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Abstract: Combinatorial optimization problems (COPs) are well-known in the optimization community and 
can be solved by many different techniques. Beside traditional ones, optimization frameworks offer an 
effective way to solve different types of optimization problems by providing a generic infrastructure that is 
used to develop problem-specific optimizers. In this paper, we present the development of a problem-specific 
optimizer for solving the symmetric Traveling Salesman Problem (TSP) using the OptLets Optimization 
framework** [1]. We also discuss upcoming ideas and reasons in the context of this development process. 
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1   Introduction 
Combinatorial optimization problems influence 
many areas in science and industry. For example, 
Genetic Algorithms [2], Simulated Annealing (SA) 
[3] and Ant Systems [4] represent some meta-
heuristics that have been developed in the past 
decades in order to solve such problems. These 
techniques contain some generic aspects, but for 
every problem class or variation of a problem new 
algorithms must be developed. This development 
process is often very time-consuming so that the 
advantages of the supporting techniques are mostly 
lost. 
     Beside these traditional techniques, several 
optimization frameworks have been developed that 
try to reduce the effort required for implementing 
problem-specific solvers. OpenTS [5] and the Tabu 
Search Framework (TSF) [6] use Tabu Search (TS) 
[7]. EasyLocal++ [8] additionally supports SA. The 
Meta-heuristics Development Framework (MDF) 
[9] is an enhancement of TSF and supports different 

meta-heuristics such as Evolutionary Algorithms 
(EAs) [2], Ant Colony Optimization (ACO) [4] etc. 
    The HotFrame framework [10] allows the user to 
develop algorithms based on TS, SA and EAs. 
HeuristicLab [11] represents an optimization 
environment where different optimization 
techniques (e.g. TS, SA, GA) can be applied to 
different problem classes (e.g. TSP). 
     In this paper, we demonstrate how COPs can be 
solved using the OptLets framework [1], using the 
TSP as an example. The framework offers a novel 
way to develop algorithms that are not based on 
existing optimization techniques. We describe the 
activities for developing an OptLets-based TSP 
solver and demonstrate ideas for effectively develop 
an OptLets-based optimizer. Even if other problems 
might be different, the basic procedure for 
implementing an OptLets-based optimizer will 
always be the same. 
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2   OptLets Optimization Framework 
The OptLets optimization framework is a software 
framework written in C++ that is able to solve 
different types of optimization problems. 
     The basic idea behind the framework is that 
many optimization problems share common 
properties that can be encapsulated in an immutable 
part. The framework administrates all problem-
independent tasks such as monitoring the 
optimization process, invoking appropriate 
optimization operators, managing solutions etc. so 
that the user can concentrate on the problem-solving 
itself without considering any administrative issues.  
     The problem-specific part consists of the problem 
description, the representation of solutions and the 
operators called OptLets. The problem description 
contains information about the problem to be solved 
and the solution representation defines a data 
structure storing the solutions produced by the 
OptLets. OptLets must always be implemented for a 
certain problem. As the framework is independent of 
any existing optimization paradigms, the user can 
implement any algorithms that are suitable for 
solving the problem. Nevertheless, traditional 
techniques can also be used and combined with each 
other.  
     An optimization process typically starts with at 
least a single initial solution. The OptLets 
framework controls the optimization process by 
repeatedly invoking OptLets in order to select the 
best suitable algorithm. OptLets always create new 
solutions based on existing ones so that an already 
existing solution can never be overwritten by an 
OptLet.  
     The framework also monitors the work of the 
OptLets from time to time during an optimization 
run. Each OptLet has a score representing its success 
regarding the improvements of the solution quality 
in the past. The higher the score of an OptLet, the 
higher is its probability to be selected by the 
framework to work on a given solution. So, the 
combination of OptLet invocations influences the 
quality of the final solution.  
     Solutions are stored in a solution pool with a 
limited capacity. Whenever the pool becomes full, 
the framework evaluates all solutions in the pool by 
determining the quality of each solution and 
performs a clean-up where only suitable solutions 
are kept for the future. Suitable solutions are good 
valid solutions as well as invalid solutions (if they 
are defined for the underlying problem) that violate 
the existing constraints only to a small degree. 
     As the framework always knows the quality of 
each solution in the pool, the user is able to ask for 

the current best solution at any time during the 
optimization. He does not need to wait until the 
optimization is finished. 
 
 
3   Solving the Traveling Salesman 
Problem 
Implementing an OptLets-based optimizer consists 
of the following steps: 
• Define the appropriate data structures. 
• Implement the OptLets. 
• Implement the user interface and the interface to 

external systems. 
In this paper, we describe the first two aspects, i.e. 
the data structures and OptLets used for the 
Traveling Salesman Problem. 
 
