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POLAND
 

Abstract:We study an equality between the Kowalevski exponents and the existence of polynomial first integrals
for the ABC Lotka-Volterra system.

Key–Words:Ordinary differential equations, Quasi-homogeneous systems, First integrals, Kowalevski exponents,
Lotka-Volterra system

1 Introduction

Investigation of first integrals of ODEs is classical
work. In the last years much effort has been made to
obtain first integrals of 3D dynamical systems. Many
of these studies are devoted to the 3D Lotka-Volterra
systems [1, 2]. Nevertheless the dynamics of the 3D
LV system is far from being understood. In fact,
the explicit computation of first integrals is not an
easy task. On the other hand, there exists no gen-
eral method for determining whether or not a given
system is integrable. The extreme rarity of integrable
dynamical systems makes the quest for them all the
most intriguing.

It is known that existence or non-existence of first
integrals is related to Kowalevski exponents. Yoshida
[3] discussed a necessary condition for existence of
first integrals by using Kowalevski exponents. Re-
cently Furta [4] and Goriely [5] show that nonexis-
tence of first integrals is connected with resonance re-
lations among Kowalevski exponents. In this note we
study an equality between the Kowalevski exponents
and the existence of polynomial first integrals for the
ABC Lotka-Volterra system.

2 Preliminaries

Consider an n-dimensional system of differential
equations

dxi

dt
= Xi(x1, · · · , xn), i = 1, · · · , n, (1)

with Xi ∈ IR[x1, · · · , xn]. HereIR[x1, · · · , xn] is the
ring of polynomials. We denote by

X : IRn → T IRn, X =
n∑

i=1

Xi
∂

∂xi
, (2)

the vector field associated to system (1) by the rela-
tions

dxi

dt
= X(xi), i = 1, · · · , n. (3)

Definition 1 A first integral of the vector fieldX :
IRn → TRn is a non-constant smooth functionF :
IRn → IR that satisfies the equation

X(F ) =
n∑

i=1

Xi
∂F

∂xi
= 0. (4)

We say that the vector fieldX : IRn → T IRn

is completely integrable if there existn − 1 func-
tionally independent almost everywhere first integrals
F1, F2, · · · , Fn−1, i.e., there exist an open setM ⊂
IRn whose complement has zero measure, so that
rank(dF1 ∧ dF2 ∧ · · · ∧ dFn−1) = n − 1 for each
point inM . In this case its trajectories are determined
by intersecting the invariant setNi = {F−1

i (c1)|ci ∈
IR, } i = 1, · · · , n− 1.

Definition 2 The system (1) is called a quasi-
homogeneous system of degreem ∈ N\{1} with
weight exponentsg1, · · · , gn ∈ Z\{0}, if for any
α ∈ IR+ all theXi satisfy the following conditions

Xi(αg1x1, · · · , αgnxn) = αgi+m−1Xi(x1, · · · , xn),

i = 1, · · · , n. (5)
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The quasi-homogeneous system possesses particular
solution in the form

xi(t) = ait
−gi , i = 1, · · · , n, (6)

wherea1, · · · , an satisfy the equations

Xi(a1, · · · , an) + giai = 0, i = 1, · · · , n. (7)

Definition 3 Then× n matrix

Kij =
∂Xi

∂xj
(a1, · · · , an) + δijgj ,

i, j = 1, · · · , n, (8)

is called a Kowalevski matrix. Its eigenvalues
λ1, · · · , λn are the Kowalevski exponents of the sys-
tem (1) around the solution (6).

Theorem 4 [4,5] If all Kowalevski exponents
λ1, λ2, · · · , λn for the system (1) areN-independent,
that is, that no resonant condition of the following
type

n∑

j=1

kjλj = 0, kj ∈ N ∪ {0},
n∑

j=1

kj ≥ 1

is fulfilled, then there is no polynomial first integral.

This Theorem gives a necessary condition for ex-
istence of polynomial first integrals for quasi-
homogeneous systems of ordinary differential equa-
tions.

3 The 3D Lotka-Volterra system
The 3D LV system is defined by the vector field

X = X1
∂

∂x
+ X2

∂

∂y
+ X3

∂

∂z
, (9)

with
X1 = x(Cy + z + λ)

X2 = y(x + Az + µ)

X3 = z(Bx + y + ν)

This system introduced by Lotka [1] and Volterra [2]
has been widely used in a large variety of problems
in biology, chemistry, physics, economy etc. As it
is well known this system shows a very rich behav-
ior, from complete integrability to chaos (at least nu-
merically), according to the values of the parameters
(A,B, C, λ, µ, ν) that appear in the equations of mo-
tion.

We focus on the ABC system, that is, on the 3D
LV system withλ = µ = ν = 0. The polyno-
mial first integrals for ABC system has been analyzed
by Muolin-Ollagnier [6] using the Darboux theory
of integration. Moulin-Ollagnier [6] characterizes all
Lotka-Voltera polynomials first integrals as follows:

Theorem 5 The ABC system possesses polynomial
first integrals if and only if one of the following cases
holds:

(i) ABC = −1

(ii) C = −1−1/A,A = −1−1/B,B = −1−1/C

(iii) A = −k3−1/B,B = −k1−1/C, C = −k3−
1/A, where up to a permutation,(k1, k2, k3) is one
of the triples: (1, 2, 3), (1,2,3), (1,2,4)

The polynomialsx−Cy + ACz andA2B2x2 + y2 +
Az2−2ABxy−2A2Bxz−2Ayz are first integrals in
case (i) and (ii) respectively. In each of the case (iii),
there exists a homogeneous first integral of degree 3,
4 or 6 respectively.

