
The V4DB Testbed - Evaluating of Real-Time Database Transaction
Processing Strategies

VÁCLAV KRÓL 1, JAN POKORNÝ 2

1 Institute of Information Technologies
Silesian University in Opava, Faculty of Business Administration in Karvina

Univerzitní náměstí 1934/3, 733 40 Karviná
CZECH REPUBLIC

krol@opf.slu.cz

2 Department of Measurement and Control
VŠB Technical University Ostrava, Faculty of Electrical Engineering and Informatics

17. listopadu 15, 708 33 Ostrava
CZECH REPUBLIC
jan.pokorny@vsb.cz

Abstract: - Previous research in real-time databases has focused primarily on evolution and evaluation of transaction
processing algorithms, priority assignment strategies or concurrency control techniques. But for the most part the
research efforts are based only on simulation studies with many parameters defined. It is very difficult to achieve
guaranteed real time database services when putting a database into a real-time environment because various
components can compete for system resources. So our objective was to design and implement an experimental real-
time database system suitable for study of real time transaction processing. The experimental system was implemented
as an integrated set of the most important functional parts of a veritable real-time database system. It serves as a
support platform for performance evaluation of known and new algorithms of the particular processing components,
including CPU scheduling, concurrency control and conflict resolution strategies. Because of the strong interactions
among the processed components, proposed system can help us to understand their effect on system performance and
to identify the most influencing factors. In this paper the overall system design is presented together with some
experimental results showing the system testing possibilities.

Key-Words: - Real-time database, transaction processing, CPU scheduling, concurrency control

1 Introduction
Up to now the major part of RTDB research was focused
on evolution and evaluation of transaction processing
algorithms, priority assignment strategies and
concurrency control techniques. Evaluation was usually
based on simulation studies except a few exceptions
([4]). Simulations often consist of a number of
parameters. The parameters specify maximal count of
data items, average count of one transaction data pages,
processor time needed to manipulate data items, average
disk access time, probability of read vs. write
transaction, etc. There is even a study where all the
functional blocks are designed as object-oriented and
described by means of classes with a number of
attributes ([6]). Much less attention was paid to
architecture aspects of the operating systems, developed
especially for real-time systems and for better support of
time critical operations. So two basic drawbacks of the
presented research can be defined:

1. For the most part there is only one functional part
considered for investigation without any interaction
with other system parts. Because of the strong
interactions among the various processing
components in RTDBS, an integrated approach is
necessary.

2. Research work at real-time transaction processing is
based on simulation studies only. It is necessary to
investigate the real-time transaction processing
algorithms in their natural environment to achieve
really relevant results. It means that the operating
platform for RTDBS is a real-time operating system
and the particular functional blocks communicate
with each other by means of this operating system.

We developed real-time database testbed suitable for
study of real time transaction processing named V4DB
([11]). In the next chapter the system design is briefly
described.

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 20

mailto:krol@opf.slu.cz
mailto:jan.pokorny@vsb.cz

2 The V4DB System
The system is currently implemented upon the real time
operating system platform VxWorks as a centralized
system with memory resident database. Overall design is
presented on fig. 1. Oval blocks represent parallel
processes while the square blocks are single functional
blocks within processes. Some of the system parts
contain grayed blocks. The blocks illustrate the
possibility of functionality change of the parts. Their
runtime behaviour can be changed.

Fig.1.Experimental RTDB system

2.1. Predispatching
After the admission the transactions are predispatched.
Predispatching includes admission control to avoid
system overloading and creating the transaction info-
structure. The structure fully describes the transaction
definition and all its parameters.

2.2. Dispatching
In the next step the transaction parameters are extracted
and dispatched for execution as to the priority
assignment policy and the way of transaction processing.
The priority assigned to a transaction execution process
is mapped to a real operating system process priority and
the context (transaction) switching is relied on an
underlying operating system. This is one of the most
important experimental system aspects.

2.3. Processing
When the transaction is scheduled for execution, first it
is parsed into particular commands and then the
commands are processed by the command executor.
Database access must be synchronized through the
concurrency control. The DBQuery block executes the
commands on a logical level while the resource manager
and memory manager work with physical data structures
that are described by the data dictionary. To obtain
reasonable performance, multiple transactions must be
able to access data concurrently. So before a transaction
performs an operation on a data object, it must be
processed by concurrency control component in order to
achieve the required synchronization.

2.4. Database
Regarding the project objective as an experimental
system and application categories where RTDBS are
used to advantage a simple schema is adopted in the
following form: The database is divided into predefined
count of memory areas. Each area represents some table
and consists of predefined count of records. Records are
of the same length for one memory area table just for
simplicity. Database schema is outlined on fig. 2.

