
Detection of the Cardiovascular Diseases by Using a Linearly Modeling 
System with the PSO-based Classification Scheme 

 
MENG-CHENG SHEN†, YEONG-SHYEONG TSAI†, HENG-CHOU CHEN‡ 

†Department of Applied Mathematics, National Chung Hsing University 
250, Kuo Kuang Rd., Taichung 402, Taiwan, R.O.C. 

TAIWAN 
mcshen@ctu.edu.tw 

‡Department of Computer and Communication Engineering 
Chienkuo Technology University 

No. 1, Chieh Shou N. Rd., Changhua City, 
TAIWAN 

 
 

Abstract: - In general, the detection of cardiovascular disease is performed by ECG, Electrocardiogram, to 
dynamically monitor and analyze the disease status. Additionally, ECG is also used to diagnose the latent 
disease to proceed with a further treatment. Therefore, it is very important to give a reasonable judgement from 
the ECG diagnosis information. In this paper, a linearly modeling system is presented to characterize both the 
measured ECG data and Blood Pressure Wave (BPW) information. After that, the PSO algorithm, Particle 
Swarm Optimization, is proposed to classify the frequency responses which are derived from the linear 
modeling system. From the simulation result, the successful hit rate for identifying the cardiovascular samples 
can reach to 80%. Meanwhile, the PSO training iterations can converge under an acceptable requirement. 
Therefore, we can not only exactly detect the cardiovascular disease but also effectively reduce the computation 
time. 

 
Key-Words：- ECG, BPW, PSO, resonance theory, linearly modeling system, LMS algorithm, adapting 
coefficients, zero-crossing rate of the gradient. 
 
1 Introduction 
The cardiovascular system is composed of the heart 
and blood vessels. They work together to form the 
blood-transporting system. Stimulated by 
electrocardiogram (ECG) signal, the pumping of the 
heart constitutes the main force of oscillation, which 
thus forms a blood pressure wave (BPW) 
propagating along the arteries.  
The ECG and BPW curves are shown as in Fig. 1. 
By the way of using lead II process, we got the ECG 
signal from a test subject. At the same time, the BPW 
sample was collected at the twist artery of the same 
one. The ECG plot together with the BPW curve 
reveals much information related to the blood 
circulation information. If some blood circulation 
disorder occurs, it will be reflected on ECG or BPW 
curve. Especially for the Traditional Chinese 
Medicine (TCM), these two curves play a very 
important role in diagnosing or analyzing the 
diseases. Many literature papers, based on ECG and 
BPW information, had presented some 
methodologies to evaluate the healthiness of the 
cardiovascular system [1-2]. 
  Wang had begun to the research on pulse wave 

judgement in 1977. He tried to establish the TCM 
pulse wave standard to unveil the physiological 
function of the human body. In 1987, Wang had 
proposed the “resonance theory” about the pulse 
wave. He is convinced that the pulse wave is 
generated by the blood pressure due to the resonant 
contribution among the human body organs. By 
using the pressure converter to obtain the pulse 
wave data, and adopting the Fourier Transform to 
analyze them, he discovered that there exists a 
strong relationship between the resonance intensity 
and the healthiness of the human body organs. 

    From the theory of “The Resonance Effect on 
Blood Pressure and Flow Hypothesis” presented by 
W.K. Wang and Y. Y. Lin, we know there are 
resonant frequencies in vitals. When the blood 
flows into organ along with pulse vibration, blood 
plexus not only has resonance phenomenon, but 
also initiates organ’s mechanical micro-vibration by 
itself. Each organ has its special principal resonant 
frequency; the circulatory system is harmonious and 
stable. When an organ was excited, the resonance 
frequency changes [3-5]. 

 In discussion about the resonance variation and 
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physiological reaction, it was discovered that a 
patient with cardiovascular disease will bring some 
disorder signals on ECG and BPW curves. It is like 
the AM and FM noises which are acting on the five 
major resonance frequencies [6]. In addition to the 
observation of the five major frequencies, we are 
convinced that there still exists some information not 
having been discussed inside the ECG or BPW. In 
this paper, we attempted to represent the 
cardiovascular system by a linearly modeling system. 
The input signal of linearly modeling system is ECG, 
the output signal BPW. The ECG and BPW signal 
samples are obtained prior to the overall simulation. 
And then, the frequency response is computed based 
these signal samples. The eigenvalues of the 
frequency response are extracted. Finally, we try to 
compare the difference of the eigenvalues between 
the healthy samples and the patient ones. Also, we 
identified the healthy subjects and cardiovascular 
patients by using the PSO-based scheme to decrease 
the clustering computation time. 
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Fig. 1  The ECG and blood pressure wave (BPW) 

are shown. 
 
