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Abstract:-In this paper, a linear model based FDI framework of nonlinear Three-tank system is developed. The 
nonlinear model [16] is analytically linearized using perturbation theory. Simulations are carried out to verify the 
linearization and effectiveness of the proposed framework, for fault detection, isolation and estimation of abrupt, 
incipient in the presence of model uncertainties as well as for simultaneous multiple faults. A comparison of results 
with existing nonlinear FDI schemes is presented, showing the effectiveness of proposed FDI framework for 
uncertain nonlinear systems. 
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1   Introduction. 
     Modern control systems are becoming more and 
more complex, sophisticated with increasingly 
demanding performance goals. These systems must be 
highly reliable and secure. The complexity and 
sophistication of the new generation of aircrafts, 
automobiles, satellites, chemical plants and 
manufacturing lines, along with growing demands for 
higher performance, efficiency, reliability and safety, is 
being met by more automated control and monitoring 
systems. An effective way to assure their reliability and 
security is to swiftly detect and isolate their sensor and 
actuator failures, as well as failures in the systems 
components. The development of fault detection and 
diagnosis tools to help the correction of abnormal 
behavior during operating processes or off-line is a very 
active research area in automation and controls.  

In this paper, a linear model based FDI framework of 
nonlinear benchmark, three-tank system is proposed. 
The nonlinear model is analytically linearized using 
perturbation theory. The novelty of proposed FDI 
framework is that it uses all the concepts of linear 
theory with nominal computational resources and 
achieves performance gains almost equivalent to 
nonlinear FDI techniques [16, 20, 21] which needs 
extensive computational resources.  This framework 
uses linear model based approach to generate the 
residuals and subsequently detect, isolate and estimate 
faults. Different cases of abrupt, incipient and 
simultaneous multiple faults in the presence of model 
uncertainties are considered. The results obtained are 
compared with results of Li and Zhou [16]. Their 
technique is based on a modified robust fault diagnosis 
strategy from Polycarpou’s online approximator [20,21] 

using adaptive sliding mode observers with boundary 
layer control. These techniques need a lot more 
computational resources as compared with our scheme.  

The three-tank system is a bench mark experimental 
facility developed for the research purposes for process 
and aerospace industry. This system has different 
variants in three tank configuration, as well as four tank 
systems is also quoted in the literature [15, 16, 17]. It is 
mainly used for the development and experimentation of 
complex linear as well nonlinear control and diagnostic 
algorithms. In this system actuator faults such as biases 
or loss of sensitivity of actuator and component faults 
such as leakage in tanks and clogs in pipes can be easily 
created [13].   

 

2 Model Based Diagnostic Framework  
A typical fault diagnosis framework is shown in 

Fig. 1. In recent decades there have been significant 
research activities in the development of the new 
methodologies for on-line automated fault diagnosis 
and fault tolerant control. However, unlike the fault 
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detection problems, which have been investigated 
extensively in the literature, the fault isolation problem 
has received less attention, especially in the case of 
nonlinear uncertain systems. Indeed, the fault 
information generated in the fault diagnosis procedures 
can be very useful for fault tolerant control. Most of 
the issues related to the fault detection and fault 
tolerant control have been discussed in the review and 
survey papers by V. Venkatasubramanian et. al. [1~3], 
Rolf Iserman [4], J. J. Gertler [5], C. Angeli [6], R.  
Patton et al [7,8], and Y. Zhang & J. Jiang [9]. 

The fundamental problem fault detection and isolation 
lies in the generation of indication signals, usually called 
“residuals”, which point to the presence or absence of a 
fault. Most of the model based FDI techniques are based 
on the generation of residuals and their evaluation. The 
evaluation of residuals is based on many techniques 
ranging from observers, parity relations, directional 
residuals and stochastic methods such as sequential 
probability ratio tests, generalized likely ratio tests [4~9]. 
One of the challenging tasks of residual evaluation is the 
threshold analysis. Thresholding techniques are based on 
fixed as well as adaptive thresholding; their use in FDI is 
based on the availability of a priori knowledge of the 
process/ residuals.  
A broader class of fault detection and isolation methods 
makes explicit use of mathematical model of the 
dynamic system, which is referred to as model based 
FDI. This approach is motivated by the fact that utilizing 
deeper knowledge of the system results in more reliable 
diagnostic decisions [11]. The model based FDI 
approach can be further segregated into two sections 
based on linear and nonlinear models being used for this 
purpose.  