3.1 Defining Problem-specific Data 

Structures 
Whenever a specific problem shall be solved, some 
data structures must be provided to store information 
about the problem and the representation of the 
solutions. The internals of these data structures 
always depend on the underlying problem and can 
not be defined in general. But, it is recommended to 
have an eye on using efficient data structures as their 
access methods will be called very frequently by 
OptLets during the optimization process. 
     For solving the TSP, the problem description just 
contains a distance matrix of all locations to be 
visited. Solutions are represented by an array 
containing a permutation of all locations. As we 
define that no invalid solutions are allowed (i.e. it is 
not allowed to skip a location or to visit the same 
location twice), a solution always represents a 
complete tour. 
 
 
3.2 OptLets 
Implementing the OptLets is typically an 
incremental process: One starts with very simple 
OptLets that modify a solution in some way (e.g. 
OptLets that just swap two locations using a simple 
strategy). If the results are not yet good enough, 
additional, possibly more sophisticated OptLets, can 
be added. This is done until the results are good 
enough for the given task. There are no restrictions 
about the modifications OptLets can apply to a 
solution – one may experiment with any operations 
that come to mind. 
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      In our example, the TSP optimizer contains 26 
OptLets that can be divided into the following 
categories: 
• Swapping OptLets (6) 
• Shifting OptLets (12)  
• Intersection OptLets (5) 
• Starter OptLets (1) 
• Other OptLets (2) 

 
3.2.1   Swapping OptLets 
Swapping OptLets swap two locations within a tour. 
The different swapping OptLets use the following 
different strategies:  
• Select two locations randomly and swap them. 
• Randomly select a location and swap it with its 

successor. 
• Find the two adjacent locations A and B with the 

greatest distance and swap them. 
• Find the two adjacent locations A and B with the 

greatest distance and swap B with its successor. 
• Find the two adjacent locations A and B with the 

greatest distance and swap B with the location 
nearest to A.  

• Try to find two adjacent locations A and B so 
that swapping these two locations decreases the 
total tour length.  

 
3.2.2   Shifting OptLets 
There are actually two types of shifting OptLets, 
those that shift a single location and those that shift 
an entire section. Some of the OptLets shifting an 
entire section additionally reverse the order of the 
locations in the section. 
     The following strategies are used by OptLets that 
shift a single location: 
• Randomly select a location and shift it to a 

random position. 
• Randomly select a location A, find the location 

B nearest to A and shift B right after A. 
• Randomly select a location A, find the location 

B with the n-th lowest distance to A and shift B 
right after A. There are four OptLet instances for 
n=2 to n=5. 

OptLets that shift an entire section always select 
the section randomly, i.e. beginning at a random 
location and containing a random number of 
locations. They differ in how they determine the 
position where the section is shifted to and whether 
they reverse the order of the locations within the 
section. The following different strategies are used: 
• Shift the section to a random position. 
• Shift the section to a random position and 

reverse the locations within the section. 

• Reverse the locations within the section and try 
to find a position such that shifting the section to 
that position decreases the total tour length. 

• Reverse the locations within the section and try 
to find a position such that shifting the section to 
that position does not increase the total tour 
length by more than 5%. 

• Reverse the locations within the section and shift 
the section to the position (different from the 
original position) where the resulting tour length 
is as small as possible (albeit possibly greater 
than the original tour length). 

 
3.2.3   Intersection OptLets 
As it turned out during our first experiments, the 
swapping and shifting OptLets often created tours 
with many intersections. Therefore, we implemented 
specific intersection OptLets searching for 
intersections within the tour and trying to remove 
them. Each of these OptLets first searches for an 
intersection between two lines A-B and C-D. If the 
tour does not contain any intersection, the OptLet 
rejects the solution. Otherwise, it tries to remove the 
intersection. How this is done, depends on the 
particular OptLet. The following strategies are used: 
• Swap the beginning of the first with the end of 

the second line, i.e. A and D. 
• Swap the end of the first with the beginning of 

the second line, i.e. B and C. 
• Swap A with its predecessor and C with its 

predecessor. 
• Swap B with its successor and D with its 

successor. 
• Reverse the order of all locations between B and 

C. 
 
3.2.4   Starter OptLets 
As the initial tour used in the TSP optimizer 
contains just the locations in the same order as they 
appear in the input data, the quality of the initial 
solution (its tour length) is usually very bad. It then 
takes quite a long time until the OptLets find a 
reasonable solution. This leads to the idea of so-
called “Starter OptLets” that use a greedy heuristic 
in order to create better initial solutions.  
     For the TSP, there is one such OptLet in this 
category that constructs tours using a nearest 
neighbor heuristics. This OptLet constructs as many 
tours as there are locations, so that each location is 
used once as starting point for the tour, as different 
starting points typically lead to different tours using 
this heuristic. After this OptLet has constructed all 
possible tours, it deactivates itself and is no longer 
called by the framework. 
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3.2.5   Other OptLets 
The following two OptLets do not fit in any of the 
categories described above. Both OptLets are pure 
random OptLets: 
• Randomly reverse the order of the locations 

within a section of the tour. 
• Randomly permute all locations in the tour. 

These OptLets will typically not create very good 
solutions, but they might help to escape from local 
optima. 
 
