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Abstract: Trivariate polynomial maps are often used to model volumetric objects in three-space. It is necessary,
therefore, to efficiently compute points, vectors, and other geometric properties of such objects. These properties
are formulated it terms of the metric and the curvature tensors associated with the map. The simplest trivariate map
is the trilinear. This map and its Jacobian are represented in tensor product Bézier form and a pyramid algorithm is
utilized to compute points and vectors associated with the map. In addition, sufficient conditions for the positivity
of the Jacobian are given and an algorithm for solving the inversion problem is derived.
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1 Introduction
While in the past, there has been considerable research
on the development of techniques for visualizing vol-
ume data, more recently, there has been an increasing
interest in modeling volume data and trivariate ob-
jects, see e.g., [18]. And even though several Com-
puter Aided Geometric Design (CAGD) text and ref-
erence books, see e.g. [3, 5, 11, 17, 21] introduce
trivariate and multivariate constructs, CAGD has been
mostly concerned with univariate and bivariate ob-
jects, see e.g., [1, 2, 7, 8, 9, 19, 20]. The CAGD field
has positively impacted almost every industry around
us, and a historical account of the major developments
in CAGD can be found in [8].

On the other hand, the need to optimally design
and efficiently represent surface and volume model
prototypes that are necessary for the prep and post-
processing phases of numerical simulations of com-
plex systems and physical phenomena had a tremen-
dous impact in advancing CAGD. More often than
not, this involves the numerical solution of systems
of partial differential equations utilizing finite differ-
ence, finite element or finite volume methods over re-
alistic three-dimensional geometries. Inherent to any
of these solution methods is, in addition to the discrete
representation of the differential and/or integral oper-
ators in the equations, the discrete representation of
the solution domain. This discrete domain over which
the discrete equations are solved is called a grid or a
mesh. Bivariate two-dimensional grid cells are usu-
ally triangles, quadrilaterals, or the increasingly pop-
ular multi-sided Voronoi shapes. The trivariate exten-
sions of these shapes in three-dimensions are tetrahe-
dra, pentahedra, and hexahedra.

Even though structured hexahedral grids are not
as flexible to represent complex geometries compared
to tetrahedral grids and it is difficult to apply adaptive
local grid refinement procedures on them, they are the
preferred grid structures for many computational ap-
plications. In this work we focus on hexahedral grid
cells that are images of tensor product trivariate maps
defined on unit cubes.

For a given number of vertices, hexahedral grids
provide better approximation properties than corre-
sponding tetrahedral grids. Given n vertices, Edels-
brunner [6] notes that, the number of tetrahedra in a
tetrahedral grid is of order n2, whereas the number of
hexahedra in a hexahedral grid is of order n. For hex-
ahedral elements in three dimensions, Knupp [13] has
discussed the invertibility of the isoparametric map-
ping. Yuan et al. [23] suggested an analytic way of
deriving the mapping relations and distortion mea-
sures for hexahedral isoparametric elements utilizing
the theory of geodesics. Ushakova [22] and Knabner
et al. [12] have addressed the non-degeneracy of hex-
ahedral grid cells in terms of the Jacobian of the trilin-
ear map, and Knupp [14] utilized the Jacobian matrix
norm as a quality metric for hexahedral cells.

The rest of the paper is organized as follows. In
section 2, the reference map is specified and a pyra-
mid algorithm is utilized to efficiently evaluate the
map and the derivatives of the map. Also, an iterative
solution to the map inversion problem is derived. We
should note that the non-local inversion of the trilin-
ear map, is an open problem in scientific computing.
Having the elements of the tangent plane available,
in section 3, we begin with the the Jacobian of the
map and represent it in Bézier form. From the well-



known properties of Bézier objects a sufficient con-
dition for positive Jacobian is derived. Clearly, this
condition provides sufficient conditions for the local
invertability of the trilinear map. Then utilizing the
metric and curvature tensors we present additional ge-
ometric properties associated with trivariate maps and
hexahedral grid cells. In section 4, conclusions and
outlook are given.

2 Parametric Polynomial Volumes

In terms of parametric mappings, each three-
dimensional hexahedron in an n-dimensional affine
space, with n ≥ 3, can be described as the image or
trace P (Ξ3) of a mapping P : Ξ3 → Ωn, where Ξ3

is called the parameter space and Ωn the object space.
The representation of the map can be specified by first
choosing an affine frame for the parametric space Ξ3,
denoted as (ξ0, {α1, α2, α3}), and similarly, an affine
frame (ω0, {β1, . . . , βn}) for the object space Ωn. A
three-dimensional parametric polynomial volume of
tri-degree (d1, d2, d3) can be represented by a map-
ping

ξ = ξ0+
3∑

i=1

ξiαi ∈ Ξ3 P�→ P (ξ) = ω0+
n∑

k=1

P kβk ∈ Ωn

where each coordinate function Pk = P k(ξ1, ξ2, ξ3)
is a real-valued polynomial, and the degree of each
ξi ∈ R in all Pk is at most di ∈ Z+.

