
Effective Optimizer Development for Solving Combinatorial
Optimization Problems*

GÜNTHER BLASCHEK, THOMAS SCHEIDL

Institute of Pervasive Computing
Johannes Kepler University

Altenberger Straße 69, 4040 Linz
Austria

{gue, scheidl}@s http://www.pervasive.jku.at

CHRISTOPH BREITSCHOPF
SCR SE

Siemens Corporate Research, Inc.
755 College Rd East, Princeton, NJ 08540

USA
christoph.breitschopf http://www.scr.siemens.com

Abstract: Combinatorial optimization problems (COPs) are well-known in the optimization community and
can be solved by many different techniques. Beside traditional ones, optimization frameworks offer an
effective way to solve different types of optimization problems by providing a generic infrastructure that is
used to develop problem-specific optimizers. In this paper, we present the development of a problem-specific
optimizer for solving the symmetric Traveling Salesman Problem (TSP) using the OptLets Optimization
framework** [1]. We also discuss upcoming ideas and reasons in the context of this development process.

Key-Words: Meta-heuristics, Heuristics, Framework, Combinatorial optimization, Incremental optimization,
Traveling Salesman Problem.

* This work was funded by Siemens AG, Corporate Technology, Munich.
** Patent pending.

1 Introduction
Combinatorial optimization problems influence
many areas in science and industry. For example,
Genetic Algorithms [2], Simulated Annealing (SA)
[3] and Ant Systems [4] represent some meta-
heuristics that have been developed in the past
decades in order to solve such problems. These
techniques contain some generic aspects, but for
every problem class or variation of a problem new
algorithms must be developed. This development
process is often very time-consuming so that the
advantages of the supporting techniques are mostly
lost.
 Beside these traditional techniques, several
optimization frameworks have been developed that
try to reduce the effort required for implementing
problem-specific solvers. OpenTS [5] and the Tabu
Search Framework (TSF) [6] use Tabu Search (TS)
[7]. EasyLocal++ [8] additionally supports SA. The
Meta-heuristics Development Framework (MDF)
[9] is an enhancement of TSF and supports different

meta-heuristics such as Evolutionary Algorithms
(EAs) [2], Ant Colony Optimization (ACO) [4] etc.
 The HotFrame framework [10] allows the user to
develop algorithms based on TS, SA and EAs.
HeuristicLab [11] represents an optimization
environment where different optimization
techniques (e.g. TS, SA, GA) can be applied to
different problem classes (e.g. TSP).
 In this paper, we demonstrate how COPs can be
solved using the OptLets framework [1], using the
TSP as an example. The framework offers a novel
way to develop algorithms that are not based on
existing optimization techniques. We describe the
activities for developing an OptLets-based TSP
solver and demonstrate ideas for effectively develop
an OptLets-based optimizer. Even if other problems
might be different, the basic procedure for
implementing an OptLets-based optimizer will
always be the same.

Proceedings of the 11th WSEAS International Conference on SYSTEMS, Agios Nikolaos, Crete Island, Greece, July 23-25, 2007 311

2 OptLets Optimization Framework
The OptLets optimization framework is a software
framework written in C++ that is able to solve
different types of optimization problems.
 The basic idea behind the framework is that
many optimization problems share common
properties that can be encapsulated in an immutable
part. The framework administrates all problem-
independent tasks such as monitoring the
optimization process, invoking appropriate
optimization operators, managing solutions etc. so
that the user can concentrate on the problem-solving
itself without considering any administrative issues.
 The problem-specific part consists of the problem
description, the representation of solutions and the
operators called OptLets. The problem description
contains information about the problem to be solved
and the solution representation defines a data
structure storing the solutions produced by the
OptLets. OptLets must always be implemented for a
certain problem. As the framework is independent of
any existing optimization paradigms, the user can
implement any algorithms that are suitable for
solving the problem. Nevertheless, traditional
techniques can also be used and combined with each
other.
 An optimization process typically starts with at
least a single initial solution. The OptLets
framework controls the optimization process by
repeatedly invoking OptLets in order to select the
best suitable algorithm. OptLets always create new
solutions based on existing ones so that an already
existing solution can never be overwritten by an
OptLet.
 The framework also monitors the work of the
OptLets from time to time during an optimization
run. Each OptLet has a score representing its success
regarding the improvements of the solution quality
in the past. The higher the score of an OptLet, the
higher is its probability to be selected by the
framework to work on a given solution. So, the
combination of OptLet invocations influences the
quality of the final solution.
 Solutions are stored in a solution pool with a
limited capacity. Whenever the pool becomes full,
the framework evaluates all solutions in the pool by
determining the quality of each solution and
performs a clean-up where only suitable solutions
are kept for the future. Suitable solutions are good
valid solutions as well as invalid solutions (if they
are defined for the underlying problem) that violate
the existing constraints only to a small degree.
 As the framework always knows the quality of
each solution in the pool, the user is able to ask for

the current best solution at any time during the
optimization. He does not need to wait until the
optimization is finished.

