
Efficiency of RINGO Algorithm for Large Terrain Rendering

ALEKSANDAR DIMITRIJEVIĆ, DEJAN RANČIĆ
Department of Computer Science, Faculty of Electronic Engineering

University of Niš
Aleksandra Medvedeva 14, 18000 Niš

SERBIA
aks@elfak.ni.ac.yu, ranca@elfak.ni.ac.yu

Abstract: – Nowadays, many time-critical applications require 3D rendering algorithms for the visualization of
massive terrain datasets. For such applications it is essentially important to use CPU processing power as little
as possible, because in real-life applications the CPU usually has more task to do than just a terrain drawing.
There is a huge burden imposed by sensors polling, received information interpretation, communication with
other devices and their management. This paper presents efficiency of simple out-of-core terrain-rendering
algorithm, using OpenGL display lists organized into nested rings.

Key-Words: – Terrain rendering algorithm, out-of-core, level-of-detail, block based organization, efficiency

1 Introduction
A large volume of applications today requires some
kind of terrain visualization technique in order to
display realistic outdoor scenes. The most important
trigger force for developing efficient algorithms for
the visualization, which in the other hand should
have a very pleasant outcome, are the interactive
computer games. The gaming industry also boosts
the graphics-accelerators hardware development,
transforming plain PCs into very powerful graphics
workstations. Many of the currently state-of-the-art
algorithms are targeted to this marketplace.

Besides the entertainment marketplace, the
terrain rendering algorithms find its appliance also in
scientific applications, such as simulators,
geographic information systems (GIS), and even in
military mission planning applications. For such
applications it is essentially important to use CPU
processing power as little as possible, because in
real-life applications the CPU usually has more task
to do than just a terrain drawing. There is a huge
burden imposed by sensors polling, received
information interpretation, communication with
other devices and their management.

This paper presents the efficiency of the RINGO,
the algorithm for the out-of-core large terrain
rendering. The solution is developed in the CG&GIS
Laboratory, at Faculty of Electronic Engineering in
Niš, for the implementation in the heavily loaded
geographic information systems. The main
requirements that govern the development of the
algorithm are:
• Low CPU utilization,

• Highest possible rendering rate, and
• Portability.

The paper is organized as follows: the second
section gives brief overview of terrain rendering
algorithms, the third section explains the general
principles of the RINGO algorithm, the fourth
section shows some experimental results and the
efficiency, and the conclusions are given in the fifth
section.

2 Related Work
In the early days of the terrain rendering algorithms,
predominant task was to maintain a minimal number
of polygons in the scene. This led to various level-of-
detail (LOD) approaches enabling visualization of
massive terrain models in spite of the restriction
imposed by the graphics hardware.

Some early works in terrain simplification dated
from late 1970s [1], but the real explosion of the
algorithms started in 1990s [2-4]. All those
algorithms tried to optimize the number of graphics
primitives by using the CPU power. Generally, there
are two approaches in terrain simplification:
• Bottom-up – starting with highest-resolution

mesh that has to be iteratively simplified, until
desired resolution is achieved [2], and

• Top-down – starting with two or four triangles,
which have to be progressively tessellated, until
desired resolution is achieved [3,4].
The data structures used to represent the terrain

can be: regular gridded height fields or triangulated
irregular networks (TINs). TINs achieve required

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 464

accuracy with fewer polygons, but they are much
harder for manipulation, comparing to regular grids.
Furthermore, today graphics processing units (GPUs)
easily handle large data sets with regular (uniform)
structures, so many algorithms rather relay on
regular gridded data. The optimal feeding of graphics
pipeline is now more important than the fine
tessellation tuning.

All algorithms developed in the last few years
are based on the large triangular or rectangular
patches at different resolutions. Some of the most
famous are: Geometry Clipmaps [5,6], Spherical
Clipmaps [7], Seamless Patches [8], BDAM [9], and
its variations P-BDAM [10] and C-BDAM [11].