Parametric polynomial volumes are extensions
of parametric polynomial curves and surfaces and
trivariate instances of multivariate constructs as dis-
cussed in [5, 11, 21]. Alternatively, constructions
of m-dimensional parametric curvilinear volumes
imbedded in n-dimensional spaces, with m ≤ n, uti-
lizing smooth mappings

P : (Ξm, gΞ ) −→ (Ωn, gΩ ) ,

where (Ξm, gΞ ) and (Ωn, gΩ ) are Riemannian mani-
folds with covariant metric tensors gΞ and gΩ , are dis-
cussed in [10, 15, 16, 24]. Essentially, the mapping P
is assumed to be an imbedding. That is, the mapping
has constant rank, i.e., the Jacobian matrix of P at
any point ξ is m = rankP = dim Ξm, it is injective,
and a homeomorphism onto its image P (Ξm), with its
topology as a subspace of Ωn. Such constructions are
necessarily local. The coordinates (ξ1, . . . , ξm) of any
point on the imbedded submanifold P (Ξm) ⊂ Ωn are
called curvilinear coordinates.

2.1 The Trilinear Map

Consider the simplest form of the trivariate map in the
Euclidean three-space R

3. Setting d1 = d2 = d3 = 1,

(1 − ξ3) P (ξ1, ξ2, 0) +
ξ3 P (ξ1, ξ2, 1) (∗)

P (ξ1, ξ2, ξ3) =
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Figure 1: Pyramid algorithm for computing the point P
and the vectors ∂3P , ∂23P , and ∂123P at (ξ1, ξ2, ξ3) .

the trilinear map from the unit-cube [0, 1]3 ≡ Ξ3 onto
Ω3 ⊂ R

3 is written

P (ξ) = (P 1(ξ), P 2(ξ), P 3(ξ))

=
1∑

i,j,k=0

Pijk B1
i (ξ1) B1

j (ξ2) B1
k(ξ3),

where the vertices of the hexahedral Pijk ∈ Ω3 are
the Bézier control points, and B1

0(ξm) = 1 − ξm,
B1

1(ξm) = ξm, m = 1, 2, 3, are the linear Bernstein
polynomials. The control points Pijk, {i, j, k} ∈
{0, 1} are connected if and only if any two out of the
three subscripts are the same.

The partial derivatives of the map are the covari-
ant basis vectors tangent to coordinate lines. Clearly,
since the map P is linear in each i-direction, i =
1, 2, 3, the tangent vector ∂iP (ξ) at any point P (ξ) on
the hexahedron is obtained by bilinear interpolation of
the four edge vectors. We can utilize a pyramid con-
struct [9] to efficiently represent not only point eval-
uation, but also evaluation of derivatives of the map,
see Fig. 1. Given the control points Pijk, {i, j, k} ∈
{0, 1} and ξ = (ξ1, ξ2, ξ3) ∈ [0, 1]3 we first interpo-
late, as is shown in the key, along the four edges in
the ξ1 direction, then in the ξ2 and finally, in the ξ3

direction to obtain the point P (ξ) = P (ξ1, ξ2, ξ3) on
the hexahedral. Also, the derivatives of the map can
simply be obtained by differencing:

∂3P (ξ) = P (ξ1, ξ2, 1) − P (ξ1, ξ2, 0),
∂23P (ξ) = {P (ξ1, 1, 1) − P (ξ1, 0, 1)} −

{P (ξ1, 1, 0) − P (ξ1, 0, 0)},
∂123P (ξ) = {Δ1

11 − Δ1
01} − {Δ1

10 − Δ1
00},

where Δ1
ab = P1ab − P0ab. The remaining partials,

∂1P , ∂2P , ∂12P , etc., can be computed similarly.



