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Abstract: In this paper we study a sequential type-based detection scheme with the suboptimal detection rule for
wireless sensor networks. First, we propose the approximation of the optimal detection rule and derive the sub-
optimal detection rule. Then we compare the performances of the optimal and the suboptimal detection rules and
show that the approximated detection rule provides the similar results as the optimal detection rule in terms of both
average number of observations and total energy consumption. At the same time the suboptimal detection rule
allows the significant reduction of the computational complexity such that the complexity and detection delay per
one iteration does not depend on the number of sensor nodes in the network. That makes the proposed approxi-
mated detection rule useful for real-time application.
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1 Introduction

Recent significant advances in sensor devices man-
ufacturing and low-power wireless networking have
generated the development of wireless sensor net-
works (WSNs), which can be successfully used for
distributed signal processing. The typical tasks for
WSNs include acquisition of information, further
transmission of the information, and data fusion [1].
Particularly, distributed detection of certain events
or targets is an important application of WSNs (the
summary of results obtained in the last couple of
decades is provided in [2], [3]).

A traditional way of studying of the distributed
detection is to assume that every sensor node has
full information regarding the signal source statistics
[2]-[4]. Thus the smart sensors can process the data
and produce local decisions, which are used by the
fusion center to make a global decision. However,
for practical implementation, the storage of statistical
information and the capability to make local deci-
sions require more complex, expensive and powerful
sensors.

Another common problem in different ap-
plications of distributed detection is related to
communication between the nodes and the fusion
center; for example, real sensors typically have

constrained resources, such as battery power, making
it is impossible to achieve perfect quality in data
transmission. As a result, information received
by the fusion center is often corrupted by channel
uncertainties, markedly decaying the detection accu-
racy. Also, for simultaneous data transmission in a
large-scale network a large bandwidth is required to
avoid detection delays.

Recently, Type-Based Multiple Access (TBMA)
has been proposed by Liu and Sayeed [5] and in-
dependently by Mergen and Tong [6]. This method
utilizes the multiple access channel (MAC) and
allows to avoid the problems mentioned above. Also,
the scheme employs simple sensors as counters of
histogram statistics; since no local decisions are
made in the nodes, sensors do not require an event
probabilistic model, such that their construction
becomes relatively simple and the network becomes
universal for performing different tasks. At the same
time, with a large number of sensors, the accuracy
of a type-based detector tends to be similar to the
accuracy of centralized detection. Additionally, the
problem of detection of a deterministic signal in
correlated Gaussian noise through MAC has been
studied in [7].

In a class of applications, sequential detection
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can be actually more preferable because the gathering
of observations is made in sequential manner; for
the distributed detection problems the sequential
approachhas been studied in [8] - [10]. Moreover, it
was shown [9], that to perform a sequential test with
pre-given detection accuracy a smaller number of
observations is required, comparing to non-sequential
tests.

In the previous work [11] we studied the opti-
mal algorithm for sequential type-based detection.
In this paper with the motivation of reducing the
computational complexity of the optimal detection
rule, we propose a suboptimal detection method
which provides the similar performance in terms of
two performance metrics: the average number of
observations, and the average energy consumption;
additionally, there is no losses in desired accuracy.
At the same time, the proposed method essentially
reduces the computational complexity of the pro-
posed scheme to the point that the complexity per one
iteration is independent of the number of nodes in the
network. Through a numerical example we show the
advantages of the proposed scheme.

The rest of the paper is organized as follows. The
system model and proposed scheme are described
in Section 2. Section 3 overviews the related work.
Next, in Section 4 we propose and analyze the
suboptimal detection rule and propose the evaluation
scheme of the detector performance parameters. The
results of simulations are provided in Section 5.
Finally, Section 6 contains the conclusions of this
work.

2 Proposed Scheme Description

In this paper we consider a sensor network with a
simple structure where allK sensors are directly
connected to the fusion center. The observations
of each sensor at thetth time stage are given as
the n-length sequencēxk(t) = {xk,i(t)}n

i=1, k =
1 . . . K. The data are quantized toχ + 1 levels,
andxk,i(t) obtains values from the discrete alphabet
Ã = {a0, a1, . . . , aχ}. We assume that all the obser-
vations are identically and independently distributed
according to a probability distributionQ, which is ei-
ther Q1 with probabilitiespQ1(am) = p1,m, or Q0

with probabilitiespQ0(am) = p0,m, m = 0 . . . χ.
After n observations are completed, thek-th node
produces the type-information of the observations,
T̄k(t) = {Tk,m(t)}χ

m=1, k = 1 . . . K. The value of
Tk,m(t) can be represented as the relative frequency