4 Kowalevski exponents and polyno-
mial first integrals

The ABC system

dx

dt
= x(Cy + z)

dy

dt
= y(x + Az)

dz

dt
= z(Bx + y)

is quasi-homogeneous system of degree m=2 with
weight exponentsg1 = g2 = g3 = 1. This system
admits the particular solution

x = a1t
−1, y = a2t

−1, z = a3t
−1 (10)

where constantsa1, a2, a3 are determined by

Aa3 + a1 = −1, Ba1 + a2 = −1,

Ca2 + a3 = −1. (11)

If 4 = ABC +1 6= 0, the system (11) has the unique
solution

a1 = A(1 + κ1)/4, a2 = B(1 + κ2)/4
a3 = C(1 + κ3)/4 (12)

where

κ1 = −C − 1/A, κ2 = −A− 1/B, κ3 = −B − 1/C
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The Kowalevski matrix reads

K =




0 Ca1 a1

a2 0 Aa2

Ba3 a3 0


 .

The corresponding Kowalevski exponents are defined
by the characteristic equation

λ3 − λ(Aa2a3 + Ba1a3 + Ca1a2)

−4a1a2a3 = 0. (13)

Theorem 6 If

1
1 + κ1

+
1

1 + κ2
+

1
1 + κ3

− 1 6= 1
n(n− 1)

,

n ∈ N\{1}.
then the ABC Lotka-Volterra system does not possess
a polynomial first integral.

Proof: First, we note that - 1 is always a Kowalevski
exponent (see Refs. [3, 4]). It is easy to show that

4a1a2a3 = Aa2a3 + Ba1a3 + Ca1a2 − 1

and Eq. (13) can equivalently be expressed as

(λ + 1)(λ2 − λ−4a1a2a3) = 0.

Hence the Kowalevski exponents are readily obtained
as

λ1 = −1, λ2;3 =
1
2

(
1∓

√
1 + 44a1a2a3

)
. (14)

Thus,λ2, λ3 ∈ Z\{0} if and only if

1 + 44a1a2a3 = (2n− 1)2, n ∈ N\{1}.
Since

Aa2a3 + Ba1a3 + Ca1a2

= 4a1a2q3

(
1

1 + κ1
+

1
1 + κ2

+
1

1 + κ3

)

we have

1
n(n− 1)

=
1

1 + κ1
+

1
1 + κ2

+
1

1 + κ3
− 1. (15)

Therefore, according to Theorem 4, the ABC LV sys-
tem has no polynomial integral, ifk1 6= k2λ2 + k3λ3,
k1, k2, k3 ∈ N ∪ {0} andk1 + k2 + k3 ≥ 1. That
is, if the Kowalevski exponentsλ2, λ3 /∈ Z\{0}. This
completes the proof.

Theorem 7 The ABC system possesses a polynomial
first integral of degreen ≥ 2 if and only if

◦ λ1 = −1, λ2 = 1− n, λ3 = n

◦ n = 2, 3, 4, 6.

Proof: The proof immediately follows from Theo-
rems 5 and 6. The first condition of the Theorem
is the necessary condition given by Theorem 6. In-
deed, because of (14):λ3 = n, n ∈ N\{1}, and the
Kowalevski exponents read

λ1 = −1, λ2 = 1− n, λ3 = n. (16)

The second condition defines the sufficient condition
for the existence of a polynomial integral for the ABC
LV system. The equation (15), under the conditions
(ii) and (iii) of Theorem 5, has only the following so-
lutions

◦ n = 2 (κ1, κ2, κ3) = (1, 1, 1)

◦ n = 3 (κ1, κ2, κ3) = (1, 2, 2)

◦ n = 4 (κ1, κ2, κ3) = (1, 2, 3)

◦ n = 6 (κ1, κ2, κ3) = (1, 2, 4).

Thus the ABC LV system has polynomial first inte-
grals of degreen = 2, 3, 4, 6, and the corresponding
Kowalevski exponents(λ1, λ2, λ3) are defined as fol-
lows

◦ n = 2 (λ1, λ2, λ3) = (−1,−1, 2)

◦ n = 3 (λ1, λ2, λ3) = (−1,−2, 3)

◦ n = 4 (λ1, λ2, λ3) = (−1,−3, 4)

◦ n = 6 (λ1, λ2, λ3) = (−1,−5, 6)

We note that the Kowalevski exponentλ3 is equal to
the degreen of the polynomial integral. This ends the
proof.

5 Conclusion

In this note we do not discuss the so-called Painlevé
analysis where the analysis of local solutions around
the singularities is the main tool to test for integrabil-
ity. We focus on some results connecting directly with
the Kowalevski exponents to the existence of polyno-
mial first integrals. In this paper we test predictive
power of the theory of the Kowalevski exponents.

Proceedings of the 11th WSEAS International Conference on APPLIED MATHEMATICS, Dallas, Texas, USA, March 22-24, 2007         222



References:

[1] A. J. Lotka, Elements of Physical Biology,
Williams and Wilkons, Baltimore 1925.
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