A great number of previously mentioned
algorithms deals with terrain data that is already
loaded into main memory. But, it is fairly desirable
feature to enable out-of-core operation. This means
that the algorithm should be able to browse terrain
data set that exceeds the size of the available main
memory. There are many proposed solutions for
optimizing terrain data layout on the hard disk drive,
and improvement of spatial coherence [12-14].

Fig.1 RINGO approach - Concentric rings of terrain

datasets

In the next section we will present our algorithm,

called RINGO, due to its data-organization into
concentric rings (Fig.1). It is greatly influenced by
Geometry Clipmaps, the algorithm that caches the
terrain in a set of nested regular grids centered about
the viewer. An important aspect of this approach is
that the level of detail (LOD) is independent of data
content, and therefore the terrain data does not
require any precomputation of refinement criteria.
The only drawback of the Geometry Clipmaps is
their planar regular grid used for the terrain creation.
As the main purpose of the RINGO is to enable fast
terrain visualization in GIS applications, RINGO
relies on regular grids, but in spherical coordinate
system. That enables very precise Earth surface
modeling, using WGS84 ellipsoid, geoid correction
and various sources of data in standard file formats.

3 Algorithm Overview
RINGO algorithm [15,16] uses very simple scheme
to maintain a large terrain dataset. The primary
sources of data are files containing terrain height
values in any of the supported file formats (e.g. BIL,
HGT, etc.). According to viewer height above the
geoid and chosen LOD scheme [15,16], a part of
dataset is cached in the main memory.

The greatest possible frame-rate for the given
graphics hardware can be achieved by using so
called "retain mode". This assumes that the data is
arranged into appropriate buffers, enabling fast
DMA transfer to the graphics card memory. Like
data, the manipulation commands, e.g. geometric
transformations, can also be precompiled and stored
in graphics memory.

To obtain cross-platform scalability, RINGO
uses OpenGL for implementation of its rendering
engine. Furthermore, only basic functionality is used
to avoid compatibility problems with different
hardware. Experimental results show that the display
lists are the most efficient way to render a scene
using OpenGL, especially when there is a bottleneck
in the computer system [15].

Although very efficient, the display lists have
some drawbacks, like:

• Additional time required for creation and
destroying, and

• Disability of changing.
These drawbacks disable some advanced

techniques, such as vertex morphing, but
minimization of CPU load and maximization of
speed justifies the use of display lists.

Fig.2 The ring organization of terrain blocks

In order to achieve better utilization of OpenGL

display lists, as well as partially loading terrain data,
the whole terrain that resides in main memory is
divided into blocks. Each block has the same spatial
size, but resolution depends upon the distance from
the viewer. All terrain blocks are organized into one
central area and the certain number of rings (Fig.2).
The central area covers 3×3 blocks of the highest

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 465

resolution, and each ring consists of blocks with four
times less triangles than their inner neighbors.

When viewer crosses the border of the central
block, blocks reorganization starts. Some of the
blocks have to be re-created (in Fig.3 blocks marked
with 'R' and 'D'), while others just change their
position in the terrain matrix (by pointers moving).
Blocks re-creation is the only time-critical operation
in our algorithm. The number and the resolution of
re-created blocks directly determine the fluidness of
the transition. The time for the blocks re-creation
depends whether the blocks resides in front or behind
the viewer. The blocks that are behind the viewer,
marked with 'D', can reuse data from their neighbors
with the higher resolution, while blocks that are in
front of the viewer, marked with 'R', require reload
and recalculation. Even these blocks, which have to
be reloaded, can reuse data from the lower resolution
neighbors. But since the lower resolution block
contains just the quarter of required data, and certain
calculation should be done even for the reused data,
the speed gain is very poor. For the sake of
simplicity, current implementation of our algorithm,
completely reloads R-blocks.

Fig.3 Viewer crossing the border of the central block

One of the greatest advantages of this algorithm
is that it enables high level of parallelism. Namely,
loading and preparing each block is totally
independent of the others. Considering the case when
viewer is moving to the north, each column of the
terrain-blocks matrix can be reorganized in the
separate thread (Fig.4).

