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Abstract: A new algorithm for scheduling the transmission of packets in routers is discussed. The approach takes
into account the separation of queues in the input ports of a router and the segmentation of incoming packets
into cells. Its main advantage is that, while performing as good as other existing algorithms, its complexity is
considerably smaller. The feature that differentiates the algorithm is that it relies on past information in order to
avoid processing of all data at every given timeslot, which is a time-consuming process.
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1 Introduction

The Internet was initially designed as a means to pro-
vide low cost global communication. As time pro-
gressed, it was obvious that the inherent features of
the Internet were limiting its scalability in terms of di-
mension, services and business. Internet is a network
providing only one service to its customers, named
”best-effort”; this means that the network will do its
best to transfer the data, but it does not make any guar-
antees for the quality of this service over time. On the
other hand, the transmission of multimedia and most
of the other advanced applications require a minimum
guaranteed level of service quality in order to operate.
In general, providing Quality-of-Service (QoS) in the
Internet has become one of the most significant tasks
in the networking world.

For the Internet to improve its performance,
changes have to be applied to one of its core devices,
the router. The main area where bottlenecks appear in
a router is the scheduler module. This is a procedure
that selects the packet to be transferred through the
switching fabric. This paper discusses the design of
an efficient scheduling algorithm, which shows very
good performance and can be implemented in hard-
ware. The architecture of the scheduler will be dis-
cussed from the algorithmic point of view, and the pa-
per will not focus on the technologies needed to im-
plement it.

Several proposals for switching architectures ex-
ist in the literature. Some of them result from the inno-
vations in the telephony world. A good survey of these
architectures is included in [1]. All packet switching
architectures are based on a switch fabric and some

buffers. The role of the switch fabric is to forward the
packets from the inputs to their destination ports. The
two most common architectures of switch fabrics are
the following:

• crossbar: this architecture comes from the old
electro-mechanic telephony crossbars, with N
ports and N2 contact points. This is a strictly
non-blocking switching fabric, meaning that
whenever a free input port should be connected
to a free output port, they can be connected
always (”non-blocking”) and without reconfig-
uring all the other connections (”strictly non-
blocking”). Despite the fact that the crossbar
does not scale well for a large number of ports,
it is considered as the preferred switching fabric
in the design of high-speed routers. The cross-
bar can work in parallel and transport up to N
packets coming from different inputs heading to
different outputs. At times where the crossbar’s
transfer rate is close to the aggregate arrival rate,
the bottleneck is caused mainly by the procedure
that coordinates the transfer of packets. This is
extremely important especially when packets ar-
riving at different input ports have to be trans-
ferred to the same output. In this case, there
is a contention for the common destination that
the scheduler has to solve: one of the contend-
ing packets is chosen and transferred to the de-
sired output, while at the same time, all others
are stored in queues.

• bus: the bus is also strictly non-blocking, with
the difference that it allows only one packet to be
transferred at the same time. As a consequence,
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Figure 1: Input Queued (IQ) Switch

it requires the coordination of all ports. The per-
formance of this architecture is limited by the bus
capacity and the arbitration process.

As far as the buffers are concerned, they can be
shared among different ports, at input or output level;
in which case shared memory fabrics are used [2]. The
main limiting factor of the performance of the buffer
is the memory bandwidth.

In the design of the algorithm and the simula-
tions made, we considered only the crossbar architec-
ture. The switching fabric is integrated with the input-
queue (IQ) buffering scheme presented below, which
stores packets contending for the same switching re-
source.

At this point we have to make a clear distinc-
tion between a packet and a cell. A packet is de-
fined as a data-unit with variable size, like an IP-
datagram or a TCP/IP packet. Borrowing from the
ATM terminology, we shall use the term cell to iden-
tify a fixed-size data unit. To make things clearer, the
basic switching architectures will be referred as cell-
switches, whereas the overall switching system of a
router will be referred as packet-switch.

Each port of the router has line interfaces where
the data-link and physical layer protocols are used to
receive and transmit IP datagrams. The IP protocol
is located on top of the data-link protocol at the input
and at the output of the router. Inside the IP layer at
the input, the operations that associate an output port
with the destination IP address take place (we do not
consider issues such as table look-up or others related
to the implementation of these functions). The in-
coming IP datagrams have to be segmented into ATM
cells, which will then be transferred to output ports by
the ATM switching fabric.

When the cells arrive at an output port, they are
reassembled into the original IP datagram, and then
transmitted on the output line according to the line
format.