 

2.1   Fault Diagnosis of Linear System 
     Most model-based failure detection and isolation 
methods rely on linear dynamic models. In case of a non-
linear system, this implies a model linearization around 
an operating point.  Although, dynamics of most of the 
systems are inherently nonlinear, these nonlinearities and 
other disturbance effects are generally smooth enough in 
the operating regions so that linear design techniques are 
applicable [11].  
     For modeling purposes, an open-loop system can be 
separated into three parts:  actuators, system dynamics 
and sensors as illustrated in Fig. 1. In the fault free case, 
the system dynamics shown in Fig. 1 can be described by 
the state-space model as:  

)(tx  = Ax(t ) + Bu R (t )                                (1) 
yR(t)= C x(t) + D uR(t)                          (2) 

where x(t) is the state vector and matrices A,B,C,D are 
matrices of proper dimensions, y(t) the vector of 
measured output signals, uR(t) and yR(t) are signals 
corrupted by actuator and sensor faults. A linear 
observer is used to estimate the states of the system, 
thus generating residuals signal r(t). These residuals 
signals are used for the detection, isolation and 
estimation of faults. 
 
  
2.2 Fault Diagnosis in Nonlinear Systems 
     Although majority of model-based fault diagnosis 
approaches are based on linear system models. In real 
life most of the systems are nonlinear. The preferred way 
to address the nonlinearity is to deal with it directly and 
develop nonlinear fault detection and isolation 
techniques [14]. Consider a nonlinear dynamical system 
described by: 
 ( ) ( ( ), ( ), ( ( ), ( ), ), ( ( ), ( ), ))x t g x t u t f x t u t t x t u t tη=  
 ( ) ( ( ), ( ), ( ( ), ( ), ), ( ( ), ( ), ))y t h x t u t f x t u t t x t u t tη=            (3)
 where ( )x t  is the state vector, ( )y t  is the output 
vector, ( )u t  is the input vector, f  and η  represent the 
unknown fault and modeling uncertainty respectively. 
Both f and η  are nonlinear functions of the system state 
x(t), input vector u(t) and time t.  
 
 
2.3 Model based FDI  
     In model-based FDI, faults are detected by setting a 
threshold (fixed or variable),  on a “residual” generated 
from the difference between real measurements and 
estimates of these measurements.  The residual is a 
signal r(t), that carries information on the time and 
location of the faults. It should be near zero in fault-free 
case and deviate from normal when a fault has occurred. 
The decision process evaluates the residuals and 
monitors if and where a fault has occurred. Let J(r(t) and 
T(t) denote the decision function and the threshold, a 
fault can be detected by the following test  

J(r(t) ≤ T(t)           for  f(t) = 0       
J(r(t) > T(t)       for f(t) ≠ 0     (4) 

The isolation of the specific fault, say ith  out of q 
possible faults, requires 

       J(ri) ≤ Ti   fi(t) = 0       
J(ri) > Ti  for fi(t) ≠ 0; I=1,2,….., q    (5) 

where ( ( ))J r t  is residual evaluation function. Similar 
residual enhancement techniques to the linear system 
case, i.e., structured residuals and directional residuals, 
can be used to facilitate fault isolation. As discussed 
before residual evaluation is to compare residual signal 
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( ( ))J r t  and the threshold T(t), initially set in fault free 
case.  
 
 
2.4 The Observer Design 

The brief mathematical model of the classical 
(Luenberger type) observer along with residual 
generation used in this research note is described in this 
section. The purpose of the observer is estimate an 
output ˆ( )x t that asymptotically estimates the state ( )x t of 
the observed system [18]. The mathematical model of a 
linear system is given as under: 

( ) ( ) ( )x t Ax t Bu t= +            
( ) ( )y t Cx t=               

ˆ ˆ( ) ( ) ( ) ( )x t Fx t Hu t Ly t= + +             (6) 
The state estimation error is then, 

ˆ( ) ( ) ( )e t x t x t= −                     (7) 
Using equations (1) and (3), we get can obtain the state 
estimation error dynamics of the form,  

( ) ( )e t Fe t=                       (8) 
This equation indicates that, if the eigenvalues of F are 
stable, then the state estimation error approaches to zero 
asymptotically and thus ˆ( )x t  approaches to ( )x t . The 
delectability of the system is ensured by the use of 
observable pair (A, C) for the system [12].  
 