of am ∈ Ã in the sequencēxk(t), such that

Tk,m(t) =
Nx̄k(t)(am)

n
, (1)

whereNx̄k(t)(am) is the number of occurrencesam in
x̄k(t). The type-information is then sent to the fusion
center. As a channel, we consider an additive white
Gaussian noise channel model with multiple access
(MAC), where all the nodes share the same channel.
The influence of such a channel on detection and es-
timation accuracy has been studied in [5]-[6], where
it was shown that MAC yields an significantly better
detection performance, as compared to traditional ac-
cess methods. Theχ-length type information arrays
are transmitted through MAC withχ number of chan-
nel uses, and an individual node powerPind assigned
for each channel use. As a result, the received signal
r̄(t) = {rm(t)}χ

m=1 takes the form [5]

r̄(t) =
1
K

[
K∑

k=1

T̄k(t) + ω̄(t)

]
, (2)

where ω̄(t) is channel Gaussian noise with a zero
mean, and a covariance matrix1/PindI i.e. the noise
samples are independent of each other. Note, that the
size of the used alphabet isχ + 1, but the size of̄r(t)
andT̄k(t) is χ.

Based on the received signals, the fusion center
processes the hypothesis testingH1 : Q = Q1 ver-
susH0 : Q = Q0 using a sequential decision rule,
which consists of a stopping rule and a final decision
rule. During the test, if the number of observations
is not sufficient for making a final decision, the sen-
sors send one more series of observations, made in
the same manner as the previous one. Finally, when
the conditions of the stopping rule are satisfied, the
observations are stopped and the hypothesis testing is
held by the final decision rule. Wald [9] has proved
that such a test terminates with probability of 1.

The desired accuracy of detection is given by the
probabilities of misdetection and false alarm,Pm and
Pfa, respectively. The performance is evaluated in
terms of average number of observations and average
energy expense, which in general depends on the de-
sired accuracy. First, the average number of observa-
tions under each hypothesis,E(Lθ), can be counted
as

E(Lθ) = nKE(lθ), (3)

wherelθ is a random variable for counting the number
of data transmissions, andE(·) represents the mean of
a random variable.

In this work, we have assumed that the sensors
spend energy in two main areas: to acquire the data,
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and to transmit information from the nodes to the fu-
sion center. However, the amount of energy consumed
for data acquisition is an application-dependent quan-
tity that varies for different problems. Additionally,
this quantity is generally proportional to the average
number of observations. Therefore, in this study we
take into account only the energy spent for data trans-
mission,Pθ, which is dependent on the number of sen-
sorsK in the network, the size of the used alphabet
χ+1, and the number of data transmissionslθ; but not
dependent on the observation sequence sizen. Con-
sequently, we can define the average energy expense
E(Pθ) as

E(Pθ) = KPindE(lθ)
χ∑

m=1

E
[
T 2

k,m(t)|Hθ

]
, (4)

where θ = 0 and θ = 1 are the indexes of the
hypothesesH0 andH1, respectively. Note, that with
knowledge of the correlation between the energy
expense for data acquisition and the number of
observations, we can consider the performance in
terms of total energy consumption; however, this is
out of the scope of this work.

In the next sections, based on the scheme de-
scribed above, we investigate the performance of the
suboptimal detection rule for type-based sequential
detection.

3 Related Work
In this section we briefly overview the related work.
At first, we recall the theory of sequential detection,
and then the optimal detection rule for sequential
type-based detection is presented.

Let {r̄(t); t = 1, 2, . . .} is a sequence of inde-
pendent and identically distributed random variables,
distributed according to two possible hypotheses

H1 : r̄(t) ∼ f1,r̄(t)(x), t = 1, 2, . . .
versus

H0 : r̄(t) ∼ f0,r̄(t)(x), t = 1, 2, . . .
(5)

Now let us define the sequential log-likelihood ratio

Λ(t) = Λ(t − 1) + log
f1,r̄(t)(r̄(t))
f0,r̄(t)(r̄(t))

, (6)

with Λ(0) = 0 andt = 1, 2, . . . Then the sequential
log-likelihood test is given




Λ(t) 6 A, AcceptH0,
A < Λ(t) 6 B, Take more observations,
B < Λ(t) , AcceptH1;

(7)

The optimality of the detector presented in (7) in terms
of size is justified by the Wald-Wolfowitz theorem [9].
Next, in order to maintain the required accuracy, re-
gardlessof the probability distributionsQ1 andQ0,
the thresholds should be set [9], [10] as

A = log Pm, (8)

and
B = − log Pfa. (9)