In the literature, many queueing techniques for
routers exist. Figure 1 shows the architecture of an
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Figure 2: From the graph to the matching

input-queued (IQ) switch. We assume that the in-
coming data units are of fixed-size, for example ATM
cells. In practice, our results do not strictly require
that fixed-size cells are used, but refer to any switch
that takes switching decisions at equally spaced time
intervals. The time between two consecutive switch-
ing decisions is called a timeslot.

Cells are stored at the input interfaces. At each
input, we have N queues, one for each output. Conse-
quently, a total of N2 queues are present. Each of
these queues has a capacity of L cells and when a
cell arrives finding its queue full, it is dropped. This
method of separating the queues is well known in the
literature and is called Virtual Output Queuing (VOQ)
or Destination Queuing [3].

2 Role of the scheduling Algorithm
In most cases, scheduling problems in switches are
modelled as matching problems in bipartite graphs.
The switch can be described as a bipartite graph G =
[V, E] (see Figure 2) in which the N nodes to the left
represent the N input interfaces of the device, whereas
the N right-most nodes designate the N output ports.
When an edge connects two ports, the need for cell
transfers in this direction is indicated. These edges
can be labelled with a weight (denoted by wij), repre-
senting the ”urgency” to serve the queue V OQij . The
metrics used to assign weights to edges is a key part of
the scheduling algorithm. In some cases, the weight
is binary and simply indicates whether the queue is
empty or not. Other possibilities are that it refers to
the number of cells to be transferred, or to the time
waited by the oldest cell in the queue.

The job of the scheduling algorithm is to select
a matching M , i.e., a set of input-output pairs with
no conflicts, such that each input is connected with at
most one output, and each output is connected with
at most one input. For every matching, if input i is
connected to output j, a cell is removed from V OQij

and transferred to output j. It can never happen that
two cells are extracted from the same input, or that
two cells are transferred to the same output.

The weight of a matching is the sum of the met-
rics corresponding to the edges included in the match-
ing. A matching has maximum size if the number of
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edges is maximized; a matching has maximum weight
if its weight is maximized. A matching is heavier than
another matching if its weight is greater than the other
one.

In [4] there is a description of the maximum
weight matching (MWM) algorithm, that can be
proven to yield the maximum achievable throughput
using as metrics either the number of cells to be trans-
ferred or the time waited by the oldest cell. It is a vari-
ation of the Hungarian Algorithm for bipartite graphs.
It is shown that the complexity of MWM is O(N3).

The main problem that makes the implementation
of MWM unfeasible is its complexity. To address this
issue, a number of practicable scheduling algorithms
were proposed. Some of them are: iSLIP [5], iLQF
[6], RPA [7], MUCS [8] and ALG [9]. However, these
algorithms perform poorly compared to MWM when
the input traffic is non-uniform: they induce very large
delays and they experience severe packet loss rates.

The new algorithm for scheduling cell switches,
proposed in the following section, is shown to per-
form very close to MWM not only in the uniform traf-
fic scenario, but also under other traffic conditions.
We will prove that its complexity is O(Nlog2

2N) or
O(N2) depending on the version.

3 The FSA Algorithm

The fundamental idea that the algorithm is based on
is the correlation of the state of the system along the
time. Note that packets arrive (depart) at most one per
input (output) per time slot. This means that queue
lengths, taken to be the weights by MWM, change
very little during successive time slots. Thus, a heavy
matching will continue to be heavy for a few more
time slots, suggesting that carrying some information,
or retaining memory, between iterations should help
to simplify the implementation while maintaining a
high level of performance. In [9], Tassiulas was the
first to exploit this fact to design a scheduler for an IQ
switch.

The algorithm presented in this paper is named
Fast Scheduling Algorithm (FSA). Its main feature is
that it exploits randomization. In a variety of situa-
tions where the scalability of deterministic algorithms
is poor, randomized algorithms are easier to imple-
ment and provide a surprisingly good performance.
The main idea is simply stated: Basing decisions upon
a few random samples of a large state space is of-
ten a good surrogate for making decisions with com-
plete knowledge of the state. In [9], Tassiulas pro-
posed a pure randomized scheme for scheduling in IQ
switches and its stability properties were stated. Some
other hybrid schemes were also proposed to exploit

Figure 3: The FSA algorithm

randomization in scheduling.
The mathematical foundations and the stability

properties of FSA are presented in detail in [10]. FSA
takes as input the matching of the previous timeslot,
named St−1. Then, it iteratively augments the weight
of this matching by combining its heavy edges with
the heavy edges of a (non-uniformly) randomly cho-
sen matching Mt. Figure 3 shows a schematic repre-
sentation of the architecture of FSA.