3 Solving the Traveling Salesman
Problem
Implementing an OptLets-based optimizer consists
of the following steps:
• Define the appropriate data structures.
• Implement the OptLets.
• Implement the user interface and the interface to

external systems.
In this paper, we describe the first two aspects, i.e.
the data structures and OptLets used for the
Traveling Salesman Problem.

3.1 Defining Problem-specific Data

Structures
Whenever a specific problem shall be solved, some
data structures must be provided to store information
about the problem and the representation of the
solutions. The internals of these data structures
always depend on the underlying problem and can
not be defined in general. But, it is recommended to
have an eye on using efficient data structures as their
access methods will be called very frequently by
OptLets during the optimization process.
 For solving the TSP, the problem description just
contains a distance matrix of all locations to be
visited. Solutions are represented by an array
containing a permutation of all locations. As we
define that no invalid solutions are allowed (i.e. it is
not allowed to skip a location or to visit the same
location twice), a solution always represents a
complete tour.

3.2 OptLets
Implementing the OptLets is typically an
incremental process: One starts with very simple
OptLets that modify a solution in some way (e.g.
OptLets that just swap two locations using a simple
strategy). If the results are not yet good enough,
additional, possibly more sophisticated OptLets, can
be added. This is done until the results are good
enough for the given task. There are no restrictions
about the modifications OptLets can apply to a
solution – one may experiment with any operations
that come to mind.

Proceedings of the 11th WSEAS International Conference on SYSTEMS, Agios Nikolaos, Crete Island, Greece, July 23-25, 2007 312

 In our example, the TSP optimizer contains 26
OptLets that can be divided into the following
categories:
• Swapping OptLets (6)
• Shifting OptLets (12)
• Intersection OptLets (5)
• Starter OptLets (1)
• Other OptLets (2)

3.2.1 Swapping OptLets
Swapping OptLets swap two locations within a tour.
The different swapping OptLets use the following
different strategies:
• Select two locations randomly and swap them.
• Randomly select a location and swap it with its

successor.
• Find the two adjacent locations A and B with the

greatest distance and swap them.
• Find the two adjacent locations A and B with the

greatest distance and swap B with its successor.
• Find the two adjacent locations A and B with the

greatest distance and swap B with the location
nearest to A.

• Try to find two adjacent locations A and B so
that swapping these two locations decreases the
total tour length.

3.2.2 Shifting OptLets
There are actually two types of shifting OptLets,
those that shift a single location and those that shift
an entire section. Some of the OptLets shifting an
entire section additionally reverse the order of the
locations in the section.
 The following strategies are used by OptLets that
shift a single location:
• Randomly select a location and shift it to a

random position.
• Randomly select a location A, find the location

B nearest to A and shift B right after A.
• Randomly select a location A, find the location

B with the n-th lowest distance to A and shift B
right after A. There are four OptLet instances for
n=2 to n=5.

OptLets that shift an entire section always select
the section randomly, i.e. beginning at a random
location and containing a random number of
locations. They differ in how they determine the
position where the section is shifted to and whether
they reverse the order of the locations within the
section. The following different strategies are used:
• Shift the section to a random position.
• Shift the section to a random position and

reverse the locations within the section.

• Reverse the locations within the section and try
to find a position such that shifting the section to
that position decreases the total tour length.

• Reverse the locations within the section and try
to find a position such that shifting the section to
that position does not increase the total tour
length by more than 5%.

• Reverse the locations within the section and shift
the section to the position (different from the
original position) where the resulting tour length
is as small as possible (albeit possibly greater
than the original tour length).

3.2.3 Intersection OptLets
As it turned out during our first experiments, the
swapping and shifting OptLets often created tours
with many intersections. Therefore, we implemented
specific intersection OptLets searching for
intersections within the tour and trying to remove
them. Each of these OptLets first searches for an
intersection between two lines A-B and C-D. If the
tour does not contain any intersection, the OptLet
rejects the solution. Otherwise, it tries to remove the
intersection. How this is done, depends on the
particular OptLet. The following strategies are used:
• Swap the beginning of the first with the end of

the second line, i.e. A and D.
• Swap the end of the first with the beginning of

the second line, i.e. B and C.
• Swap A with its predecessor and C with its

predecessor.
• Swap B with its successor and D with its

successor.
• Reverse the order of all locations between B and

C.

