λn| ≤ M2e
−ρ2<λn , ∀n ∈ N.

The following result gives an estimate for the residual
term.

Corollary 11 Let T (t) be aC0 semigroup on a Ba-
nach spaceX andA be its generator. Suppose that
conditions (c1)–(c3) in Theorem 9 hold. In addition,
if one of the following conditions is fulfilled:

1). the generalized eigenvectors ofA are com-
plete inX;

2). the restriction of the resolvent ofA toM∞ is
an entire function with values inX of finite exponen-
tial typeh;
then we have

T (t) = T1(t) + T2(t), t ≥ τ0 + ρ1.

and fort > τ1

T (t)x = T2(t)x, t ≥ τ1, ∀x ∈ X

is a differentiable semigroup fort > τ1, where

τ1 := max{τ0 + ρ1 + ρ2, τ0 + ρ1 + h}, (26)

andT2(t) is given by (25).

3 Application
In this section we shall give an example which comes
from control theory.

Let us consider the following controlled string
system

wtt(x, t)− wxx(x, t) = 0, x ∈ (0, 1),
w(0, t) = 0,

w(1, t) = −k
∫ 1
0 xwt(x, t)dx,

w(x, 0) = w0(x), wt(x, 0) = w1(x),

(27)

wherek is positive feedback gain constant.
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We chose state spaceH as

H = L2[0, 1]×H−1[0, 1]

equipped inner product

< (f1, g1), (f2, g2) >H :=
∫ 1

0
f1(x)f2(x)dx

+
∫ 1

0

[∫ x

0
g1(s)ds−

∫ 1

0
dr

∫ r

0
g1(s)ds

]
×

[∫ x

0
g2(s)ds−

∫ 1

0
dr

∫ r

0
g2(s)ds

]
dx.

Clearly,H is a Hilbert space.
Define an operatorA inH by

D(A) =
{

(f, g) ∈ H1(0, 1)× L2[0, 1]
∣∣∣

f ′′ ∈ H−1[0, 1], f(0) = 0,

f(1) = −k
∫ 1
0 sg(s)ds

}
(28)

A(f, g) = (g, f ′′), ∀(f, g) ∈ D(A). (29)

Then the equation (27) can be rewritten as an ab-
stract evolutionary equation{

d
dt(w(x, t), wt(x, t)) = A(w(x, t), wt(x, t)), t > 0
(w(x, 0), wt(x, 0)) = (w0(x), w1(x)),

(30)
where(w0(x), w1(x)) ∈ H is given.

A direct verification shows that the following re-
sults are true.

Theorem 12 LetH andA be defined as before, then
A is a dissipative operator and has compact resolvent,
and henceA generates aC0 semigroup of contraction
onH.

Theorem 13 LetH andA be defined as before, then
we have

σ(A) = {λ ∈ C | ∆(λ) = 0}, (31)

where

∆(λ) = [(1+k)λ−k]eλ− [(1−k)λ+k]e−λ. (32)

For eachλ ∈ σ(A), λ is a simple eigenvalue, corre-
sponding an eigenfunction is given by

Φλ = (sinhλx, λ sinhλx). (33)

In particular, the set{Φλ | λ ∈ σ(A)} is complete in
H.

Now we are in a position to determine the asymp-
totic distribution ofσ(A).

Whenk > 0, k 6= 1, ∆(λ) defined by (32) has
zeros

λn =


1
2 ln

∣∣∣1−k
1+k

∣∣∣ + inπ + o( 1
n), 0 < k < 1,

1
2 ln

∣∣∣1−k
1+k

∣∣∣ + i (2n+1)π
2 + o

(
1
n

)
, k > 1,

(34)
wheren ∈ Z. It is easy to see from (34) together
with Theorem 12 and Theorem 13 that all conditions
in Corollary 5 are fulfilled. Therefore we have the
following result.

