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Abstract: - In the present work we study the fractality of the structure obtained when two Cantor grids are 
superimposed for different relative angular displacements and, as a special case, the moiré structures obtained 
either in the complete structure as in the normalized fringe profiles. We use the box-counting technique for the 
case of two grids with arbitrary fractal dimensions. 
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1   Introduction 
 
The study of the moiré effect and its applications are 
an important area of the applied optics, and a wide 
bibliography exists in this respect [1-4]. The 
superposition of two periodic grids (with their 
corresponding parameters) is shown in Fig. 1. The 
fringes obtained for the case of angular moiré (with 
period DM) as well as the fringe profiles, as a measure 
of the correlation between two grids, are 
characteristics included in the studies developed for 
the patterns of fringes obtained in different cases. 
 

 
 
Figure 1 – Moiré effect from two periodic grids, with 
periods d1 and d2, and angular displacement 2θ. 
 
Here, we are interested in the fractality of the moiré 
structure and the normalized profiles which appear in 
the angular superposition of gratings with fractal 
characteristics. As in previous works [5,6], these 
gratings are built with a product of periodic 
components. In the moiré superposition, such 

periodic grids become important for obtaining the 
parameters of the moiré structure: period and angular 
direction. 
 
 
2 Moiré from Cantor grids 
 
When two Cantor grids, with an angular difference 
between them, are superimposed, we can obtain 
moiré structures. In this work we use Cantor grids 
included in an initial periodic structure (see Fig. 2). 
The theory for the construction of such grids has been 
presented in previous works [5,6]. 
 
 

 
 

(a) 
 

 
 

(b) 
 
Figure 2 – Cantor grids obtained with the product of 
periodic components for fractal dimensions: (a) 
D≈0.6309, (b) D≈0.6826. 
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(a) 

 

 
(b) 

Figure 3 – Superposition of each Cantor grids from 
Fig. 1, which shows the moiré structure. 
 
Also, we have demonstrated that, similarly to the case 
of periodic grids [2], the moiré obtained when two 
Cantor grids are superimposed, can be written as the 
product [7-9]:  
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where s1, s2 are the scaling factors, d1, d2 are the 
initial periods and we defined: 
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Then, the moiré fringes are obtained when: 
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and the parameters (period and angular direction) of 
such moiré fringes are given by: 
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In these equations we can observe that the properties 
of the moiré effect obtained with Cantor grids are 
characterized from the periodic components 
contained in the fractal structure. 
The superposition of two identical Cantor grids, with 
an angular displacement among them, is shown in 
Fig. 3, for both cases considered in Fig. 2. Starting 
from Eq. (3), it can be seen that the periods and the 
angular direction of the moiré fringes also have a 
relation on the scaling, and not only on the periods of 
each periodic component.  
 
 
3 Box-counting dimension of the 

superposition 
 
The box-counting dimension is defined as: 
 

)log(
)Nlog(limD

δδ 0→
−=   (5) 

 
being N the number of boxes with size δ. 
Starting from structures with a degree of fractality 
along one dimension, structure with fractality in two 
dimensions can be obtained, by means of an angular 
superposition of the same ones, using the product 
operation previously used. In this section, the 
mathematical expression for the superposition of two 
Cantor fractals when an angular displacement 
between them is taken into account is obtained, 
around a point of the x-y plane, where they are 
contained. In the first place, emphasize is made on a 
theorem referred to the intersection between two 
fractal sets [10] that will be useful for the 
construction that we want to make. 
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    Theorem 1. Let Ak,Bk⊂Rⁿ be Borel sets, and let G 
be a group of transformations on Rⁿ. Then: 
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for a set of motions Г(G) of positive measure in the 
following cases: 
    a) G is the group of similarities and Ak and Bk are 
arbitrary sets. 
    b) G is the group of rigid motions, Ak is arbitrary 
and Bk is a rectifiable curve, surface, or manifold. 
    c) G is the group of rigid motions and Ak and Bk 
are arbitrary, with either: 
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From this theorem, it is possible to demonstrate that 
the fractal dimension of two Cantor structures is 
given as the cartesian product [10], and then: 
 

,dim2)(dim

,dimdim)(dim

AAABA

BABA

HH

HHH

=×⇒=

+=×
    (8) 

 
Because the several definitions of dimension give the 
same value for the case of Cantor sets [11], the 
previous results can be synthesized with the numeric 
calculation of one of them, for example box-counting. 
Next, we calculate the box-counting dimension for 
the examples included in Fig. 3, when the angle is 10 
degrees. 
 The results show the fractality in such structures 
which is clearly dependent of the order in the grids 
considered, and give results in accordance with the 
expected results from Eqs. (8), considering the error 
that arises of the regression method used in each 
superposition. 
 