2 Linearly modeling system and PSO 
algorithm 
In this paper, we analyze the complex blood 
circulation system from the macroscopic system 
viewpoint to search for a sign of disease. The linearly 
modeling system is applied to represent the 
frequency response between ECG. and BPW. Then, 
by coherence analysis, we study its coherence power 
transfer, and further extract the characteristic 
parameters of the system. Another main scheme, 
particle swarm optimization (PSO), is used in the 
classification process to separate the healthy subjects 
from the abnormal ones.  
 
2.1 Linearly modeling system 

The blood circulation is represented by a linearly 
modeling system whish is actually an adaptive digital 
filter. 
Generally, adaptive digital filters are used in cases 
requiring system identification, such as acoustic echo 
cancellation, active noise control and communication 
channel equalization [7]. The adaptive filters need 
real-time responses in these applications. LMS and 
Recursive Least Square (RLS) algorithms are the two 
most commonly-used adaptive algorithms [8]. LMS 
has a low computation complexity which is 
proportional to the number of taps M in the filter, but 
its convergence rate slows down due to input signal 
correlation. RLS has a fast convergence rate but 
requires an enormous computation power 
proportional to 

2M . Notably, in acoustic echo 
cancellation under an 8 kHz sampling rate, the 
adaptive filter would require up to around 2,000 
coefficients to estimate adequately the spatial 
impulse response of a room. Hence, the RLS 
algorithm may use up the hardware's computation 
resources to estimate the response. On the other hand, 
while LMS has a slower convergence rate than RLS, 
its low computation complexity still makes it a 
popular algorithm. Many studies have attempted to 
enhance the convergence performance of the LMS 
algorithm by either raising its convergence rate or 
lowering its estimation error. 

Fig. 2 depicts a block diagram of system 
identification using adaptive filtering. The LMS 
algorithm includes three processes: filtering output, 
computing error and adapting coefficients [9]. Hence, 
the duration for sampling an input signal and 
generating an output signal can be divided into three 
stages as described below: 
Filtering output 

)()()( nnny T xw= ,                       (1) 
Computing error 

)()()( nyndne −= ,                       (2) 
Adapting coefficients 

)()()()1( nnenn xww μ+=+               (3) 
The term [ ])(,),(),()( 1n-Mx1nxnxn +−=x  
denotes the input vector; )(nd represents the actual 
output of an unknown system )(nw , and )(ny  is 
the output of the filter employed to estimate )(nd . 
Additionally, )(ne  given by the difference between 

)(nd  and )(ny , represents the filter’s estimation 
error, and μ  denotes the step size controlling the 
adaptation amount of filter coefficients. 
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Fig. 2  System identification block diagram. 
 

By way of the adaptive digital filter, we can 
understand the system impulse response. The system 
characteristic is totally reflected on the impulse 
response. Therefore, the analysis of an unknown 
system can be completed by an impulse response 
especially for system identification issues. Besides, 
the system transfer function and frequency response 
are derived from impulse response. In this paper, we 
will refer to the adaptive digital filter as a linearly 
modeling system. The input is ECG similarly as 

)(nx  shown in Fig. 2, the output BPW similar 
to )(ny  expressed in Eq. (1). It is like the BPW 
which is induced by ECG. 
 
2.2 PSO algorithm 
Particle swarm optimization (PSO), first introduced 
by Kennedy and Eberhart [10] in 1995, is a recent 
addition to the list of global search methods. It is a 
population-based stochastic optimization technique 
with self-adaptive mechanism based on the 
movement of swarms and inspired by social behavior 
of bird flocking or fish schooling. In the past several 
years, PSO has been successfully applied in many 
different application areas, such as design of 
antennas of communication systems, system 
identifications on control engineering, etc, due to its 
robustness and simplicity [11]. Instead of using 
genetic operations, such as crossover and mutation of 
genetic algorithms (GA), to manipulate the 
individuals, each particle in PSO flies in the search 
space with velocity which is dynamically adjusted 
according to its own flying experience and its flying 
companion’s experience. As a result, trajectory of 
each individual is influenced by its own successful 
experiences, as well as the successes of its neighbors. 
Toward the end of the optimization, most particles 
converge to the global optimum, which expectedly 
results into the best design. In comparison to GA, 
PSO has a simpler configuration with fewer 
complicated operations during the evolution process. 
Because of these advantages, PSO has received 
increasing attention in recent years. 

The PSO is initiated by randomly allocating 
particle positions in the solution space. Assume that 
there are I particles in a swarm 

{ })()()()( 21 tttt IxxxX =  at instant t, where 
)(tix  represents the thi  particle in the search space. 

