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Abstract: – Nowadays, many time-critical applications require 3D rendering algorithms for the visualization of 
massive terrain datasets. For such applications it is essentially important to use CPU processing power as little 
as possible, because in real-life applications the CPU usually has more task to do than just a terrain drawing. 
There is a huge burden imposed by sensors polling, received information interpretation, communication with 
other devices and their management. This paper presents efficiency of simple out-of-core terrain-rendering 
algorithm, using OpenGL display lists organized into nested rings.  
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1   Introduction 
A large volume of applications today requires some 
kind of terrain visualization technique in order to 
display realistic outdoor scenes. The most important 
trigger force for developing efficient algorithms for 
the visualization, which in the other hand should 
have a very pleasant outcome, are the interactive 
computer games. The gaming industry also boosts 
the graphics-accelerators hardware development, 
transforming plain PCs into very powerful graphics 
workstations. Many of the currently state-of-the-art 
algorithms are targeted to this marketplace. 

Besides the entertainment marketplace, the 
terrain rendering algorithms find its appliance also in 
scientific applications, such as simulators, 
geographic information systems (GIS), and even in 
military mission planning applications. For such 
applications it is essentially important to use CPU 
processing power as little as possible, because in 
real-life applications the CPU usually has more task 
to do than just a terrain drawing. There is a huge 
burden imposed by sensors polling, received 
information interpretation, communication with 
other devices and their management. 

This paper presents the efficiency of the RINGO, 
the algorithm for the out-of-core large terrain 
rendering. The solution is developed in the CG&GIS 
Laboratory, at Faculty of Electronic Engineering in 
Niš, for the implementation in the heavily loaded 
geographic information systems. The main 
requirements that govern the development of the 
algorithm are: 
• Low CPU utilization, 

• Highest possible rendering rate, and 
• Portability. 

The paper is organized as follows: the second 
section gives brief overview of terrain rendering 
algorithms, the third section explains the general 
principles of the RINGO algorithm, the fourth 
section shows some experimental results and the 
efficiency, and the conclusions are given in the fifth 
section. 

 
 

2   Related Work 
In the early days of the terrain rendering algorithms, 
predominant task was to maintain a minimal number 
of polygons in the scene. This led to various level-of-
detail (LOD) approaches enabling visualization of 
massive terrain models in spite of the restriction 
imposed by the graphics hardware. 

Some early works in terrain simplification dated 
from late 1970s [1], but the real explosion of the 
algorithms started in 1990s [2-4]. All those 
algorithms tried to optimize the number of graphics 
primitives by using the CPU power. Generally, there 
are two approaches in terrain simplification: 
• Bottom-up – starting with highest-resolution 

mesh that has to be iteratively simplified, until 
desired resolution is achieved [2], and 

• Top-down – starting with two or four triangles, 
which have to be progressively tessellated, until 
desired resolution is achieved [3,4]. 
The data structures used to represent the terrain 

can be: regular gridded height fields or triangulated 
irregular networks (TINs). TINs achieve required 
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accuracy with fewer polygons, but they are much 
harder for manipulation, comparing to regular grids. 
Furthermore, today graphics processing units (GPUs) 
easily handle large data sets with regular (uniform) 
structures, so many algorithms rather relay on 
regular gridded data. The optimal feeding of graphics 
pipeline is now more important than the fine 
tessellation tuning. 

All algorithms developed in the last few years 
are based on the large triangular or rectangular 
patches at different resolutions. Some of the most 
famous are: Geometry Clipmaps [5,6], Spherical 
Clipmaps [7], Seamless Patches [8], BDAM [9], and 
its variations P-BDAM [10] and C-BDAM [11].  

A great number of previously mentioned 
algorithms deals with terrain data that is already 
loaded into main memory. But, it is fairly desirable 
feature to enable out-of-core operation. This means 
that the algorithm should be able to browse terrain 
data set that exceeds the size of the available main 
memory. There are many proposed solutions for 
optimizing terrain data layout on the hard disk drive, 
and improvement of spatial coherence [12-14]. 