 
 3 Process Description: Three Tank System  

One of the popular experimental systems in controls 
community, the three-tank water process is the bench 
mark for the development and experimentation of 
complex linear as well nonlinear control and diagnostic 
algorithms. The three tank system model is depicted in 
Fig. 3 is written using the well known “mass balance” 
equations, as in [15] by: 

1
1 13 1

2
2 32 20 2

3
13 32

leak

leak

dL
S q q q

dt
dL

S q q q q
dt

dL
S q q

dt

= − −

= + − −

= −

             (9) 

where ijq represents the water flow rate from tank i to j . 
, 1, 2,3i j = , which, according to Torricelli’s rule is given 

by: 
( ) 2ij i p i j i jq S sign L L g L Lµ= − −  

Notice that 20q represents the outflow rate with 

20 2 22pq S gLµ=  and 1leakq , 2leakq are leakages from tank-1 

and tank-2 representing systems structural/component 
faults. The full system model is then obtained as follows: 

1 1 1 3 1 3 1 1

2 3 3 2 3 2 2 2 2 2 2

3 1 1 3 1 3 3 3 2 3 2

( ) ( ) /

( ) ( ) ( ) /

( ) ( )

x C sign x x x x u w S

x C sign x x x x C sign x x u w S

x C sign x x x x C sign x x x x

= − − + +

= − − − + +

= − − − − −
(10) 

1 1 2 2 3 3, ,y x y x y x= = =                (11) 
where ( )ix t is the liquid level in tank i  and 

(1/ ) 2
i i p

C S S gµ= . The two control signals are 1 2( ), ( )u t u t  
respectively, the input flow 

1 2
( ) ( )q t and q t . 1w and 2w are 

actuator faults which perturb the behavior of the system. 
These actuator faults must be detected and isolated.   

Since the system is inherently unstable, a controller is 
required to regulate the flow rates and levels of the tanks, 
so that steady state condition can be achieved. A 
standard PI controller is used and is adapted from [15] 
with minor gain adjustments, since purpose of this work 
is not to design a controller rather use it as a component 
for establishing the FDI framework. The details are not 
can be found in [15]. This controller in [15] produces 
some unwanted (negative) levels of tanks, which are 
removed by adjusting the PI gains, such that no negative 
output levels are produced and system is stabilized in a 
reasonable time. 

 
 

4   Analytic Linearization 
Since the system (10) is nonlinear it is not possible to 
apply linear observer based techniques for fault diagnosis 
and isolation. The system is linearized by using small 
signal linearization or perturbation theory. The different 
types of linearization techniques, their merits and 
demerits/limitations along with linearization process are 
discussed in [19]. The small signal linearization is briefly 
discussed below: 

 
 
 

Fig. 3.  The Three-Tank System [15, 16, 17] 
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In small signal linearization, equilibrium point of a fault-
free nonlinear function is first identified [19], such that: 

0 0( , ) 0x f x u= =  
Then the perturbed nonlinear function is expanded about 
equilibrium point i.e., 0x x xδ= +  and 0u u uδ= + , so that 

0 0 0( , ) ( , )x x x f x u g x uδ δ δ+ ≅ = + ,where ( , )g x uδ δ is the 
linear equivalent of  nonlinear function ( , )f x u at 0x and 

0u . By simplifying the above equation we get: 
( , )x g x uδ δ δ≅  

This is linear system gives the approximate dynamics of 
the nonlinear system about equilibrium point 0 0( , )x u .  