Fig.2.Database schema

The database schema can be defined by the notation:

tab name | rec count | rec byte length
for example

 Tab01 | 100 | 50
- means that there exists a table named Tab01 which has
100 records each of 50 bytes in length.

2.4.1. Database granularity
The granularity parameter can be defined for each table
mentioned above. The parameter stands for the count of
logical areas into which each table is divided for the
needs of concurrency control during transaction
processing. The granularity is defined separately for

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 21

each table, so the parameter can be added to the table
definition and the final database schema looks like that:
 tab name | rec count | rec byte length | granularity
 for example

Tab01 | 100 | 50 | 2
- means that there exists a table named Tab01 which has
100 records each of 50 bytes in length, the table is
divided into two logical areas according to granularity 2.

2.5. Description of the transactions
Transactions are generated by the internal generators. To
study the database transaction processing, it must be able
to generate transactions which properties are known and
set in advance. The parameters are described on fig. 3.

Fig.3.Description of the transactions

Logical database access results from physical database
design. Access to the second record of table Tab01 can
be written as Tab01:2, etc. Next four basic database
access methods must be distinguished.

DB operation shortcut
Select S
Update U
Insert I
Delete D

Table 1. Shortcuts of DB operations

For example, to select Tab01:2, it can be simply written
as S/Tab01:2.

Besides these basic principles it is important to describe
and work with some other, non-necessarily required
parameters that further specify the transaction.

DB operation shortcut

Deadline T
Period P

Criticality C
Table 2. Shortcuts of transaction’s RT characteristics

3 System test options

The system is implemented upon the real time operating
system VxWorks. Currently it includes all necessary
core database and transaction services, admission
control, priority assignment and concurrency control.
The way of operation of some system components can
be changed according to project goals to enable testing
the system behaviour under different conditions. The test
options currently include:

3.1. Variable database definition and granularity
Database consists of tables defined by text lines in an
external text file. Each table can be divided into
predefined count of logical areas. Database schema is
loaded during the system start.

3.2. Periodic and random transactions
Transactions are defined by simple text file. Each line
represents the definition of one transaction as described
above. The file is loaded before the initialization of the
generators.

3.3. Priority assignment strategy
The priority assignment strategies make use of the RT
characteristics of the transaction. There are four types
implemented:
1) Deadline Monotonic (DM): Lower deadline = higher
priority.
2) Most Criticality First (MCF): Higher criticality =
higher priority.
3) Criticality Deadline First (CDF): Deadline-criticality
50-50 (%): Combination of 1and 2.
4) Random (RAND): uniformly generated random level
of priority.
The priority assigned to a transaction is mapped to a real
operating system process priority.

3.4. Transaction processing type
The way how the transactions are executed has certainly
a significant impact on system performance. V4DB
supports two types of transaction execution:
1) 1 transaction = 1 process: Each transaction is
executed within its process. The process is created after
transaction admission and destroyed after transaction
commit. This processing type is used across all the
experiments.
2) Process pool: The predefined count of processes
executes the transactions. Each of the process executes
transactions within the specified range of priorities. This
processing type is currently under development.

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 22

3.5. Concurrency control mode
There are two types of pessimistic 2PL (two phase
locking) and two types of optimistic protocols
implemented, together with simple serial execution:
1) Strict 2PL (2PL-STRICT): Locking protocol. Hold all
locks until the end of the transaction without any change
of transaction priority.
2) 2PL Wait-Promote (2PL-WP): The scheme is
identical to the basic 2PL in its resolution of conflicts.
But with this mechanism, whenever a request is blocked
behind a lower-priority lock holder, the lock holder’s
priority is promoted to that of the requester.
3) Optimistic locking - forward validation (OCC-FV):
the transactions conflicted with the validating transaction
are restarted.
4) Optimistic sacrified validation (OCC-SAC): If the
validating transaction is in conflict with other
transactions, it is restarted.
5) Strict serial (SERIAL): Transactions are executed in
order of their admission. No transaction preemption can
occur.

4 TEST ENVIRONMENT

During the process of testing it turned up how important
detailed knowledge of the input of the transaction
structure and overall description of the test environment
are. So at first especially the target system, the used
database structure, the way of transaction generation and
performance metrics must be described.

4.1. Target system
The operating system VxWorks is supported on
processor architecture Intel Pentium and that is why
there was used a standard PC with an old Pentium2
processor as the target hardware. It is necessary to
mention some essential settings of the operating system.
There had to be priority pre-emptive task scheduling
used. The time baseline was set to 100 microseconds
which was sufficient with regard to the transaction
process time. The system was rebooted before every
experiment to achieve the same initial conditions.
Target system: PC, CPU Pentium2, 64MB RAM.
Operating system: VxWorks 5.5, kernel Wind 2.6.