 

 
Fig.1 RINGO approach - Concentric rings of terrain 

datasets 
 
In the next section we will present our algorithm, 

called RINGO, due to its data-organization into 
concentric rings (Fig.1). It is greatly influenced by 
Geometry Clipmaps, the algorithm that caches the 
terrain in a set of nested regular grids centered about 
the viewer. An important aspect of this approach is 
that the level of detail (LOD) is independent of data 
content, and therefore the terrain data does not 
require any precomputation of refinement criteria. 
The only drawback of the Geometry Clipmaps is 
their planar regular grid used for the terrain creation. 
As the main purpose of the RINGO is to enable fast 
terrain visualization in GIS applications, RINGO 
relies on regular grids, but in spherical coordinate 
system. That enables very precise Earth surface 
modeling, using WGS84 ellipsoid, geoid correction 
and various sources of data in standard file formats.  

3   Algorithm Overview 
RINGO algorithm [15,16] uses very simple scheme 
to maintain a large terrain dataset. The primary 
sources of data are files containing terrain height 
values in any of the supported file formats (e.g. BIL, 
HGT, etc.). According to viewer height above the 
geoid and chosen LOD scheme [15,16], a part of 
dataset is cached in the main memory. 

The greatest possible frame-rate for the given 
graphics hardware can be achieved by using so 
called "retain mode". This assumes that the data is 
arranged into appropriate buffers, enabling fast 
DMA transfer to the graphics card memory. Like 
data, the manipulation commands, e.g. geometric 
transformations, can also be precompiled and stored 
in graphics memory. 

To obtain cross-platform scalability, RINGO 
uses OpenGL for implementation of its rendering 
engine. Furthermore, only basic functionality is used 
to avoid compatibility problems with different 
hardware. Experimental results show that the display 
lists are the most efficient way to render a scene 
using OpenGL, especially when there is a bottleneck 
in the computer system [15].  

Although very efficient, the display lists have 
some drawbacks, like: 

• Additional time required for creation and 
destroying, and 

• Disability of changing. 
These drawbacks disable some advanced 

techniques, such as vertex morphing, but 
minimization of CPU load and maximization of 
speed justifies the use of display lists. 
 

 
Fig.2 The ring organization of terrain blocks 
 
In order to achieve better utilization of OpenGL 

display lists, as well as partially loading terrain data, 
the whole terrain that resides in main memory is 
divided into blocks. Each block has the same spatial 
size, but resolution depends upon the distance from 
the viewer. All terrain blocks are organized into one 
central area and the certain number of rings (Fig.2). 
The central area covers 3×3 blocks of the highest 
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resolution, and each ring consists of blocks with four 
times less triangles than their inner neighbors. 

When viewer crosses the border of the central 
block, blocks reorganization starts. Some of the 
blocks have to be re-created (in Fig.3 blocks marked 
with 'R' and 'D'), while others just change their 
position in the terrain matrix (by pointers moving). 
Blocks re-creation is the only time-critical operation 
in our algorithm. The number and the resolution of 
re-created blocks directly determine the fluidness of 
the transition. The time for the blocks re-creation 
depends whether the blocks resides in front or behind 
the viewer. The blocks that are behind the viewer, 
marked with 'D', can reuse data from their neighbors 
with the higher resolution, while blocks that are in 
front of the viewer, marked with 'R', require reload 
and recalculation. Even these blocks, which have to 
be reloaded, can reuse data from the lower resolution 
neighbors. But since the lower resolution block 
contains just the quarter of required data, and certain 
calculation should be done even for the reused data, 
the speed gain is very poor. For the sake of 
simplicity, current implementation of our algorithm, 
completely reloads R-blocks. 

 

 
Fig.3 Viewer crossing the border of the central block 
 

One of the greatest advantages of this algorithm 
is that it enables high level of parallelism. Namely, 
loading and preparing each block is totally 
independent of the others. Considering the case when 
viewer is moving to the north, each column of the 
terrain-blocks matrix can be reorganized in the 
separate thread (Fig.4). 

Each thread examines blocks in its own column 
starting from the opposite side of the matrix in 
regard to viewer movement direction. If the current 
block has the same LOD level as its neighbor (in the 
direction of movement), working thread copies the 
pointer of the neighbor to the current block. If it is 
not true, current block have to be re-created by 
reloading or downsampling from the higher 
resolution neighbour in a separate thread (depicted as  
dashed lines). 