2.1.1 Inversion of the Trilinear Map

Here we give an iterative solution to the inversion
problem:

GIVEN P (ξ) ∈ Ω3 ⊂ R
3

FIND ξ = (ξ1, ξ2, ξ3) ∈ Ξ3 ≡ [0, 1]3

without the need of computing the Jacobian of the
map. Solving for ξ3, from

P (ξ1, ξ2, ξ3) = (1−ξ3) P (ξ1, ξ2, 0)+ξ3 P (ξ1, ξ2, 1),

see (∗) in Fig. 1, we get

ξ3 = Δ3 · ∂3P (ξ) / ‖∂3P (ξ)‖2 , (1)

where Δ3 = P (ξ1, ξ2, ξ3) − P (ξ1, ξ2, 0), and ‖u‖ =√
u · u is the Euclidean norm of u ∈ R

3 associated
with the Euclidean inner product on R

3. Similarly, for
ξ1 and ξ2, we write

ξm = Δm · ∂mP (ξ) / ‖∂mP (ξ)‖2, (2)

where m = 1, 2 and

∂1P (ξ) = P (1, ξ2, ξ3) − P (0, ξ2, ξ3),
∂2P (ξ) = P (ξ1, 1, ξ3) − P (ξ1, 0, ξ3),

Δ1 = P (ξ1, ξ2, ξ3) − P (0, ξ2, ξ3),
Δ2 = P (ξ1, ξ2, ξ3) − P (ξ1, 0, ξ3).

Once again, the algebraic inversion of the trilinear
map is open problem in scientific computing.

3 Geometric Properties of the Map

First and second order geometric properties of the
map can be formulated in terms of the first and sec-
ond fundamental forms. The first fundamental form,
gijdξidξj , describes the intrinsic geometry of the
map, while the second fundamental form hijdξidξj ,
describes the extrinsic geometry. The coefficients of
both forms are specified by the inner products:

gij(ξ) = ∂iP (ξ) · ∂jP (ξ) and

hij(ξ) = ∂ijP (ξ) · n(ξ), i, j = 1, 2, 3,

where n(ξ) is the unit normal to the tangent plane at
the point P (ξ) ∈ Ω3.

3.1 First Order Properties

First order geometric properties are formulated in
terms of the components of the covariant metric tensor
associated with the map and can be used to measure
angles and lengths of the covariant vectors on the tan-
gent plane. Evidently, the Jacobian of the map is the
most important geometric property since a change of
the Jacobian sing at a point ξ corresponds to a singular
map and a grid cell with zero volume at that point.

3.1.1 Jacobian of the Trilinear Map

At any ξ in [0, 1]3, the Jacobian matrix of the map is
the 3 × 3 matrix of the partial derivatives

JP (ξ) =
[
∂jP

i
]
i,j=1,2,3

=
[
∂P i

∂ξj

]
i,j=1,2,3

(3)

and the determinant of this matrix, denoted by J , is
the Jacobian of the map

J(ξ) = ∂1P (ξ) · (∂2P (ξ) × ∂3P (ξ))

= det [JP (ξ)] =

∣∣∣∣∣∣
∂1P

1 ∂2P
1 ∂3P

1

∂1P
2 ∂2P

2 ∂3P
2

∂1P
3 ∂2P

3 ∂3P
3

∣∣∣∣∣∣ ,

where P i ≡ P i(ξ), i = 1, 2, 3, are the coordinate
functions of P , that is P (ξ) = (P1(ξ), P 2(ξ), P 3(ξ)).
Since the polynomial map P : Ξ3 → Ω3 is con-
tinuously differentiable, its derivative at ξ, DP (ξ), is
given by the Jacobian matrix at ξ: DP (ξ) = JP (ξ).

In the practice of finite element methods, we
transfer the domain of mappings, derivatives, and inte-
grals in the approximate variational formulation of the
problem from each grid cell in the object or physical
domain to the parametric reference domain. This is an
essential step for the efficient implementation of finite
element methods, especially, in multi-dimensional
problems and in higher-order finite element methods.
For example, a scalar function FΩ3 : Ω3 ⊂ R

3 → R

on a grid cell, is transfered to the reference domain
Ξ3 by composing FΩ3 with the geometric mapping
P : Ξ3 ⊂ R

3 → Ω3. The transformed function is
then written as FΞ3 = FΩ3 ◦ P : Ξ3 → R .

However, transformations of differential opera-
tors, such as gradient, divergence, curl, and others,
may not only involve the derivative and the Jacobian
of the mapping P , but also, of its inverse P−1, as ap-
propriate [4]. Clearly, the invertibility of P and the
invertibility of the derivative of the map, DP = JP ,
are connected. In the first place, if the Jacobian
J(ξ) 
= 0, then P−1 exists and is smooth in some
neighborhood of P (ξ). The derivative of P−1 at P (ξ),
DP−1(P (ξ)), is the inverse of the derivative of P at ξ:
DP−1(P (ξ)) = (DP (ξ))−1. Moreover, if J(ξ) = 0,
then P does not have a differentiable inverse P−1

in some neighborhood of P (ξ), even though a non-
differentiable inverse P−1 may still exist. Finally, if
P is bijective on Ξ3, then P−1 exists on Ω3 = P (Ξ3)
and therefore, for every ω ∈ Ω3, there exists a unique
ξ ∈ Ξ3, such that P (ξ) = ω.