4.2. The database
The database scheme was the same across all
experiments. The database consists of 20 tables with
1000 records in each of them. The record size was also
the same; every record had 4 bytes in length. Only
granularity was different for various experiments
conducted, its definition is therefore explicitly stated in

the description of parameters used for particular
experiments.
 Database ~ 20 tables x 1000 records x 4 bytes
 Granularity ~ from 1 to 100% (area size/database size)

4.3. Transactions
Input transaction setting is very variable in the created
experimental system. The definition of every transaction
consists of two parts: the first one contains transaction
real-time properties while the second one contains
required database operations with some system actions.
Transactions can be generated periodically or randomly
in predefined bounds.

4.4. RT characteristics
The RT characteristics were defined for all the
experiments by the following way:
 Trx0001 | L:20; H:80; D:10-30; C:1-10

Time range (parameters L, H)
It is obvious from the description that all the transactions
are defined as random in some time range bounded by
the parameters L and H. Within the time range (values
are in milliseconds) the transactions are generated in a
uniform distribution. It means that the transaction count
within a time interval is known in advance. For the
example stated above there is a lower time limit 20ms
and the upper limit has a value of 80ms. The transaction
generator defined by these limits generates 20
transactions in a second (1 transaction in 50 ms on an
average). The transactions are generated by several
generators to achieve some level of independence.

Deadline (parameter D)
Setting of the deadline parameter is also very crucial for
experiment results. The deadline parameter D means the
relative time from the system admission of the
transaction to which the transaction must be processed to
be concerned as successful. The parameter is set
uniformly from some range defined by the values after
the parameter D. The parameters do not mean the exact
time values but rather the multiples of the “average“
transaction process time which was found out
experimentally. The same principle was used in [4]. The
parameter is stated as the “deadline factor“in experiment
descriptions.
 Deadline factor ~ [3, 8]
 Deadline ~ [3*avg_process_time, 8*avg_process_time]

Criticality (parameter C)
The last RT parameter means the transaction importance
against the others in the system. The parameter was in all
experiments randomly generated in a uniform way
within the range [1, 10].
 Criticality C ~ [1,10] (1 - the highest)

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 23

4.5. Database operations
The required database operations are defined in the
second part of the transaction definition. There were
used only the SELECT and UPDATE operations for
simplicity. The following line describes the way of the
text definition of used database operations:

S/?# U/?# U/?# S/?# S/?# U/?#...

Using the wildcards “?“ inserted to the definition file in
the place of tables and records was very useful. Since the
real tables and records were chosen uniformly when
using such wildcards, uniform database access was
ensured.
It was also necessary to set the count of database actions
in the transaction. Various settings were tested during
experiments. Finally the value of 20 was established. It
means that every transaction consisted of 20 database
operations.

4.6. Update ratio (WR)
The update ratio means the ratio of UPDATE operations
comparing to all operations performed. The ratio can be
simply set up by the count of UPDATE operations
within the transaction definition. The parameter was
mostly set to 50%. The parameter is marked as WR.
 WR ~ [0, 100] [%]

4.7. Evaluation metrics
The following chapter describes the indicators used as
the evaluation criteria of performed experiments.

Deadline guarantee ratio [%]
Deadline guarantee ratio as the percentage of
transactions that complete by their deadline:

Abort ratio [%]
The percentage of aborted transactions

Restart ratio []
The total value of restarted transactions divided by the
total count of transactions. Every transaction can be
restarted more than once.

Block ratio []
The total value of blocked transactions divided by the
total count of transactions. Every transaction can be
restarted more than once.

Every presented experiment was tested for 5000 input
transactions.

5 Experimental results

There were performed many experiments related to each
of evaluation criteria mentioned. In this paper there are
presented results of two experiments.

5.1. Comparison of concurrency control protocols
depending on the transaction arrival rate

Parameter settings
Parameter Value
Granularity 5%
Transaction arrival rate 20-300 trans/sec, same length
Count of DB operations 20 (within one transaction)
Deadline factor 3-8, uniform distribution
Update ratio (WR) 50%
Priority assignment DM
Concurrency control 2PL-STRICT, 2PL-WP, OCC-

FV, OCC-SAC, SERIAL

Deadline guarantee ratio - comparison of concurrency control protocols
same length of transactions, DM, WR=50%

0

10

20

30

40

50

60

70

80

90

100

20 60 100 140 180 220 260 300

trans / sec

De
ad

lin
e

gu
ar

an
te

e
ra

tio
 %

2PL-STRICT
2PL-WP
OCC-FV
OCC-SAC
SERIAL

Comments:
The best results are achieved for serial execution of
transactions. It is surprising but there are many reasons
how to explain it. Serial transaction execution provides
the best results because the database is completely in the
main memory, thus the blocking time is very low, the
size of logical areas can be very high, during serial
execution the whole database is one big area. The next
reason is the fact that the transactions are of the same
average length so there is no blocking of short
transactions by the long ones. In addition there is no
system overhead during the transaction pre-emption or
administration of the queues. This phenomenon was
described in [13] and it can be stated that under some
specific circumstances the serial transaction execution
achieves the best results. We performed other tests with
transactions in a different length and the results were
really quite different.