 

 
Fig.4 Example of thread initialization for the 

moving-north motion 
 
The high parallelism in terrain reorganization 

already enables smooth block transitions on dual-
core sistems, and it is very likely that new emerging 
technologies, such as quad-core procesors, will 
further boost the speed. 

 
 

4   Results 
The greatest advantages of RINGO algorithm are: 

• Very simple implementation, 
• High level of parallelism in the terrain 

reorganization, and 
• Highest possible frame-rate while moving 

within the boundaries of the central block. 
A set of experimets were cerried out, on verious 

platforms, to obtain measure of RING effectiveness. 
Table 1 summarizes used computer configurations, 
and table 2 displays their speed-test results. In this 
test we used terrain consists of 121 blocks organized 
in central area and 4 rings (11x11). The total number 
of triangles is 1.746.000. 

 
Label Graphics CPU OS 

R1 X850 Pro PentiumD@3.0GHz XP 
R2 X600 Athlon64 3000+ 1.81GHz XP 
R3 Nv6200 Pentium4@2.8GHz HT XP 
R4 Fx5500 Celeron2@800MHz W2K 
R5 GF7300GT Pentium4@3.0GHz W2K 
Table 1. Configurations used in the speed test 
 

CPU Usage Label Inside block Moving across FPS 

R1 6 % 25 % 274 
R2 13 % 50 % 280 
R3 4 % 20 % 1200 
R4 24 % 100 % 300 
R5 3% 30 % 1062 

Table 2. Speed test results 
 
The first column in the table 2 contains 

references to appropriate configuration in table 1. 
The second colon shows CPU usage while viewer is 
moving through the central block. The usage ranges 
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from 3% to 24%, strictly depending on the CPU 
speed,  because RINGO in every frame calculates: 

• Distances to the near and far clipping plane of 
the viewing frustum and sets projection matrix, 
in order to accomodate variable viewing 
distance, from few meters to thousands of 
kilometers, 

• Height above geoid, 
• Collision with the terrain (and height above it), 
• Movement parameters toward viewing course 

or paralell to a colliding surface, and 
• Azimuth (measured clockwise from the north 

pole). 
The third column in the table 2 shows CPU 

usage while viewer moves across the border of the 
central block. It is the only time-critical task in this 
algorithm, because it requires terrain reorganization. 
As it can be seen from the Fig.5, border-crossing 
increases the CPU load for the very short period of 
time.  
 

 
Fig.5 CPU usage for the configuration R1 while 

viewer moves across the border of a block  
 

The last column in the table 2 contains 
"effective" frame-rate. It is not the real speed of the 
rendering, but the time while CPU is busy sending 
commands to a graphics card. This means, for 
example, that CPU in the configuration R1 spends 
about 3.65ms for each screen refreash. The standard 
input devices (e.g. keyboards) are used for actuators 
in all tests. If we artificially boost the screen refresh 
rate across certain limits the system will be saturated. 
For example, for the system R4 saturation arise if 
RINGO is forced to redraw screen every 20ms. This 
is the burden when CPU usage jumps to 100% and 
frame-rate drops to 47 fps. 

The system saturation has not been observed on 
faster configurations (e.g. system R5) even when 
screen is redrawn up to 1000 times per second. 

In all tests NVidia's graphics cards have achieved 
higher frame-rate indicating better optimization of 
drivers comparing to ATI. 
 
 
5   Conclusion 
The presented algorithm offers four main 
advantages: a simple implementation, maximal 
frame-rate that the graphics card can achieve, 

minimal CPU usage when the viewer remains in the 
central block and high parallelism in blocks re-
creation procedure. The maximum frame rate and 
minimum CPU utilization can be achieved if and 
only if all terrain blocks can reside in the memory of 
the graphics card. In other case, for example when 
algorithm is executed on integrated video cards, 
performances are very poor, but still better than 
using other rendering techniques. The reason is very 
simple: the modern graphics card memory bandwidth 
is more than 20GB/s. It cannot be compared to even 
the fastest DMA to the main memory.   

The speed of algorithm depends on spatial block 
size, number of blocks in the terrain matix and 
blocks arrangement (i.e. LOD scheme). Disccusion 
about the influence of all those factors exceeds the 
scope of this paper. RINGO is still under 
development, and certainly requires coarser or finer 
tuning in many aspects, but currently results promise 
successful usage in various applications. 
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