In practice, since it is hard to find such an inverse
map P−1 defined everywhere in Ω3, we often perform
local inversion numerically using Newton’s method.
But even local inversion requires the Jacobian of the



map to be non-singular near the root not for Newton’s
method to converge. As far as we know, the inver-
sion of the tri-linear map has been an outstanding open
problem in scientific computing.

3.1.2 Sufficient Conditions for the local inversion
of the Trilinear Map

Since the Jacobian is a real-valued function on the
unit-cube ξ = (ξ1, ξ2, ξ3) ∈ [0, 1]3 �−→ J(ξ) ∈ R,
and the partials ∂ξiP are linear in ξj and ξk, where
{i, j, k} is a cyclic permutation of {1, 2, 3}, the Jaco-
bian is at most quadratic in each ξi, and can therefore
be written as

J(ξ) =
2∑

i,j,k=0

Cijk (ξ1)i (ξ2)j (ξ3)k, (4)

where Cijk ∈ R. The coefficients Cijk, i, j, k =
0, 1, 2, can be expressed in terms of the partial deriva-
tives of the Jacobian at ξ = 0:

Cijk =
1

i! j! k!
∂i

ξ1 ∂j
ξ2 ∂k

ξ3 J(ξ) (5)

where ∂n
ξm denotes the n-th partial with respect to ξm

for m = 1, 2, 3. Next, in terms of the quadratic Bern-
stein polynomials the Jacobian is written as

J(ξ) =
2∑

i,j,k=0

CB
ijk B2

i (ξ1) B2
j (ξ2) B2

k(ξ3) , (6)

where Br
s(u) =

(r
s

)
(1 − u)r−sus,

(r
s

)
= r!

s!(r−s)! ,
are the Bernstein polynomials of degree r, and s =
0, 1, . . . , r. Note also from either(4) or (6), J(ξ) = 0
represents an implicit surface, a quadric, in R

3. The
coefficients CB

ijk ∈ R can be expressed, see e.g., [19],
in terms of the coefficients Cijk ∈ R as

CB
ijk =

i∑
l=0

j∑
m=0

k∑
n=0

(i
l

)( j
m

)(k
n

)
(
2
l

)(
2
m

)(
2
n

) Clmn,

where the coefficients Clmn are obtained from (5)
in terms of the hexahedral vertices Pijk ∈ Ω3,
{i, j, k} ∈ {0, 1}.

The representation of the Jacobian in parametric
tensor product Bézier form induces the well-known
geometric properties of the Bézier objects. This
form of the Jacobian and the associated Bézier con-
trol polygon can be obtained using the linear preci-
sion and the partition of unity properties of the Bern-
stein basis functions. From the linear precision prop-
erty, any parameter ξi ∈ [0, 1], can be expressed as

Figure 2: Measuring the Jacobian

ξi =
∑2

m=0
m
2 B2

m(ξi) where the m
2 coefficients are

uniformly spaced on [0, 1]. Using the partition of
unity of the Bernstein basis,

∑2
m=0 B2

m(ξi) = 1, we
can therefore write

ξi =
2∑

m=0

m

2
B2

m(ξi)

=
2∑

k,l,m=0

m

2
B2

k(ξ1)B2
l (ξ2)B2

m(ξi).

The Jacobian in parametric tensor product Bézier
form can now be written as:

JB(ξ) = (ξ, J(ξ)) = (ξ1, ξ2, ξ3, J(ξ))

=
2∑

i,j,k=0

Jijk B2
i (ξ

1) B2
j (ξ2) B2

k(ξ3)

where Jijk = ( i
2 , j

2 , k
2 , CB

ijk ) ∈ R
4 are the Bézier

points forming the Bézier control polygon in R
4. The

numbers CB
ijk ∈ R are referred to as the Bézier ordi-

nates of J(ξ), and ( i
2 , j

2 , k
2 ) ∈ [0, 1]3 as the Bézier

abscissae, see e.g., [11]. The geometric object gener-
ated by the points (ξ, J(ξ)), ξ ∈ [0, 1]3, is a hyper-
surface in R

4. We now give sufficient conditions for
the Jacobian positivity and, as a result, for the local
inversion of the trilinear map.