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 24

5.2. Comparison of priority assignment strategies
depending on criticality

Parameter settings
Parameter Value
Granularity 5 %
Transaction arrival rate 220 trans/sec, same length
Count of DB operations 20 (within one transaction)
Deadline factor [3-8], uniform distribution
Update ratio WR 50%
Criticality [1-10] (1 = the highest),

uniform distribution
Priority assignment DM, MCF, CDF, RAND
Concurrency control 2PL-STRICT

Deadline guarantee ratio - comparison of priority assignment protocols

2PL-STRICT, 220 trans/sec, WR=50%

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10

Criticality

D
ea

dl
in

e
gu

ar
an

te
e

ra
tio

 [%
]

DM
MCF
CDF
RAND

Comments:
At first glance it can be seen that the protocol MCF
(Most Criticality First) has the expected crucial impact
on the transaction deadline guarantee ratio. It is
especially noticeable for levels 8-10 where the guarantee
ratio is the lowest in comparison to other protocols. The
value of 10 is the lowest level of criticality. The
combined protocol CDF (Criticality Deadline First) has
the similar behaviour but not so strong because besides
the value of criticality it takes into account also the value
of the priority for decision making. As for the other
protocols, the deadline guarantee ratio oscillates within
the small value range regardless of the value of
criticality. It is logical because the other protocols do not
take into account the criticality value.

6 Conclusion
We have developed an experimental real-time database
system suitable for study of real-time transaction
processing. Since the implementation process is very
difficult, it is impossible to include all the functional
parts of the real RTDBS. It is intended to create the
system in such way that it would be possible to extend it
and to continue its development later. Future directions
can be suggested right now: variable database

granularity, indexing algorithms, backup possibilities or
database movement to a disk media. It is assumed that
the created system will be used as the experimental basis
for future research and for future advancement to study
another, more complex properties of RT databases.

Acknowledgement
The support for this research work has been provided by
the project 102/06/1742: Experimental real-time
database testing system and the project 102/05/H525:
The Postgraduate Study Rationalization at Faculty of
Electrical Engineering and Computer Science VSB-TU
Ostrava, both provided by the Czech Science
Foundation.

References:
[1] Kam-Yiu Lam, Tei-Wei Kuo, Real-time database
systems: Architecture and Techniques, Kluwer
Academic Publishers, 2001.
[2] Krishna C. M., Kang G. Shin, Real-Time Systems,
McGraw-Hill, New York, 1997.
[3] Aldarmi S.A., Real-Time Database Systems :
Concepts and Design, The University of York, 1998.
[4] Huang J., Real-Time Transaction Processing :
Design, Implementation, and Performance Evaluation,
PhD thesis, University of Massachusetts, 1991.
[5] Matthew R. Lehr, Young-Kuk Kim, Sang H. Son,
Managing Contention and Timing Constraints in a Real-
Time Database System, 16th IEEE Real-Time Systems
Symposium, Pisa, Italy, 1995.
[6] Taina J., Son S.H., Towards a General Real-Time
Database Simulator Software Library, University Of
Virginia, 1999.
[7] Kim S., Son S.H., Stankovic J.A., Performance
Evaluation on a Real-Time Database, Proc. IEEE Real-
Time Technology and Applications Symp., 2002.
[8] Sivasankaran R., Design of RADEx : Real-Time
Active Database Experimental System, Technical report,
University of Massachusetts, 1994.
[9] Krol V., Pokorny J., Cernohorsky J., Towards the
evaluation of algorithms used in real-time databases,
Proceedings of the 7th WSEAS Int .Conf. on Automatic
Control, Modelling and Simulation, Prague, Czech
Republic, 2005.
[10] Krol V., Pokorny J., Design of V4DB –
Experimental Real-Time Database System, Proceedings
of the 32nd Annual Conference of the IEEE Industrial
Electronics Society, Paris, France, 2006.
[11] Lee J. : Concurrency Control Algorithms for Real-
Time Database Systems. PhD thesis. University of
Virginia. 1994.
[12] Kao B., Garcia-Molina H., An Overview of Real-
Time Database Systems, Advances in Real-Time
Systems, Prentice Hall, ISBN 0-13-083348-7, pp. 463-
486, 1995.

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 25

http://www.worldses.org/online/download.htm
http://www.worldses.org/online/download.htm

	1 Introduction
	2 The V4DB System
	3 System test options
	4 TEST ENVIRONMENT
	5 Experimental results
	6 Conclusion

