
Dynamic Autoregressive Neuromagnetic Causality Imaging (DANCI) 
 

Richard E. Frye, M.D., Ph.D. 
Departments of Pediatrics and Neurology 

University of Texas Health Science Center at Houston 
UCT 2478 – 7000 Fannin, Houston, TX 77098 

USA 
Richard.E.Frye@uth.tmc.edu

http://www.nmr.mgh.harvard.edu/~richfrye 
 

Meng Hung (Roger) Wu and George Zouridakis, Ph.D. 
Biomedical Imaging Laboratory 

Department of Computer Science 
University of Houston 

501 Philip G. Hoffman Hall, Houston TX 77204 
USA  

wumh20@gmail.com and zouridakis@uh.edu
http://www2.cs.uh.edu/~zouridakis/ 

 
Abstract: - This presentation provides a demonstration of how Granger causality (GC) can be applied to MEG 
data to visualize dynamic functional connectivity and causality between cortical regions on a millisecond time 
scale. GC is derived from autoregressive models and provides directionality information. We apply the GC 
technique to dynamic statistical parameter map source space to demonstrate that the dynamics of neural 
networks can visualized during a perceptual task. The results from this demonstration coincide with models of 
speech perception and suggest that Dynamic Autoregressive Neuromagnetic Causality Imaging (DANCI) can 
be used to investigate and verify theoretical neural network models of brain function.  
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1   Introduction 

Developments in advanced neuroimaging 
techniques have expanded our knowledge of brain 
function. Over the past two decades, neuroimaging 
research has concentrates on the location of neural 
activity, change in gray or white matter volume, 
metabolic change or lesion. Although this 
information about neural specialization has been 
helpful, it has its limitations. The fact that the brain 
is a large-scale distributed interconnected network 
points to the fact that the emergent behaviors 
resulting from cognition processes are probably not 
located in one part of the brain. Thus, identifying 
interactions between different areas of the brain is at 
least, if not more, important than knowing the areas 
of the brain at which the specific functions occur. 

Recently,  tools and techniques have 
become available for studying the integration of 
large-scale neural systems through visualization of 
anatomic and functional neural connectivity [1]. 
Most of these techniques are based on magnetic 
resonance imaging (MRI) technology. For example, 
diffusion tensor imaging along with tractography 

has provided detailed information regarding the 
organization, integrity and architecture of white 
matter connectivity in the brain [2]. Although 
anatomic methods are important for understanding 
general brain organization and changes in 
connectivity due to maturation or understanding 
abnormal brain function in acquired or 
developmental disorder states, understanding the 
organization of large-scale neural systems during 
cognitive processing requires a measure of 
functional connectivity. Thus, connectivity methods 
have been applied to neuroimaging techniques that 
measure changes in brain metabolism due to neural 
activity, such as functional MRI. Such methods have 
provided insight into brain function. Indeed, neural 
systems have been identified with connectivity 
analyses that were not obvious on functional 
activation maps [3]. Although connectivity analysis 
with function MRI data has assisted in the 
identification of cognitive neural systems, functional 
MRI measures brain activation on a time scale of 
seconds while brain systems operate on a 
millisecond time scale. Thus, quick dynamic 
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changes in neural connectivity probably cannot be 
measured using neuroimaging techniques that rely 
on metabolic change.   

Signal processing methods for measuring 
coherence have been adapted to neuroimaging 
modalities that measure changes in   the electric 
potential or magnetic field of the brain, such as 
electroencephalography (EEG) and 
magnetoencephalography (MEG), respectively. One 
of the advantages of using techniques with excellent 
time resolution is the ability to examine the 
dynamics of causal influences. However, few 
methods have examined directionality or causality. 
In addition, most techniques have been applied to 
sensor space, thereby limiting the ability to localize 
the activity being studied. This presentation will 
provide a demonstration of how Granger causality 
can be applied to MEG data to visualize dynamic 
functional connectivity and causality between 
cortical regions on a millisecond time scale. 

....

 
2.  An Approach to Imaging Causality 

Granger causality (GC), a measure derived 
from autoregressive models (ARMs), can provide 
directionality information. GC has been applied to 
EEG data but the use of this measure in MEG 
connectivity analysis has received little attention [4].  
 
2.1 Autoregressive Modeling Assumptions 

ARM requires the adherence to several 
assumptions. First, the assumption of stationarity 
must be addressed. We use the short-window 
approach introduced by Ding by removing the time-
varying average and normalizing using the standard 
deviation [5]. Following pre-processing, normality is 
verified using probability plots. In addition, the third 
and fourth moment of the distribution are verified to 
be minimal. 
 