Theorem 14 LetH andA be defined as before, then
whenk 6= 1, the sequence{Φλn ;n ∈ Z} of eigen-
functions ofA forms a Riesz basis forH, and hence
A generates aC0 group onH.

If k > 0, k = 1, then∆(λ) becomes

∆(λ) = [2λ− 1]eλ − e−λ. (35)

It belongs to the type of equationaλmebλ− c = 0. As
shown in [14], it has infinite many zeros, denote them
by {λn, n ∈ N}. Thus

|λn| ≤ D1e
−2<λn , n ∈ N, (36)

whereD1 is a positive constant.
In what follow, we shall check the conditions in

Theorem 9.
Note that∆(λ) is an entire function of finite ex-

ponential type 1 andλn, n ∈ N, are zeros of∆(λ). So
we have

∞∑
n=1

1
|λn|1+ε

< ∞, ∀ε > 0.

Using (36), whenτ0 > 2, we get that

∞∑
n=1

e<λnτ0 ≤ D1

∞∑
n=1

1
|λn|τ0/2

< ∞. (37)

So the condition(c2) and(c3) in Theorem 9 are satis-
fied.

In order to check condition(c1) in Theorem 9, we
need to calculateE(λn,A). Note that

D(A∗) =
{

(f, g) ∈ H1(0, 1)× L2[0, 1]
∣∣∣

f ′′ ∈ H−1[0, 1], f(0) = 0
f(1) = k

∫ 1
0 sg(s)ds

}
(38)

A∗(f, g) = −(g, f ′′), ∀(f, g) ∈ D(A∗). (39)
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For eachλn ∈ σ(A), λn ∈ σ(A∗), corresponding
an eigenfunction is given by

Ψλn
= ηn(sinhλnx,−λn sinhλnx), (40)

where

1
ηn

= −1 +
cosh 2λn

2λn
− sinh 2λn

4λ3
n

, (41)

and < Φλn ,Ψλn
>H= 1 whereΦλn is defined as

(33). Thus

E(λn,A)F =< F, Ψλn >H Φλn , ∀F ∈ H.

So we have

||E(λn,A)|| = ||Ψλn ||||Φλn ||.

Note that

‖(sinhλx, λ sinhλx)‖ = ‖(sinhλx,−λ sinhλx)‖

we have

||E(λn,A)|| = |ηn|||Φλn ||2.

A direct calculation shows that

||Φλn ||2 =
∫ 1

0
| sinhλnx|2dx

+
∫ 1

0
dx

∣∣∣∣∫ x

0
λn sinhλnsds

−
∫ 1

0
dr

∫ r

0
λn sinhλnsds

∣∣∣∣2
=

∫ 1

0

[
| sinhλnx|2 + | coshλnx|2

]
dx

+
∫ 1

0
+

1
|λn|2

| sinhλnx|2dx

− 1
|λn|2

∫ 1

0
[<λn sinh 2<λnx + =λn sin 2=λnx]dx

=
sinh 2<λn

2<λn
+

1
2|λn|2

[
sinh 2<λn

2<λn
− sin 2=λn

2=λn

]
− 1

2|λn|2
[cosh 2<λn + cos 2=λn − 2] .

From (36) we can get|λn| ' e−2<λn , further
| sinh 2λn| ' 1

2e−2<λn , cosh 2λn ' 1
2e−2<λn . There-

fore, we have

||E(λn,A)|| = |ηn|||Φλn ||2 '
|λn|
|<λn|

≤ |λn| ≤ D1e
−2<λn .

the condition(c1) of Theorem 9 is also fulfilled.
In this situation we haveρ1 = ρ2 = 2, τ0 > 2

andSp(A) = H. Applying Theorem 9, we achieve
the follow result.

Theorem 15 LetH andA be defined as before, then
whenk = 1 A generates a differentiable semigroup
T (t) onH for t > 6. For t > 4 we have

T (t)W0 =
∞∑

n=1

eλnt < W0,Ψλn >H Φλn .
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