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Abstract: - We study the degree of fractality for the electromagnetic field diffracted from gratings and zone 
plates with internal Cantor structure. This fractality is determined by the correlation peaks which appear in the 
self-similarity function for the intensity distribution of the field. The results are complementary to the study of 
the homogeneity property, presented in a previous work [7]. 
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1   Introduction 
The diffracted field from gratings with different 
geometry is important for the electromagnetic 
information processing and also for the inverse 
problem, this is, the study of the geometry of the 
object starting from the geometry of the field. 
Diffraction gratings and zone plates are important 
elements in the applications of diffractive optics 
[1,2], antennas [3,4], etc.. In previous works we have 
studied the field diffracted from gratings [5,6] and 
zone plates [7,8] with fractal characteristics, using in 
both cases a construction method with periodic 
functions. In these cases we have shown that there is 
a transformation that allows to obtaining the periodic 
functions for both cases and then, the total structure 
can be transformed in the same way. We have also 
studied the property of homogeneity and the foci 
positions for Cantor zone plates with different fractal 
dimensions. 

In this work we study the property of self-
similarity for zone plates and the associated linear 
gratings, which are related through a quadratic 
transformation, as continuation of a previous work 
[7] referred to the analytic derivation of the 
homogeneous property for both cases. 
 
 
2 Gratings and zone plates with 

fractal geometry 
We have already demonstrated the possibility of 
obtaining Cantor functions by means of the product 
superposition of periodic components [9]. Each of 
these periodic components can be expressed through 
scaled Fourier series. Then, the periodic Cantor 
function is given by: 
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where N is the order and s is the scaling factor of the 
fractal structure. Using the coordinate transformation: 
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where d0 and D0 are the corresponding periods. Then, 
the representation for a zone plate is finally obtained: 
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and both expressions, Eqs. (1) and (3), are related 
through Eq. (2). 
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Fig. 1 – Coordinate transformation. 
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Figure 2a – Components related with linear periodic 
gratings and the Cantor zone plate. 

 
 

 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
Figure 2b – Transmition function as a function of the 
radius of the zone plates of Fig. 2a. 
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3 Calculation of the diffracted field 
The computation for the diffracted field, in each case, 
can be obtained from the Fresnel integral in Cartesian 
and polar coordinates: 
 
- Linear Gratings: 
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- Zone plates: 
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where A(x,z) and A(r,z) are complex functions [10]. 

When the Cantor functions defined in Eqs. (1) and 
(3) are introduced in Eqs. (4) and (5) respectively, the 
diffracted field and the foci positions for such fractal 
structures can be obtained. 

The comparison between the foci positions are 
shown in the intensity patterns of Fig. 3, considering 
that they are found along a transversal axis (for the 
case of linear gratings) and along the optical axis (for 
the case of zonal plates). 
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Figure 3 – Intensity distribution along the optical 
axis. 
 

4 Self-similarity function 
In both cases it is possible to use the self-similarity 
function defined in Ref. [11], to see the effect of the 
coordinate transformation defined by Eq. (2) on the 
scaling property of each diffractive structure. Some 
properties of this self-similarity function were studied 
in Refs. [12,13]. It is defined by means of the 
correlation: 
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Figure 4 – Self-similarity for: (a) lineal grating, (b) 
zone plate, which are related through Eq. (2). 
 
Fig. 4 shows the fractality in relation to the scaling 
for the linear grating (above) associated to the Cantor 
zone plate (below). This function is calculated, into a 
region R, on the intensity distribution of the field 
given by I(ξ), where ξ is a generalized coordinate. 
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The scaling factor for each case is s and s0.5 
respectively. In the plot of self-similarity the 
magnification is defined as a variable scaling factor 
(m), which presents correlation peaks in 
correspondence with the scaling factor of the Cantor 
structures, this is for m=sα/2 (for the linear gratings) 
and m=sα (for zone plates). 
 
 
5 Conclusions 
In this work the characteristics of self-similarity have 
been compared for linear gratings and zone plates, 
with internal Cantor structure. Furthermore, the foci 
positions for both geometries are shown. For the 
linear grating a direct relationship between the 
scaling of the structure and the position of the 
correlation peaks is obtained. For the case of the 
zone plate a quadratic relationship is obtained. This 
is very important for the possible applications of 
such types of structures. The results are related with 
the expressed by the homogeneity relation from Ref. 
[6], in the sense that if the linear grating has scaling 
factor s0.5 (=30.5, for the triadic Cantor set) then the 
self-similarity of the field has correlation peaks for 
powers of s0.5. For the zone plate obtained by means 
of the transformation defined in Eq. (2), the field has 
correlation peaks for powers of s. 
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