Now the optimal detection rule for sequential
type-based detection is provided. When the all infor-
mation at thetth time stage is received by the fusion
center, the value of the received signal for a symbol
am can be represented according to (1) and (2) as

rm(t) =
NX(t)(am)

Kn
+

ωm(t)
K

, (10)

whereNX(t)(am) is the number of occurrences, when
the symbolam has appeared in the array of all obser-
vationsX(t) with a length ofKn. That is,NX(t)(am)
is the number ofam occurrences inKn Bernoulli
trials, where for each trial the probability ofam is
pθ,m under the hypothesisHθ. This implies that
NX(t)(am) is a random variable with the binomial
distribution and parametersKn andpθ,m, denoted by
B(Kn, pθ,m). In addition, the random variableωm(t)
has Gaussian distribution with a zero mean and vari-
ance1/Pind, denoted byN(0, 1/Pind). Since the ran-
dom variablesNX(t)(am) andωm(t) are mutually in-
dependent, the probability density functions (pdfs) of
rm(t) under the hypothesisHθ have the form [11]

fθ,rm(t)(x) =
1√

2πσ2

Kn∑

i=0

(
Kn

i

)
pi

θ,m(1−pθ,m)Kn−i

exp


−

(
x − i

Kn

)2

2σ2


 , (11)

where

σ2 =
1

K2Pind
. (12)

4 Suboptimal Decision Rule for Se-
quential Type-based Detection

In the previous section the optimal sequential log-
likelihood ratio test for type-based detection is pro-
vided. However, practical implementation of this de-
tection rule is quite complex, due to the required pro-
cessing time and the amount of computations in the
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fusion center. Furthermore, the numerical integra-
tion methods to calculate the average number of data
transmissions and corresponding performance are re-
quired.Taking these factors into account, we are moti-
vated to propose a suboptimal detector with a similar
performance, but one which is less computationally
complicated than the optimal detector.

One of the best ways to simplify the optimal de-
tection rule is to apply the Gaussian approximation.
The first reason for this choice is that the accuracy
of a sequential detector depends not on the probabil-
ity distributions of the observations, but on specified
thresholds. The second is that the normal distribu-
tion well approximates the binomial distribution with
a large number of trials.

To derive the suboptimal detection rule, we
consider an approximated distribution of the re-
ceived signal rm(t). In (10), NX(t)(am) ∼
B(Kn, pθ,m) and it can be approximately represented
asN(Knpθ,m,Knpθ,m(1−pθ,m)) for Kn � 1. As a
result, the received signal is approximately governed
by the normal distributionN(pθ,m, σ2

θ,m), with the
variance

σ2
θ,m =

pθ,m(1 − pθ,m)
nK

+
1

K2Pind
. (13)

The suboptimal detector is represented by the se-
quential log-likelihood ratio test (7). The approxi-
mated likelihood ratio,Λa(t), is derived by substitut-
ing the pdfs ofN(pθ,m, σ2

θ,m) into (7). With indepen-
dence we have

Λ(t) = Λ(t − 1) +
χ∑

m=1

log
fa
1,rm(t)(rm(t))

fa
0,rm(t)(rm(t))

= Λa(t − 1) +
χ∑

m=1

(
1
2

log

(
σ2

0,m

σ2
1,m

)
+

+ (rm(t) − p0,m)2

2σ2
0,m

− (rm(t) − p1,m)2

2σ2
1,m

)
.

(14)
In this test, we set the same thresholds as in the opti-
mal detector. These are given by (8) and (9).

Finally, the suboptimal detection rule makes a
decision based on the log-likelihood ratio, given by
(14); the sequential test, given by (7); and the thresh-
olds, given by (8) and (9). To perform the test with
the suboptimal detection rule we only have to cal-
culate square functions rather than exponential func-
tions, and as such the proposed suboptimal detection
rule markedly reduces the computational complexity
of the fusion center.

In general, Wald’s approximation can be em-
ployed to calculate the expected size of a sequential
detector. However, for the considered scheme with

a large number of sensor nodes and multiple access,
Wald’s approximation has insufficient accuracy be-
cause in this case the excess over one of the thresh-
oldsis not negligible (refer to [9] for details). Another
method was suggested in [12]; that is, if the test that is
performed with (7), (14), (8) and (9) starts at the point
Λa(0) = w, we have

E(laθ |Λa(0) = w) =

1 +

B∫

A

E(laθ |Λa(0) = v)fθ,Λa(1)(v − w)dv, (15)

wherefθ,Λa(1)(x) is a pdf of likelihood ratioΛa(1),
under hypothesisθ. Eqn. (15) is a Fredholm
integral equation of the second kind, and can be
solved numerically. For simplicity, we approx-
imate pdf fθ,Λa(1)(x) by the pdf of the normal
distribution N(E(Λa(1)|Hθ), σ(Λa(1)|H1)), where
E(Λa(1)|Hθ) and σ2(Λa(1)|H1) can be obtained
without usage of numerical integration, as follows