The four operating regions corresponding to different 
states are 1 3x x≥ or 1 3x x< and 2 3x x≥ or 2 3x x< . Let 

13 1 3( )S sign x x= − , let us introduce variable constants as: 
32 3 2( )S sign x x= − and 02 2( )S sign x= . These constant 

variables represent the signs of the differences of states. 
These variable are not continuous functions, they act as 
switching function and switches their value between      
[-1,1] depending upon the sign of difference of two 
states. So there is no need for the linearization of these 
terms. Using these constants, the system represented by 
(10) can be written as: 

1 1 13 1 3 1 1

2 3 32 3 2 2 02 2 2 2

3 1 13 1 3 3 32 3 2

( ) /

( ) /

x C S x x u w S

x C S x x C S x u w S

x C S x x C S x x

= − + +

= − − + +

= − − −
 (12) 

The above mentioned linearization framework is applied 
to system represented by (16). Taking the 1x and 
expanding it using Taylor series expansion, neglecting 
the higher order terms, we get: 

1/ 23
1 1 13 1 1 1

1

1/ 2
1 13 1 3 1 1 1

(1 ) ( ) /

   1/2 ( ) /

x
x C S x u w S

x

C S x x x u w S−

= − − + +

=− + + +
      (13) 

Now applying perturbation theory, we obtain, 
1/ 2 1/ 2

1 1 13 10 1 30 3 10 1

1 1

( ) 1/2( )( )
( ) /

x C S x x x x x x
u w S

δ δ δ −= − + + + +
+ +

 

Again using Taylor series expansion, 

( )
1/2 1/2

1/230 31 1
10 1 1 13 10 10

10 30 10

1 1

1 1 1
2

                ( )/

x xx x
x x CS x x

x x x

u w S

δδ δ
δ

−

−
       + =− + + + +            

+ +

(14) 

after simplification we get 

30
10 1 13 1 10

10

30
13 1 1 3 1 13/2

1010 10

1 1               ( )/
4( )2 2

x
x x S C x

x

x
S C x x u w S

xx x

δ

δ δ

 
+ =− +  

 
    + − − + + + 
    

(15) 

Elimination of the constant terms from both sides gives 

30
1 13 1 1 33/ 2

1010 10

1 1

1 1
4( )2 2

        ( ) /

x
x S C x x

xx x

u w S

δ δ δ
    = − − + 
    

+ +

   (16) 

Similarly the linearized expression for the 2x and 3x is 
obtained as follows: 

20 3 32 2 02
2 3 32 3 23/ 2

3030 30 20

2 2

1
4( )2 2 2

         ( ) /

x C S C S
x C S x x

xx x x

u w S

δ δ δ
    = + − +        

+ +

(17) 

30
3 13 1 1 33 / 2

1010 10

20
32 3 3 23 / 2

3030 30

1 1
4( )2 2

1 1     
4( )2 2

x
x S C x x

xx x

x
S C x x

xx x

δ δ δ

δ δ

    = + − 
    
    + + − 
    

 (18) 

This is a linearized version of nonlinear system about an 
operating point.  The state space representation of the 
linearized system (16~18) can be written as: 

( ) ( ) ( )x t A x t Bu tδ δ= +  
( ) ( )y t C x tδ δ= ,                 (19) 

Where system matrix A, B and C are linear matrices 
given as under: 
 

30 13 1
13 1 3/ 2

1010 10

3 32 2 02 20
3 32 3/ 2

3030 20 30

30 32 3 20 13
13 1 32 33/ 2 3/ 2

10 3010 30 30 10

1

1
0

4( )2 2

1
0

4( )2 2 2

1 1
4( ) 4( )2 2 2 2

x S C
S C

xx x

C S C S x
C S

xx x x

x S C x S C
S C S C

x xx x x x

A

− +

− + +

+ − +

   
  

   


    =          
      −   
      







 
 
 
 
 

 
1 / 0

0 1 /
0 0

S
B S

 
 =  
  

   
1 0 0
0 1 0
0 0 1

C
 
 =  
  

 