Each thread examines blocks in its own column
starting from the opposite side of the matrix in
regard to viewer movement direction. If the current
block has the same LOD level as its neighbor (in the
direction of movement), working thread copies the
pointer of the neighbor to the current block. If it is
not true, current block have to be re-created by
reloading or downsampling from the higher
resolution neighbour in a separate thread (depicted as
dashed lines).

Fig.4 Example of thread initialization for the

moving-north motion

The high parallelism in terrain reorganization

already enables smooth block transitions on dual-
core sistems, and it is very likely that new emerging
technologies, such as quad-core procesors, will
further boost the speed.

4 Results
The greatest advantages of RINGO algorithm are:

• Very simple implementation,
• High level of parallelism in the terrain

reorganization, and
• Highest possible frame-rate while moving

within the boundaries of the central block.
A set of experimets were cerried out, on verious

platforms, to obtain measure of RING effectiveness.
Table 1 summarizes used computer configurations,
and table 2 displays their speed-test results. In this
test we used terrain consists of 121 blocks organized
in central area and 4 rings (11x11). The total number
of triangles is 1.746.000.

Label Graphics CPU OS

R1 X850 Pro PentiumD@3.0GHz XP
R2 X600 Athlon64 3000+ 1.81GHz XP
R3 Nv6200 Pentium4@2.8GHz HT XP
R4 Fx5500 Celeron2@800MHz W2K
R5 GF7300GT Pentium4@3.0GHz W2K
Table 1. Configurations used in the speed test

CPU Usage Label Inside block Moving across FPS

R1 6 % 25 % 274
R2 13 % 50 % 280
R3 4 % 20 % 1200
R4 24 % 100 % 300
R5 3% 30 % 1062

Table 2. Speed test results

The first column in the table 2 contains

references to appropriate configuration in table 1.
The second colon shows CPU usage while viewer is
moving through the central block. The usage ranges

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 466

from 3% to 24%, strictly depending on the CPU
speed, because RINGO in every frame calculates:

• Distances to the near and far clipping plane of
the viewing frustum and sets projection matrix,
in order to accomodate variable viewing
distance, from few meters to thousands of
kilometers,

• Height above geoid,
• Collision with the terrain (and height above it),
• Movement parameters toward viewing course

or paralell to a colliding surface, and
• Azimuth (measured clockwise from the north

pole).
The third column in the table 2 shows CPU

usage while viewer moves across the border of the
central block. It is the only time-critical task in this
algorithm, because it requires terrain reorganization.
As it can be seen from the Fig.5, border-crossing
increases the CPU load for the very short period of
time.

Fig.5 CPU usage for the configuration R1 while

viewer moves across the border of a block

The last column in the table 2 contains
"effective" frame-rate. It is not the real speed of the
rendering, but the time while CPU is busy sending
commands to a graphics card. This means, for
example, that CPU in the configuration R1 spends
about 3.65ms for each screen refreash. The standard
input devices (e.g. keyboards) are used for actuators
in all tests. If we artificially boost the screen refresh
rate across certain limits the system will be saturated.
For example, for the system R4 saturation arise if
RINGO is forced to redraw screen every 20ms. This
is the burden when CPU usage jumps to 100% and
frame-rate drops to 47 fps.

The system saturation has not been observed on
faster configurations (e.g. system R5) even when
screen is redrawn up to 1000 times per second.

In all tests NVidia's graphics cards have achieved
higher frame-rate indicating better optimization of
drivers comparing to ATI.

5 Conclusion
The presented algorithm offers four main
advantages: a simple implementation, maximal
frame-rate that the graphics card can achieve,

minimal CPU usage when the viewer remains in the
central block and high parallelism in blocks re-
creation procedure. The maximum frame rate and
minimum CPU utilization can be achieved if and
only if all terrain blocks can reside in the memory of
the graphics card. In other case, for example when
algorithm is executed on integrated video cards,
performances are very poor, but still better than
using other rendering techniques. The reason is very
simple: the modern graphics card memory bandwidth
is more than 20GB/s. It cannot be compared to even
the fastest DMA to the main memory.