The algorithm consists of an initialization stage,
and then three steps that are repeated for as long as it
is necessary. The procedure is described as follows:

Initialization. Let St be the matching used by
FSA at time t. Let Lf (M) be the minimal set of edges
in a matching M whose weight is at least f , where
f a fraction of its weight 0 ≤ f < 1. Initially, all
inputs and outputs are considered to be unmarked. At
time t, FSA will calculate a new matching Mt in the
following way:

Step 1. Let i be the current iteration number.
Let k ≤ N be the number of unmarked input ports.
Obviously, at the same time, we would have k un-
marked outputs. Out of the k! possible matchings be-
tween these unmatched input-output pairs, a matching
Mi(k) is chosen uniformly at random.

Step 2. If i < I , retain the edges corresponding to
Lf (Mi(k)) and mark the nodes they cover. If i = I ,
then retain all edges of Mi(k).

The above steps are repeated I times.
Step 3. The matching Mt produced by the above

procedure is then merged with the matching of the
previous timeslot St−1 in the following way:

Let G be a bipartite graph and two matchings M1

and M2 for this graph. Let E1, E2 denote the edges
of these matchings. We start from output node j1 and
follow the edge belonging to E1 to an input node i1.
From input node i1, we follow the (only) edge belong-
ing to E2 that leads to the output node j2. If j2 = j1,
stop. Else continue to follow the above procedure un-
til we reach j1 again. In the end, we will have a ’cycle’
of visited nodes. When we finish with the first ’cycle’,
we repeat the same procedure starting from an unvis-
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ited output. In the same fashion, we find all cycles in
the graph. Suppose there are m cycles, C1, . . . , Cm at
the end. Each of these cycles will contain two match-
ings: E1i containing only E1 edges, and E2i, which
has only E2 edges. The matching returned (St) is
given by the following equation:

St =
m⋃

i=1

max
S∈{E1i,E2i}

SXt, (1)

where Xt is the queue occupancy vector at time t.

3.1 Versions of FSA
The FSA algorithm was tested under a variety of dif-
ferent scenarios both in terms of the arrival distribu-
tion and the settings of its variables. According to the
simulations performed, we have arrived at three dif-
ferent versions of the algorithm. These versions are:

• FSA-1, where we set the number of iterations of
every step to be equal to 1.

• FSA-M, standing for FSA-Maximized, where we
perform a maximization of the matching pro-
duced by the algorithm. The maximization is
done in the following way:

Assume that there are k unmatched input and k
unmatched output ports in St. Out of these, the
algorithm finds a matching where all edges have
non-zero weight.

Simulation results comparing the three version of
the algorithm are shown in section 4.1.

3.2 Complexity of FSA
To estimate the complexity of FSA, we first need to
find the complexity of its three steps. The complexity
of the first two steps is estimated as follows:

Given that the selection of the random samples
is independent from the state of the queues, its com-
plexity is considered to be equal to finding a random
sample. We assume that there are I iterations in the
random sample selection. In each of these iterations,
a matching on the ”remaining nodes” is chosen uni-
formly at random. Since this selection does not de-
pend on the state of the weight matrix, which is O(1)
operation.

The edges that constitute the ”heaviest” fraction
of this random matching are kept and the rest of the
nodes are used for the next iteration. In the last itera-
tion, the selection of heavier edges is avoided.

The selection of heavy edges involves:

1. The ordering of the edges according to their
weights, which is O(Nlog2N).

2. Choosing the heavier edges that constitute the f
fraction of the net weight, which is O(N).

Since there are I iterations, the first phase of the
algorithm is O(INlog2N + IN).

The complexity of the third step is O(N), since
each one of the 2N edges is visited at most once.

As far as FSA-M is concerned, the complexity of
the matching maximization is estimated as follows:

Assume that there are k unmatched input and k
unmatched output ports in St. Out of these, the algo-
rithm finds a matching where all edges have non-zero
weight. The complexity of this procedure is O(k2), as
in the worst case k2 comparisons are needed.

The complexity of FSA is therefore
O(INlog2N + IN) without the maximization
and O(N2) if we decide to maximize the matching.
In our simulation study, we set I = log2N . Thus, the
running time of the FSA algorithm is O(Nlog2

2N).

4 Simulations
To evaluate the performance of the scheduling algo-
rithms, we conducted a large number of simulation ex-
periments. Each input queue V OQij was assumed to
be able to store a finite number of cells QLIM : when
a cell directed to output j arrives at input i, and queue
V OQij is full, the cell is dropped. No buffer sharing
among queues is allowed.

Simulation runs were executed until the estimate
of the average cell delay reaches with probability 0.95
a relative width of the confidence interval equal to 2%.

A router simulator has been developed to study
the performance of the considered algorithms. The
simulator has been written in the special simulation
language MODSIM III and is described in detail in
[11].