Lemma 3.1 If CB
ijk > 0 for all i, j, k = 0, 1, 2, then

the Jacobian

J(ξ) ≥ CMIN = min {CB
ijk} for all ξ ∈ [0, 1]3,

and the trilinear map, P , is locally invertible with
a differentiable inverse, P−1, in a neighborhood of
P (ξ) ∈ Ω3 ⊂ R

3.



Figure 3: Measuring Orthogonality

3.1.3 The Metric Tensor and Orthogonality

For any point ξ ∈ Ξ3, the covariant metric tensor, is
given by

G(ξ) = [gij(ξ)]i,j=1,2,3 = (JP (ξ))�JP (ξ),

and the determinant of G is

g(ξ) = det [gij(ξ)] = det ((JP (ξ))�JP (ξ))

= det (JP (ξ))� det (JP (ξ))
= J2(ξ) ≥ 0. (7)

If θij denotes the angle between the covariant tangent
vectors ∂iP (ξ) and ∂jP (ξ), the elements of the metric
tensor are

gij = ∂iP · ∂jP

= ‖∂iP‖‖∂jP‖ cos θij

=
√

gii
√

gjj cos θij . (8)

Clearly, the metric tensor is a symmetric second order
covariant tensor and it is a diagonal tensor at any point
were the tangent vectors are orthogonal. Therefore,
g/(g11g22g33) = 1 if and only if the tangent vectors
are orthogonal.

Also note that, if the Jacobian matrix, JP , is in-
vertible, the metric tensor, G, is positive definite since
the quadratic form

v�Gv = v�(JP )�(JP )v

= ((JP )v)�((JP )v)
= ‖(JP )v‖2 > 0

for any non-zero vector v = (v1, v2, v3) ∈ R
3.

3.2 Second-Order Metrics

Second-order quality metrics intend to quantify the
grid cell deformation by computing the curvatures of

the cell faces. The curvatures can be computed using
the components of the second order covariant tensor

hij(ξ) = ∂ijP (ξ) · n(ξ), i, j = 1, 2, 3,

classically known as the coefficients of the second
fundamental form. Let us fix one parameter of the
map, ξ3 = ξ0, and compute the curvatures on that
face. Then for ξ = (ξ1, ξ2, ξ0), we have P (ξ) =
(P 1(ξ), P 2(ξ), P 3(ξ)), the normal to the face is

n(ξ) =
∂1P × ∂2P

‖∂1P × ∂2P‖ .

The three components of the normal n are

nk =
1√
g

[
∂1P

k+1 ∂2P
k+2 − ∂1P

k+2 ∂2P
k+1

]
,

where k = 1, 2, 3, k + 3 �→ k, and

g = (∂1P × ∂2P )2 = g11g22 − g2
12

is the determinant of the metric tensor on the face
ξ3 = ξ0. For the trilinear map, the coefficients of
the second fundamental form, hij = ∂ijP · n, for
i, j = 1, 2, simplify to

h11 = h22 = 0, and h12 =
3∑

k=1

∂12P
k nk.

As a result, the mean curvature, H , and the Gaussian
curvature, K , take a simple form:

H =
1
2g

(g22h11 − 2g12h12 + g11h22) = −1
g
g12h12 ,

K =
1
g
(h11h22 − h2

12) = −1
g
h2

12 .

Thus on the faces of the trilinear hexahedral there are
only hyperbolic points, (K < 0), or planar points,
(K = 0). Curve and surface curvatures are frequently
used in CAGD for the detection of local imperfections
of geometric objects using curvature plots.

4 Conclusions and Outlook

From the metric and curvature tensors of the trilinear
map important geometric properties such as, the Jaco-
bian, the angle of covariant tangent vectors, the Gaus-
sian and mean curvatures are derived. Trilinear maps
can only generate hexahedral cells having hyperbolic
or parabolic faces. In field simulations, computations
must be performed on grids cells of positive volume,
i.e., all grid cells must have positive Jacobian. Also,



for structured grids, a high degree of orthogonality es-
pecially on the field boundary is critical for compu-
tational accuracy. Examples of geologic grid models
are shown on which the Jacobian and the orthogonal-
ity of grid cells are measured. In addition, a sufficient
condition for positive lower-bound on the Jacobian
is given, and an iterative approach to the inversion
problem is derived. Higher order trivariate polyno-
mial maps provide much richer geometric structures
for applications and certainly more challenges in their
analysis. Third order geometric properties measur-
ing torsion and third order invariants associated with
trivariate maps should provive further insight into the
geometry of these constructs.
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