3.2.4 Starter OptLets
As the initial tour used in the TSP optimizer
contains just the locations in the same order as they
appear in the input data, the quality of the initial
solution (its tour length) is usually very bad. It then
takes quite a long time until the OptLets find a
reasonable solution. This leads to the idea of so-
called “Starter OptLets” that use a greedy heuristic
in order to create better initial solutions.
 For the TSP, there is one such OptLet in this
category that constructs tours using a nearest
neighbor heuristics. This OptLet constructs as many
tours as there are locations, so that each location is
used once as starting point for the tour, as different
starting points typically lead to different tours using
this heuristic. After this OptLet has constructed all
possible tours, it deactivates itself and is no longer
called by the framework.

Proceedings of the 11th WSEAS International Conference on SYSTEMS, Agios Nikolaos, Crete Island, Greece, July 23-25, 2007 313

3.2.5 Other OptLets
The following two OptLets do not fit in any of the
categories described above. Both OptLets are pure
random OptLets:
• Randomly reverse the order of the locations

within a section of the tour.
• Randomly permute all locations in the tour.

These OptLets will typically not create very good
solutions, but they might help to escape from local
optima.

4 Analyzing the Results
The results achieved by the OptLets TSP optimizer
have already been published in [1]. This paper
focuses on analyzing the results, i.e. what impact
particular OptLets have on the result and how the
results differ when disabling certain OptLets.
 All comparisons use the results obtained by a one
minute run with all OptLets enabled as a reference.
Table 1 shows the results for five problem instances
taken from the TSPLIB [12]. For each problem, we
ran the optimizer 5 times and computed how much
the average value lies above the known optimum.
The results were obtained on a Pentium D 3GHz
computer with 1024 MB RAM on Windows XP x64
edition.

Problem Result
eil101 0%
lin105 0.12%
ch150 0.32%
ts225 1.44%
lin318 2.98%

Table 1: Reference results

Note that the results for most problems are better
than those published in [1], due to the faster
machine and some code optimizations in the
framework.

4.1 Impact of the Starter OptLet
The Starter OptLet using a nearest neighbor
heuristics has the purpose to create better initial
solutions so that good solutions can be found
considerably faster. Test runs shall show the actual
benefit of this OptLet. Table 2 shows a comparison
of the results with and without the Starter OptLet:

with without Problem
Starter OptLet

eil101 0% 1.81%
lin105 0.12% 2.10%
ch150 0.32% 1.48%
ts225 1.44% 3.51%
lin318 2.98% 6.41%

Table 2: Impact of the Starter OptLet

This shows that the Starter OptLet has a significant
impact on the quality of the solution. Without the
Starter OptLet, it takes much longer to find decent
solutions. Figure 1 shows the evolution of the
solution value for the lin318 problem with and
without the starter OptLet:

0 5 10 15 20

Time (sec.)

with Starter
without Starter

Fig.1: Evolution with and without the Starter OptLet

With the Starter OptLet, there is a rapid
improvement in the beginning. The other OptLets
then continue to improve the initial solutions.
Otherwise, the OptLets have to start working from a
far inferior initial solution.

4.2 Other important OptLets
It is not obvious which OptLets have a big impact
on the quality of the solution and which do not.
However, hints about the success of an OptLet
might be gathered by analyzing how often it is
called by the framework. If an OptLet is called
frequently, this is because it has a high score, i.e. it
contributed in finding good solutions. The most
frequently called OptLets should therefore be those
OptLets that are most important for the success of
the optimizer.
 When we analyzed the OptLet statistics for the 1
minute TSP optimizer runs, we found out that the
most frequently called OptLet for all tested problem
instances is the one that tries to find two adjacent
locations so that swapping these two locations
decreases the total tour length.