Main features of the simulator are the following:

• support of the majority of the router architectures

• flexible traffic generation

• support of a large number of network algorithms

• support of large switches

In our simulations, we considered traffic gener-
ated at cell level. Each cell is generated according to
an i.i.d. Bernoulli process such that the normalized
load ρ never exceeds 1.

The traffic scenarios used in our tests were the
following:
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Table 1: Simulation Parameters
Parameter Symbol Value

Switch Size N 32
Iterations I 5

Selection Fraction f 0.5
Buffer Size QLIM 10,000

• Uniform scenario. This scenario is the com-
mon test-bed in literature. All queues have equal
probability of having an arrival.

• Diagonal scenario. Incoming arrivals at input i
are headed either to output i or, with double prob-
ability, to output i + 1.

4.1 Simulation Results
In this section, we study the performance of different
algorithms on different test cases, in terms of different
performance measures. The traffic patterns used to
obtain these results are stationary in distribution.

We study the performance of the following al-
gorithms: MWM, iSLIP, iLQF, MUCS, RPA, ALG
along with FSA and FSA-M.

The assumptions used in the simulations are pre-
sented in table 1.

First we consider uniform traffic, which is the
most basic scenario. Figures 4, 5 and 6 present
the performance of different algorithms with respect
to Mean Delay, Mean Queue Length and Maximum
Queue Length respectively.

With respect to all measures, all algorithms show
the same qualitative behavior. The following are in-
teresting results to note:

1. Both FSA and FSA-M experience zero loss rates,
which is the basic property of efficient schedul-
ing algorithms.

2. When the load is below 0.8 (not shown in the
graphs), FSA performs worse than most of the
other algorithms, but this misbehavior is practi-
cally negligible. This can be easily explained:
FSA is a randomized algorithm that does not nec-
essarily find a maximal matching at lower values
of load. In FSA-M, we force it to be a maximal
matching. Hence, FSA-M performs as well as
any other algorithm, at lower load values. For
high values of load, FSA and FSA-M behave
identically.

3. ALG does not lose packets, but its delay is much
worse than the other algorithms.
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Figure 4: Load vs Delay: Uniform Scenario

0.8 0.85 0.9 0.95 1

Normalized Load

0.01

0.1

1

10

100

M
ea
n
Q
u
eu
e
L
en
gt
h MWM

iSLIP

iLQF

MUCS

FSA-M

FSA

RPA

ALG

Uniform Distribution

Figure 5: Load vs Mean Queue Length: Uniform Sce-
nario
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Figure 6: Load vs Maximum Queue Length: Uniform
Scenario

Proceedings of the 11th WSEAS International Conference on COMMUNICATIONS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007         106



0.8 0.85 0.9 0.95 1

Normalized Load

0.1

1

10

100

1000

10000

M
ea
n
Q
u
eu
e
L
en
gt
h MWM

iSLIP

iLQF

MUCS

FSA-M

FSA

RPA

ALG

Diagonal Distribution

Figure 7: Load vs Mean Queue Length: Diagonal
Scenario

We now consider diagonal traffic, as described
above. With respect to all metrics, relative perfor-
mances of the algorithms remain the same. Hence we
will present only results with respect to Mean Queue
Length. Figure 7 plots Mean Queue Length for dif-
ferent algorithms. For high load values, iSLIP, iLQF,
RPA experience losses. MUCS and MWM perform
identically. ALG starts to experience losses for loads
around 0.4. Hence, ALG experiences unacceptable
average delays from a practical point of view.

Both FSA and FSA-M experience no packet loss
and perform almost as good as MWM. As before, FSA
performs worse than FSA-M for lower load values,
but they perform identically for higher values.

5 Conclusions & Further work

In this paper we have discussed the design of schedul-
ing algorithms for high speed switching systems. We
have focused our study on input-queued switches,
since they are the most promising architectures in
terms of scalability with speed and number of ports.

We have described the main issues involved in the
design of high performance routers and have moti-
vated the problem of scheduling for switches. After
defining the problem of scheduling as a problem of
finding a matching, we have introduced the FSA al-
gorithm and the simulations that compared its perfor-
mance with the other algorithms in the area.

So far, the scheduling algorithms known in liter-
ature have been either simple to implement but with
poor performance or too complex but with good per-
formance. We proposed a new scheduling algorithm,
with low complexity and very good performance in
terms of delays and throughput. The main ideas we
exploited have been the memory of the state of the

queues from the past and randomization. Further work
on the algorithm will include its testing under differ-
ent sets of assumptions (number of ports, buffer size,
selection fraction) and different traffic conditions in
terms of arrival distribution.
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