[ ]1 2 3
Tx x x xδ δ δ δ= and [ ]1 2

Tu u u=  
 
 
5   Simulation Results 
Simulations have been carried out for the linearized 
observer, along with nonlinear controller and plant. The 
operating point selected for the simulations is given in 
Table 1. The system matrices A, B, and C corresponding 
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to this operating point are given in appendix. A classical 
Luenberger type observer (8) is designed with stable 
eigenvalues. The linearized system model is observable 
at selected operating point. The simulation parameters 
are used as in [16], which is being considered as 
reference for comparison of the simulation results. In 
[16] authors have developed a fast and robust fault 
diagnosis strategy for a class of nonlinear systems based 
on Polycarpou’s [20,21] online approximator using 
adaptive sliding  mode observers with boundary layer 
control. They have proved that, fault detection time of 
their proposed strategy is much shorter than the 
Polycarpou’s scheme.  The singularity issue in the state 
trajectories is handled by introducing a small constant ε 
(10-10), so that the system does not become unstable. 
Also the initial condition conditions of observer are set to 
‘0’, and that of plant are close to operating point. The 
parameters used in simulation studies are taken from 
[16]: 
 

Table 1 
Parameters used for Simulation 

Parameter Value 
S, Area of the Tanks 0.0154 m2   
Sn, Area of pipes, n=1,2,3 5x10-5 m2   
q1max, q2max (input flow rates) 100 ml/s 
Li-max, xi, Level in Tanks,  i=1,2,3 0.62 m 
C1 , C3  and C2 0.0072, 0.0097 
The Operating point 

10
x , 

30
x  and 

30
x  0.60, 0.40, 0.25 

 
The fault size is estimated using simple relationship as: 
( ) ( , ) ( )i if t L i i r t= , ( , )L i i is the thi  diagonal element of the 

observer gain matrix, L.   
All the fault cases discussed in [16] are simulated in 

this research. The results for different cases of fault are 
given in figures below. It may be noted that the 
simulation time selected for simulations can be different 
from time used in [16]. The reason is obvious, because of 
the observer dynamics and gains used for the nonlinear 
PI controller and slow dynamics of Three Tank System.       
The main focus of this research is the fault detection and 
isolation and fault detection time, which is   compared   
with   fault   detection times for different faults given in 
[16]. Fig. 4 shows the states ( )x t of the nonlinear plant, 
estimated states ( )x t  and error. It is quite evident that the 
error reduces to zero exponentially in 0.4 sec, showing 
the perfect working of the linearized observer.  

In the 1st three cases, leakage in tank 1 is taken as 
simulated fault, the radius of hole in bottom of tank 1 is 
taken as r , the leakage rate is q1_leak= 2

12r ghµπ . For the 
case 1 and case 2 there is an abrupt leakage tank 1 with 

r =4.5 10-2 m, in case 2 there is a set point change from 
0.60 to 0.62 at 595 sec. The simulation results are shown 
in Fig. 5.  The residual is shown in Fig. 5(b) indicating 
the location of fault in tank 1 and corresponding 
estimated and actual fault in Fig. 5(c), which clearly 
indicates that our proposed scheme has fairly estimated 
the actual fault magnitude, and the estimation errors of 
tank 2 and tank 3 remains within threshold. For the case 
2, there is no significant change in fault estimation and 
fault detection time, except there is a large residual peak 
of about 0.5 sec width at 595 sec. The fault detection 
time is given in Table 2.  

In case 3, there is a an incipient fault in tank 1 from 
630 sec, the radius of the leakage is time variant 
according to the following law: 

0 630sec

0.005( 630) 630 700

0.0497 700

t

r t t

t

<

= − ≤ <

≥






 (units, m)   (20) 

The estimation results are shown in Fig. 6.  Fig. 6(c) 
shows that the fault estimator has gracefully estimated 
the fault, but due the very small size of the actual fault, 
which grows very slowly with time fault detection time 
is large. This is due to the fact that the fixed thresholds 
set for fault detection is large as compared to size of 
incipient faults over short period of its inception. This 
fault can be detected  at  very  early  stage,  if   multiple 

thresholds are set for such faults and monitoring the fault 
after fault estimate has crossed the lower thresholds and  
fault decision is generated at higher threshold level. The 
other residuals remain within thresholds as in previous 
cases.  
 In case 4 and 5, there is an actuator 1 (pump 1) fault, 
the effectiveness of actuator is reduced by 90%, i.e., 