2.2 Model Formulation 
 Connectivity between selected cortical regions 
is calculated using ARMs and GC applied to 
dynamic statistical parameter map (dSPM) data. 
Each dSPM source is considered a separate time 
series. This time series is modeled by a separate 
ARM that represent the sources for each observation 
(i.e., trial) o at each time t by previous values of its 
own activity and the activity of the other sources. 
For example, the temporal dynamics of the activity 
of a set of sources S can be explained by the ARMs 
given in Equation (1) 
 In this model, P is the number of lags included 
in the model (i.e., the model order), which must be 
less than the number of time points T. S is the 

number of sources modeled. An estimate of the 
model produces the coefficients A1…S,1..S,1…P  and the 
error terms E1…S.  
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2.3 Stationarity and Normality 
 Several assumptions must be made when using 
ARMs. Most importantly, the mean and variance 
must be constant over the analysis window. These 
assumptions are supported by using a short window 
and subtracting the ensemble mean activation at 
each time t across observations o. The stationary 
assumption is tested for each ARM by examining 
the unit roots of the time series using the Dickey-
Fuller test. 
 
2.4 Model Order 
 The order of the model and window size was 
determined by examining the Akaike information 
criterion (AIC; Equation 2) and the Bayesian 
information criterion (BIC; Equation 3).  
 
 
                                                                                (2) 
 
 
                                                                                (3) 
 
 
2.5 Granger Causality  
 The model is designed to simultaneously 
account for the influence of all considered sources S 
on each other source S as well as the influence of 
each source on itself. For example, for source 1, 
coefficients A1,1,1…P quantitatively describe the 
influence of the activity of source 1 on itself, where 
as the coefficients A1,2,1…P quantitatively describe the 
influence of the activity of source 2 on source 1, and 
the coefficient A1,S,1..P quantitatively describe the 
influence of source S on source 1, etc. Likewise the 
coefficient As,1,1…P for source s will describe the 
quantitative influence of source 1 on source s.  
 Since the ARMs presented in (1) allow the 
influence of all sources to be considered 
simultaneously, the influence of a source on another 
that is occurring through correlation with a third 
source will be considered in the model and the false 
correlational influence of the sources will be 

2 /2 log[det( )] 2AIC S P∑ N= − • +

22 log[det( )] ( /)BIC log N S P N• ∑ += −
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revealed by the model. As Seth points out, the 
statistical significance of the quantitative influence 
of one source on another can be considered [6]. 
Linear modeling easily allows the consideration of 
the significance of a set of coefficients A by 
examining the change in the model error E when the 
coefficients of interest are removed from the model. 
This significance can be measured by calculating the 
value (4) which is F distributed with P and (O*T – 
S*P – 1) degrees of freedom. If the coefficients from 
one source significantly influence another source, 
then the GC from the first source to the second 
source will be significant.  
 
 

 
                                                                  (4) 
 
 
 

3. Applications to MEG Imaging 
We apply the GC technique to dSPM values 

that represent brain activation recorded from a 
whole-head MEG system during a syllable 
discrimination task. The data analyzed represents the 
dynamic connectivity that occurs during perception 
of the first of two syllables. We chose to investigate 
the connectivity between two regions of the brain, 
Heschl’s gyrus (HG) and the planum temporale (PT) 
since these areas are known to be important in the 
perception of language stimuli. Cortical activity in 
each region was determined by the sources located 
in these regions as determined by dSPM. dSPM 
estimates the noise-normalized activity at 
approximately 3000 sources in each hemisphere 
every 1.6ms using a ℓ2 minimum norm technique 
[7]. Fig 1 shows the two cortical regions of interest 
highlighted in green and the active cortical sources, 
in and around these regions, colored in red and 
yellow.  

The data were filtered into alpha, beta and 
gamma frequency bands. Several sets of ARMs 
were calculated with different model orders and 
window sizes for each frequency band. The AIC and 
BIC values were calculated for each of these sets of 
ARMs. The AIC and BIC values for the gamma 
range frequency band is shown in Figs 2 and 3. With 
consideration of these values we chose a window 
size of 33ms and a model order of 10 for the gamma 
frequency band. This was due to the fact that the 
decent of the AIC value became minimal at this 
combination of values while the BIC value was near 
its absolute minimum. The window size and model 

order for other frequency bands were similarly 
analyzed and considered. 

 

 
Fig 1. Regions of interest are depicted in green on the 
inflated cortex with depiction of Heschl’s gyrus (HG) 
above planum temporale (PT). Active dSPM sources 
are also shown on the inflated cortical surface as yellow 
and red ovals. 

 
 

 
Fig 2. AIC values across model orders and window 
sizes for the gamma band frequency. Notice that the 
decent of the AIC slows down considerably with a 
window size of 33ms and a model order of 10. 

 
Connectivity was visualized in a 

standardized manner for each time increment t. This 
visualization approach (See Figs 4-8) displays a 
matrixes of the GC values, as calculated by Equation 
(4), separately by direction (i.e., HG to PT and HG 
to PT) in the upper left corner and the causal flows 
(Sum of In – Sum of Out), which represents the 
balance of flow though a source, in the upper right 
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corner. The bottom of the figure depicts connectivity 
from specific sources in HG to PT and then PT back 
to HG.  Only the connections that are significant at 
least at the p < 0.01 level are displayed, but specific 
F-values are chosen to optimize the display of 
significant connections. The color of each line is 
proportional the F-value as represented in the color 
bar next to the connection matrixes. 