4   Analyzing the Results 
The results achieved by the OptLets TSP optimizer 
have already been published in [1]. This paper 
focuses on analyzing the results, i.e. what impact 
particular OptLets have on the result and how the 
results differ when disabling certain OptLets. 
     All comparisons use the results obtained by a one 
minute run with all OptLets enabled as a reference. 
Table 1 shows the results for five problem instances 
taken from the TSPLIB [12]. For each problem, we 
ran the optimizer 5 times and computed how much 
the average value lies above the known optimum. 
The results were obtained on a Pentium D 3GHz 
computer with 1024 MB RAM on Windows XP x64 
edition. 
 

Problem Result 
eil101 0% 
lin105 0.12% 
ch150 0.32% 
ts225 1.44% 
lin318 2.98% 

Table 1: Reference results 
 
Note that the results for most problems are better 
than those published in [1], due to the faster 
machine and some code optimizations in the 
framework. 
 
4.1 Impact of the Starter OptLet 
The Starter OptLet using a nearest neighbor 
heuristics has the purpose to create better initial 
solutions so that good solutions can be found 
considerably faster. Test runs shall show the actual 
benefit of this OptLet. Table 2 shows a comparison 
of the results with and without the Starter OptLet: 
 
 
 
 
 
 
 

with without Problem 
Starter OptLet 

eil101 0% 1.81% 
lin105 0.12% 2.10% 
ch150 0.32% 1.48% 
ts225 1.44% 3.51% 
lin318 2.98% 6.41% 

Table 2: Impact of the Starter OptLet 
 
This shows that the Starter OptLet has a significant 
impact on the quality of the solution. Without the 
Starter OptLet, it takes much longer to find decent 
solutions. Figure 1 shows the evolution of the 
solution value for the lin318 problem with and 
without the starter OptLet: 
 

0 5 10 15 20

Time (sec.)

with Starter
without Starter

 
Fig.1: Evolution with and without the Starter OptLet 
 
With the Starter OptLet, there is a rapid 
improvement in the beginning. The other OptLets 
then continue to improve the initial solutions. 
Otherwise, the OptLets have to start working from a 
far inferior initial solution. 
 
 
4.2 Other important OptLets 
It is not obvious which OptLets have a big impact 
on the quality of the solution and which do not. 
However, hints about the success of an OptLet 
might be gathered by analyzing how often it is 
called by the framework. If an OptLet is called 
frequently, this is because it has a high score, i.e. it 
contributed in finding good solutions. The most 
frequently called OptLets should therefore be those 
OptLets that are most important for the success of 
the optimizer. 
     When we analyzed the OptLet statistics for the 1 
minute TSP optimizer runs, we found out that the 
most frequently called OptLet for all tested problem 
instances is the one that tries to find two adjacent 
locations so that swapping these two locations 
decreases the total tour length. 
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     To see how this OptLet actually influences the 
results, we ran the optimizer without this OptLet. 
Table 3 compares the results: 
 

with without Problem 
“best” OptLet 

eil101 0% 0% 
lin105 0.12% 0.29% 
ch150 0.32% 0.34% 
ts225 1.44% 1.52% 
lin318 2.98% 5.06% 

Table 3: Impact of the most frequently called OptLet 
 
The results become worse without the OptLet in all 
cases except the first where the optimum could still 
be found without the OptLet. The biggest impact can 
be observed for the lin318 problem. 
     Other OptLets that seem to be important 
according to the calling frequency are the 
intersection OptLets. The number of calls for this 
OptLet category is above average in most test runs. 
Table 4 shows how the results change when all 
intersection OptLets are disabled: 
 

with without Problem 
intersection OptLets 

eil101 0% 0.25% 
lin105 0.12% 0.42% 
ch150 0.32% 0.34% 
ts225 1.44% 2.29% 
lin318 2.98% 5.97% 

Table 4: Impact of intersection OptLets 
 
Disabling the intersection OptLets leads to a 
deterioration in all cases. The bigger the problem, 
the bigger the difference becomes. This shows that 
these OptLets are important for the quality of the 
result. 
 
5   Conclusion 
In this paper, we described how to use the OptLets 
optimization framework for solving a concrete 
optimization problem, in our case the TSP. Solving 
an optimization problem using the OptLets 
framework includes the definition and 
implementation of appropriate data structures for the 
problem description and the solutions as well as the 
implementation of OptLets. The TSP optimizer 
contains 26 OptLets and produces satisfying results 
for small and medium size problems. The OptLets 
consist of a total of about 1000 lines of code, the 
input and solution data representations including the 
operations add another 400 lines. 
     The analysis of the results showed that “Starter 
OptLets” are important for greatly reducing the time 

needed to find reasonable solutions. This is an 
experience we also made during the implementation 
of optimizers for other problems.  
     Furthermore, analyzing the calling frequency of 
the OptLets showed that disabling the most 
frequently called OptLets leads to a deterioration of 
the results. So, these OptLets are actually important 
and it is therefore comprehensible that they are 
preferred by the framework’s evaluation 
mechanism. 
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