Proceedings of the 11th WSEAS International Conference on SYSTEMS, Agios Nikolaos, Crete Island, Greece, July 23-25, 2007 314

 To see how this OptLet actually influences the
results, we ran the optimizer without this OptLet.
Table 3 compares the results:

with without Problem
“best” OptLet

eil101 0% 0%
lin105 0.12% 0.29%
ch150 0.32% 0.34%
ts225 1.44% 1.52%
lin318 2.98% 5.06%

Table 3: Impact of the most frequently called OptLet

The results become worse without the OptLet in all
cases except the first where the optimum could still
be found without the OptLet. The biggest impact can
be observed for the lin318 problem.
 Other OptLets that seem to be important
according to the calling frequency are the
intersection OptLets. The number of calls for this
OptLet category is above average in most test runs.
Table 4 shows how the results change when all
intersection OptLets are disabled:

with without Problem
intersection OptLets

eil101 0% 0.25%
lin105 0.12% 0.42%
ch150 0.32% 0.34%
ts225 1.44% 2.29%
lin318 2.98% 5.97%

Table 4: Impact of intersection OptLets

Disabling the intersection OptLets leads to a
deterioration in all cases. The bigger the problem,
the bigger the difference becomes. This shows that
these OptLets are important for the quality of the
result.

5 Conclusion
In this paper, we described how to use the OptLets
optimization framework for solving a concrete
optimization problem, in our case the TSP. Solving
an optimization problem using the OptLets
framework includes the definition and
implementation of appropriate data structures for the
problem description and the solutions as well as the
implementation of OptLets. The TSP optimizer
contains 26 OptLets and produces satisfying results
for small and medium size problems. The OptLets
consist of a total of about 1000 lines of code, the
input and solution data representations including the
operations add another 400 lines.
 The analysis of the results showed that “Starter
OptLets” are important for greatly reducing the time

needed to find reasonable solutions. This is an
experience we also made during the implementation
of optimizers for other problems.
 Furthermore, analyzing the calling frequency of
the OptLets showed that disabling the most
frequently called OptLets leads to a deterioration of
the results. So, these OptLets are actually important
and it is therefore comprehensible that they are
preferred by the framework’s evaluation
mechanism.

References:
[1] Breitschopf, C.; Blaschek, G.; Scheidl, T.:

OptLets: A Generic Framework for Solving
Arbitrary Optimization Problems, WSEAS
Transactions on Information Science and
Applications (Special Issue: Selected papers
from the 6th WSEAS Int. Conference on
Evolutionary Computing, Lisbon, Portugal, June
16-18, 2005), 2005, pp. 501-506.

[2] Goldberg, D.: The Design of Innovation, Kluwer
Academic Publishers, 2002.

[3] Laarhoven, P. J. M. v.; Aarts, E. H. L.:
Simulated Annealing: Theory and Applications,
Kluwer Academic Press, 1988.

[4] Dorigo, M.; Stützle, T.: Ant Colony
Optimization, MIT Press, 2004.

[5] Harder R., OpenTS – Java Tabu Search
Framework, Online: http://opents.iharder.net,
2001.

[6] Lau, H. C.; Wan, W. C.; Jia, X.: A Generic
Object-Oriented Tabu Search Framework,
Proceedings of the 5th Metaheuristics
International Conference (MIC'03), Kyoto,
Japan, 2003, pp. 362-367.

[7] Glover, F.: Tabu Search - Part I, ORSA Journal
of Computing, 1/1989, pp. 190-206.

[8] Gaspero L., Schärf A., EasyLocal++: An object-
oriented framework for the flexible design of
local-search algorithms, Software: Practice and
Experience, Vol. 33. John Wiley & Sons, 2003,
pp. 733-765.

[9] Lau, H. C.; Wan, W. C.; Halim, S.; Toh, K.: A
software framework for fast prototyping of meta-
heuristics hybridization, International
Transactions in Operational Research, Vol. 14,
Issue 2, 2007, pp. 123–141.

[10] Fink, A.; Voß, S.: HotFrame: A Heuristic
Optimization Framework, In Voß, S.; Woodruff,
D. (Eds.): Optimization Software Class
Libraries, Kluwer Academic Publishers, 2002,
pp. 81-154.

[11] Wagner S., Affenzeller M., HeuristicLab: A
Generic and Extensible Optimization

Proceedings of the 11th WSEAS International Conference on SYSTEMS, Agios Nikolaos, Crete Island, Greece, July 23-25, 2007 315

Environment, Proceedings of the International
Conference on Adaptive and Natural Computing
Algorithms (ICANNGA), 2005.

[12] TSPLIB, Online: http://www.iwr.uni-
heidelberg.de/groups/comopt/software/
TSPLIB95

Proceedings of the 11th WSEAS International Conference on SYSTEMS, Agios Nikolaos, Crete Island, Greece, July 23-25, 2007 316