 
(a) 

 

 
(b) 

 
Figure 4 – Box-counting dimension for the 
superposition of two identical grids: (a) D≈0.6309, 
(b) D≈0.6826. 

 
 

 
Figure 5 – Box-counting dimension for the 
superposition of Cantor grids with Df≈0.6309 and 
Df≈0.6826. 
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3.1 Evolution of the box-counting dimension as a 
function of the relative angular displacement 

 
Since measurements over the fractal structure must be 
done over a finite dimension we study the evolution 
of the fractal dimension for different rotation angles 
between both Cantor structures. First, we establish a 
fixed (and finite) window, over which the box-
counting dimension is performed. When one grid is 
rotated over the other, inside the chosen window, 
different structures appear. If both grids have the 
same fractal structure, it is logical to find an initial 
dimension very similar to the one determined by Eq. 
(5) for each grid, but the window determines a finite 
size. Then, there is an evolution towards the value of 
the cartesian product obtained by the same Eq. (8). 
Such evolution is shown in Fig. 6, which has been 
approximated trough an exponential decay of first 
order. We can see that, for small angles, the moiré 
fringes visualized in the structure (see Fig. 3) is 
related with a bigger value of the box-counting 
dimension. This characteristic is present until 10 to 
20 degrees, and it is a way for a measurement of the 
limit in the moiré effect for the superposition of two 
fractal structures. 
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Figure 6 – Evolution of the box-counting dimension 
with the angle of rotation between two Cantor grids. 
 
 
 

3.2 Dimensional analysis of the normalized moiré 
profiles 

 
Now, we study the structure of the moiré profiles. For 
this purpose we make the change of coordinates 
(x,y)→(u,v) and ( ) ( vuMyxM N

T
N

T ,, → ) , where v is 
the coordinate along the moiré fringes and u is the 
corresponding perpendicular coordinate. The 
intensity values obtained for the moiré fringes are 
denoted by the mean value [1]: 
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being T a displacement along the v-axis. 
For the case of images from the moiré structures here 
obtained, which have a finite number of pixels, the 
integral of Eq. (9) can be approximated as the finite 
sum. In this case, M2 indicates the number of pixels 
along the fringes of the moiré structure, M1 is the 
corresponding number of pixels for the perpedicular 
direction and I(i,j) is the intensity level registered at 
the pixel (i,j) in the image of the moiré structure. 
 
 
 

 
 
Figure 7 – Example of moiré profile for the case 
Df≈0.6309. 
 
 
The trends of the normalized fringe profiles occupy 
the plane, and for this reason have high values in the 
box-counting dimension. In the case of D≈0.6309 the 
secondary picks of intensity are bigger, compared 
with the case D≈0.6826 and then, it has a bigger 
value in the box-counting. 
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4   Conclusion 
 
We have seen that the structures obtained from the 
angular superposition of two periodic Cantor grids 
form fractal structures with periodicity. For small 
angles, the moiré effect is present. The box-counting 
method is applicable in these cases for determining 
the fractal dimension for the superposition of two 
Cantor grids. This is achieved by using the box-
counting method and the result from the cartesian 
product of two Cantor structures (Eqs. (5)). This 
method is applied to different cases: 1) for the total 
structure at a certain angular displacement, 2) to 
studying the evolution of dimension with the angular 
displacement, 3) for the normalizad profiles. Each 
case is very important to establish different 
characteristics of the obtained structures, involving a 
relation between the moiré structure and the angular 
displacement. We expect to develop different 
applications in the future to relate moiré effect and 
the fractal dimension of complex and fractal grids. 
 
 

 
(a) 

 

 
(b) 

 
Figure 8 – Box-counting dimension for the 
normalized moiré profiles of the structures in Fig. 2. 
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