The speed of algorithm depends on spatial block
size, number of blocks in the terrain matix and
blocks arrangement (i.e. LOD scheme). Disccusion
about the influence of all those factors exceeds the
scope of this paper. RINGO is still under
development, and certainly requires coarser or finer
tuning in many aspects, but currently results promise
successful usage in various applications.

References:
[1] R. J. Fowler and J. J. Little, Automatic

Extraction of Irregular Network Digital Terrain
Models, Proceedings of SIGGRAPH, 1979, pp.
199–207.

[2] P. Lindstrom, D. Koller, W. Ribarsky, L.
Hodges, N. Faust, and G. Turner, Real-time,
continuous level of detail rendering of height
fields, ACM SIGGRAPH, 1996, pp. 109-118.

[3] M. Duchaineau, M. Wolinsky, D. Sigeti, M.
Miller, C. Aldrich, and M. Mineev-Weinstein,
ROAMing terrain: Real-time optimally adapting
meshes, IEEE Visualization, 1997, pp. 81-88.

[4] S. Röttger, W. Heidrich, P. Slussallek, and H-P
Seidel, Real-Time Generation of Continuous
Levels of Detail for Height Fields, Proceedings
of International Conference in Central Europe
on Computer Graphics and Visualization, 1998,
pp. 315–322.

[5] F. Losasso and H. Hoppe, Geometry clipmaps:
Terrain rendering using nested regular grids,
ACM SIGGRAPH 2004, pp. 769-776.

[6] A. Asirvatham and H. Hoppe, Terrain rendering
using GPU-based geometry clipmaps, GPU
Gems 2, 2005, pp. 27–45.

[7] M. Clasen and H.C. Hege, Terrain rendering
using Spherical Clipmaps, Eurographics/IEEE-
VGTC Symposium on Visualisation, 2006.

[8] Y. Livny, Z. Korgan and J. El-Sana, Seamless
Patchess for GPU-Based Terrain Rendering,
WSCG 2007, 15th International Conference in
Central Europe on Computer Graphics,

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 467

Visualization and Computer Vision, Science
Press, Plzen, Chech Republic, 2007.

[9] P. Cignoni et al., BDAM – Batched Dynamic
Adaptive Meshes for High Performance Terrain
Visualization, EUROGRAPHICS, Volume 22,
number 3, 2003, pp. 505–514.

[10] P. Cignoni et al., Planet-Sized Batched Dynamic
Adaptive Meshes (P-BDAM), IEEE
Visualization 2003, pp. 147-154.

[11] P. Cignoni et al., C-BDAM - Compressed
Batched Dynamic Adaptive Meshes for Terrain
Rendering, EUROGRAPHICS, Volume 25,
number 3, 2006.

[12] J. S. Falby, M. J. Zyda, D. R. Pratt, and R. L.
Mackey. NPSNET: Hierarchical Data Structures
for Real-Time Three-Dimensional Visual
Simulation. Computers and Graphics. vol.
17(1), 1993, pp. 65–69.

[13] M. Reddy, Y. G. Leclerc, L. Iverson, and N.
Bletter, TeraVision II: Visualizing Massive

Terrain Databases in VRML. IEEE Computer
Graphics and Applications. vol. 19(2), 1999,
pp. 30–38.

[14] P. Lindstrom, and V. Pascucci, Visualization of
Large Terrains Made Easy, Proceedings of
IEEE Visualization, 2001, pp. 363–370, and
574.

[15] D. Rancic, A. Dimitrijevic, B. Predic, RINGO –
Block Based Algorithm for Large Terrain
Rendering, Proc. of the 6th WSEAS Int. Conf.
on Signal Processing, Computational Geometry
& Artificial Vision, Elounda, Greece, 2006, pp.
16-20.

[16] D. Rancic, A. Dimitrijevic, B. Predic, Spatial
Coherency and Parallelism in Blocks
Reorganization of RINGO Algorithm for Large
Terrain Rendering, WSEAS TRANSACTION on
COMPUTERS, Issue 12, Vol.5, 2006, pp. 3073-
3079.

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 468

	2 Related Work
	4 Results
	5 Conclusion