0
1 190%q q= . In case 5, an uncertainty given below is 

introduced:   
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1
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0
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0.4

a.a.a.
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Fig. 4. Original ( )x t , estimated  ˆ( )x t states and 
residual, a.) Plant states, b.) Observer states, c.) 

estimation error. 
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0
1 1(1 0.05sin( )q wt qϕ= + +             (21) 

where 0
1q , is the nominal output of nonlinear PI 

controller. The simulation results are illustrated in Fig. 6, 
from which it is noted that the fault detection, isolation 
and estimation works perfectly, residuals for the other 
two tanks are within specified threshold. For the case 5, 
an uncertainty represented by (21) is introduced with 

1 13, / 2w ϕ π= = .   Fig. 7(c) indicates a sinusoidal variation 
along with controller effects, still fault detection and 
estimation is satisfactory. The residual 1e and 2e vary due 
to introduced model uncertainties and the estimation 
errors of all states also remain in the thresholds.  

To show the capability of our scheme to detect 
multiple faults simultaneously, case 6 includes the 
simultaneous multiple faults in the presence of 
uncertainty given by (21). There is an abrupt leakage in 
tank 1 from 566 sec to 622 sec, and simultaneously an 
abrupt leakage in tank 2 from 614 sec to 642 sec in the 
presence of model uncertainty.  Simulation results shown 
in Fig. 8, the fault estimates of both tanks fluctuate like 
sine wave, but faults in tank 1 & tank 2 have been 
successfully detected, isolated and estimated 
simultaneously.  

The fault detection times of our scheme are compared 
with [16] which compared the actual detection times, 
their bound estimates by Polycarpou [20, 21]. The 
comparison results are given in Table 2. 

 
 

6   Conclusion 
The results of proposed diagnostic framework are 
compared in table 2, with [16] and [20,21]. From table 2, 
it is clear that our fault detection times are better than 
Polycarpou’s scheme, and slower than Li and Zhou’s 
scheme. 

 

 

 

 
Table 2 

Actual detection times, their upper bounds reproduced 
from Li, Zhou [16] 

Cases Upper 
bound by 
[20,21] 

Actual 
time in 
[20,21] 

Upper 
bound by 
Li, Zhou 

Actual 
time by 
Li, Zhou 

Actual 
time 
our’s 

Case 1 0.811 0.359 0.0016 0.0006 0.015 
Case 2 5.66 3.57 3.740 2.750 15.08 
Case 3 2.26 0.626 0.0059 0.0014 0.123 
Case 4 0.245 0.129 0.00049 0.00024  0.148 
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Fig. 5. Simulation results for case 1 (Leakage in 
Tank 1): Fault detection, isolation, and estimation.    
a.) Plant states, b.) Residuals, c.) Estimated fault
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c)

Fig. 6. Simulation for case 3 (incipient 
leakage in tank 1): Fault detection, isolation, 

and estimation.     a.) Plant states, b.) 
Residuals, c.) Fault estimate 
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Fig. 7. Simulation for case 4 and 5 (actuator 
fault with model uncertainty): Fault detection, 

isolation, and estimation.     a.) Plant states, 
b.) Residuals, c.) Fault estimate tank 1. 
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Fig. 8. Simulation for case 6: Simultaneous 
multiple fault detection, isolation, and 

estimation.     a.) Residuals, b.) Fault estimate 
in tank 1, c.) Fault estimate in tank 2. 
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For the case 2, i.e., incipient faults, our technique gives 
worst case times, but this can be improved by selection 
of better fixed thresholding scheme. However, the 
advantage of our proposed framework is that it uses 
simple linearized model, taking the advantage of linear 
theory leading to much less computational resources. 
Future work includes robust adaptive thresholding 
techniques to improve the response times especially for 
the case of incipient faults. 

APPENDIX 
The system matrices of linearized state space model of 
the system about operating point in Table 1 are given as 
under: 
 

 

-0.000135739 0 0.000071573

0 -0.000228975 0.001530144

0.0001357393 -0.000110880 -0.001601716

A=
 
 
 
  

 

 
64.935064935 0

0 64.935064935
0 0

B
 
 =  
   , 

1 0 0
0 1 0
0 0 1

C
 
 =  
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