E(Λa(1)|Hθ) =
1
2

χ∑

m=1

(
log

(
σ2

0,m

σ2
1,m

)

+(−1)1−θ

(
(p1,m − p0,m)2 + σ2

θ,m

σ2
1−θ,m

− 1

))
, (16)

and

σ(Λa(1)|Hθ) =

(
χ∑

m=1

(
1
2

(
σ2

1,m − σ2
0,m

σ2
1−θ,m

)2

+
σ2

θ,m

σ4
1−θ,m

(p1,m − p0,m)2
)) 1

2

. (17)

After numerically solving Eqn. (15),E(laθ ) is
obtained asE(laθ ) = E(laθ |Λa(0) = 0). Then,
the performance of the suboptimal detector can be
calculated with (3) and (4).

5 Simulation Results
In this section, we investigate the performance of
the sequential type-based detection scheme with
the suboptimal detection rule, and also compare
the performance of the optimal and the suboptimal
detection rules. Here we study a case of a binary
alphabetÃ = {0, 1}, so χ = 1. The observations
are distributed according to the Bernoulli distribution
with pQ1(1) = 0.6 andpQ0(1) = 0.4. The system pa-
rameters are set as follows: the length of observation
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Figure 1: Average number of observations vs. Num-
ber of sensors.

sequencen is 1, 2, or 4; the desired probabilities of
false alarmPfa and misdedetectionPm are0.001 and
0.0001 respectively.

Fig. 1 shows the average number of observations
according to the number of sensor nodes in the
network under the hypothesisH1, where the solid
lines and the dotted lines represent the simulation
results for the optimal detector and the suboptimal
detector respectively. From the figure, it can be
seen that the average number of observations is
a decreasing function of the number of sensors.
The reason is as follows: if the number of sensors
increases, the variance of channel noise decreases
and the fusion center receives more precise type
(histogram) information such that a lesser number of
observations is required. Also, with a large number of
sensors, it can be observed that an additional increase
of number of sensors does not provide a significant
gain in the number of observations. This is because
with the large number of sensors the performance of
the distributed detection scheme becomes similar to
the performance of centralized sequential detection.
Another observation is that a detector with longer
sequences such asn = 4 does not have superiority
over a detector with shorter sequences such asn = 1
in terms of the average number of observations.
Intuitively, this can be explained by the fact that in the
last received group of observations, more data can be
regarded as being redundant after the log-likelihood
ratio has exceeded one of the thresholds.

Fig. 2 displays the average energy expense
according to the number of sensors under the hy-
pothesisH1, where the solid lines and the dotted
lines represent the simulation results for the optimal
detector and for the suboptimal detector, respectively.
It is observed that more effective energy consump-
tion can be achieved by using longer observation
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Figure 2: Average energy expense vs. Number of sen-
sors.

sequences (largern). This justifies a benefit of the
type-based approach for data transmission, which
spends a similar level of power for each channel use,
regardless ofn. Also it is seen, that a network with
a large number of sensors becomes more efficient in
terms of energy consumption. This is also due to the
advantages of TBMA.

From both Figs. 1 and 2, we finally observe
that the difference between the performances of the
optimal and the suboptimal detector is negligible. In
the numerical example, the actual difference between
the performances did not exceed2 % in all cases.
Furthermore, the figures illustrate that the simula-
tion and the numerical results for the suboptimal
detector almost coincide, which is evidence that
the proposed approximation of the optimal detec-
tion rule, referred to as the suboptimal rule, and the
method of calculation of performances are reasonable.

6 Conclusion

In this paper, we studied a type-based sequential
detection in wireless sensor networks. Motivated
by the computational and analytical complexity of
the optimal detection rule and in order to reduce the
detection delay, we proposed a new detection rule
for sequential type-based detection with Gaussian
approximation, referred to as the suboptimal detec-
tion rule. A performance comparison between the
two detection rules showed that the optimal rule
can be approximated by the suboptimal rule without
essential losses in performance. At the same time, the
suboptimal rule significantly reduces the complexity
of the computations as well as the processing time
to the point that processing time per one iteration
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does not depend on the number of sensor nodes in
the network. Additionally, we showed that in the
case of sequential type-based detection large-scale
networks allows to save both the average number of
observations and total energy consumption. These
facts make the proposed suboptimal detector useful
for real-time applications in networks performing
both sequential data acquisition and detection.
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