 

 
Fig 3. BIC values across model orders and window sizes 
for the gamma band frequency. Note that BIC is 
minimum at a model order of approximately 10 and a 
window size between 40ms and 33ms. 

 
Each figure is a separate frame of a movie 

that can be viewed to consider the sequence of 
dynamic connectivity. A smoothing parameter is 
used to allow an appropriate transition of the 
connections from one movie frame to the next. 
Examining these movies showed several patterns of 
connectivity (Figs 4-8).  

 

 
Fig 4. Connectivity between HG and PT within the beta 
frequency range early in perception of the /ba/ auditory 
syllable. Note the strong top-down connectivity from PT 
to HG with lesser bottom-up connectivity from HG to PT 
[F-value threshold = 60.0, Smoothing = 8].  

The first observations found was that the 
pattern of dynamic connectivity was dependent on 
the frequency range. Figs 4 and 5 display two movie 
frames depicting dynamic connectivity for the beta 
frequency range. During the time course (movie) of 
the beta frequency range, the connectivity between 
PT and HG changed little with a large amount of 
connectivity from PT to HG throughout and only a 
transient influence of HG on PT in the initial stages 
of the time course. 

 

 
Fig 5. Connectivity between HG and PT within the beta 
frequency range late in perception of the /ba/ auditory 
syllable. Compared to Fig 4, the strong top-down 
connectivity from PT to HG remains but the lesser 
bottom-up connectivity from HG to PT has dissipated. 
[F-value threshold = 60.0, Smoothing = 8].  

 
The pattern for the gamma frequency band 

was much different (Figs 6-8). Wide spread 
connections were demonstrated in both directions 
during the initial time course (Fig 6).  

 

 
Fig 6. Connectivity between HG and PT within the 
gamma frequency range very early in the perception of 
the /ba/ auditory syllable. Note the numerous top-down 
and bottom-up connections from many sources to many 
other sources. [F-value threshold = 26.0, Smoothing = 5].  
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Later in the time course we see that these 
connections simplify and stabilize with several 
episodes during which specific PT sources influence 
specific HG sources and visa-versa.  

 

 
Fig 7. Connectivity between HG and PT within the 
gamma frequency range during perception of the /ba/ 
auditory syllable. During an approximate 20ms interval 
there appeared to be a strong convergence of top-down 
influence from specific PT sources (1,2,5,7) on to specific 
HG sources (13,14,15,17) [F-value threshold = 26.0, 
Smoothing = 5].  

 

 
Fig 8. Connectivity between HG and PT within the 
gamma frequency range during perception of the /ba/ 
auditory syllable. Approximately 20ms after the strong 
top-down influence seen in Fig 7, strong bottom-up 
connections develop. Here we see that specific HG 
sources (4,7) converge on specific PT sources (1,2) [F-
value threshold = 26.0, Smoothing = 5].  
 

Fig 7 demonstrates organization of top-
down connections whereby specific sources in PT 
influence specific sources in HG. Fig 8 demonstrates 
that this is followed by the development of strong 
bottom-up connections whereby specific HG sources 
influence specific sources in PT. These volleys of 
recurrent and reciprocal influence between these two 

areas suggest that that feedback and feedforward 
connections work together during syllable 
perception. This is consistent with predictions of 
neural models of speech perception [8]. 
 
4   Conclusion 

This technique, which we will call Dynamic 
Autoregressive Neuromagnetic Causality Imaging 
(DANCI), has the capability to allow the 
visualization of dynamic functional connectivity and 
causality between important brain regions during 
whole-head MEG recording. Neural network 
structure and dynamics can be appreciated with this 
technique.  

 
Development of this technique will require 

further investigation and validation: 
 

 The effect of model order and window size on 
connectivity should be studied to determine 
whether the AIC and BIC statistics are sufficient 
for choosing these model parameters. For example 
these parameters may also be dynamic, require the 
structure of the model itself to change dynamically 
with time.  
 The optimal manner in which to visualize 
connectivity needs to be studied. For example, 
although the prominent connections are visualized, 
the flow statistics do not always coincide with the 
visualized connections. This may suggest that 
many connections with values under the 
significance threshold are contributing to 
connectivity within certain sources. 
 Not all source models by the ARMs demonstrate 
significant connections.  Thus, the calculation for 
the solution of all of the connections performs 
unnecessary computations. Identifying and 
eliminating non-connected sources that are 
unlikely to demonstrate significant connections 
before the ARMs are constructed will allow more 
efficient computation of GC values. 
 The sources produced by the dSPM technique are 
placed equally throughout on the cortex without 
regard for the location of the cortical activity. 
Thus, several sources may represent the same 
cortical activity while other sources may represent 
combinations of activity. Optimizing the 
placement of cortical sources will optimize the 
DANCI calculations. 
 Functional mapping of the GC values on the 
inflated cortex will provide a better understanding 
of the significant of the connectivity patterns 
observed using the current DANCI technique.  
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Overall, the DANCI technique appears to be 

promising. Most importantly, this technique may be 
useful for validating various hypothesized neural 
network models and allow us to understand the 
small, medium and large-scale dynamics of brain 
function.   
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