At each iteration, the particles’ velocities are 
calculated according to  
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,  (4) 
and the particles’ positions are updated by  

tttttt iii Δ⋅Δ++=Δ+ )()()( vxx ,          (5) 
where tΔ  is the duration between iterations, w  
represents an inertia coefficient, 1c  and 2c  are 
acceleration constants, ()rand  is a function 
generating random numbers with uniform 
distribution from within [0  1], )(tbest

ix  and 
)(tbestx  represent the best ever position of particle i 

(i.e. local best) and the global best position in the 
swarm at instant t, respectively. For problems with N 
parameters to be optimized, each particle comprises 
N factors, i.e., ( )Niiii xxx ,2,1,=x . 
Velocities associated with ix  are accordingly 

represented as ( )Niiii vvv ,2,1,=v . 
As shown in Eqs. (4) and (5), there are 3 terms 

affecting the velocities of each particle in a swarm, in 
which the first term is relevant to the velocities in the 
previous generation, while the second and the third 
terms are closely related to the best ever position of 
particle i and global best position in the swarm, 
respectively. Based on the evolutionary mechanism, 
particles are evolved toward the attainment of global 
optimal solutions with the help of the ‘local best’ of 
each particle and ‘global best’ of the swarm, taking 
account the spontaneity of particles as well as the 
evolutionary trend of the swarm. 

Particles in a conventional PSO evolve 
according to the velocity-updating rule in Eq. (4), 
which takes account of the local best )(tbest

ix  and 

global best )(tbestx  without reference to the 
evolution experience of other particles in the swarm. 
It suffices to say that each particle evolves 
independently. To improve the particle’s velocity to 
efficiently evolve to the optimal positions, 
conventional approaches generally achieve this 
objective by increasing the number of particles in a 
swarm. However, the increase of particle numbers 
inevitably demands extra computation in each 
iteration, resulting in longer evolution time required 

H 

W

＋ 
)(nx  )(nd  )(ne

)(ny  
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to obtain the results. For objective functions with 
more complexities, the situation will be even worse. 
As attempts to solve this problem, several techniques 
were proposed by altering the inertia coefficient [11] 
and acceleration constants [12] to improve the 
velocities during evolution process. Simulation 
results, however, show inconsistent evolution 
performances for different objective functions by 
using these techniques. 

 
3 Computer Simulations 
The ECG and BPW signal samples are extracted by 
PowerLab Systems of the ADInstruments Corp. 
The ECG of lead II and BPW of a radial artery 
non-invasively detected at the wrist using a 
piezoelectric transducer were simultaneously 
recorded for 10s and digitized at a sampling rate of 
1000 Hz. The 3 dB frequencies of the low-pass filter 
are 50 Hz for ECG and BPW. 
 The study subjects were composed of two 
groups. The first group consisted of 20 healthy 
subjects whose health checks are normal and without 
any reported cardiovascular disease. The second 
group was composed of 20 patients with 
cardiovascular-related diseases. All the subjects were 
rested for about twenty minutes to get a steady pulse 
waveform, and then detected their ECG and BPW 
signals by the instruments descried above.  

Each test subject can have a pair of output 
signals, ECG and BPW. After further computation of 
these two signals by linearly modeling system, we 
can then obtain the adapting coefficients as in (3). 
The adapting coefficients are shown in Fig. 3. Since 
it is not obvious to compare the characteristic 
difference in time domain among these adapting 
coefficients, the adapting coefficients are converted 
into frequency domain which governs signal 
characteristic by amplitude and frequency. In Fig. 4, 
the amplitude and frequency of each adapting 
coefficient are demonstrated. 

It is worth noting that there exists zero-crossing 
rate of the gradient for the amplitude and phase 
curves. In the following, an evolutionary technique 
PSO is adopted to cluster the zero-crossing rate of 
gradient for the corresponding healthy samples and 
patient ones. 
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Fig. 3  Adapting coefficients of a linearly modeling 
system 
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Fig. 4  The frequency responses of the adapting 

coefficients 
 
The clustering between healthy samples and 

patient ones is performed as follows. 
Step 1  Each pair of the ECG and BPW signals from 

one individual are fed into the linearly 
modeling system. The BPW is the output of 
the linearly modeling system. By using least 
mean square algorithm, we then calculate 
the adapting coefficients, nhhh ...21 , where 
n  = 128.   

Step 2   Converting every adapting coefficients, 
nhhh ...21  into the signal amplitude and 

phase frequency response. 
Step 3  Count the zero-crossing rate along the curve 

of both signal amplitude and phase, and let 
it be the eigenvalues. 

Step 4  According to the zero-crossing rate in both 
of signal Phase and Amplitude, we calculate 
the mean value 1u  for both the healthy 
samples and 2u  for the patient ones, 
respectively. 

Step 5  By using PSO algorithm, a point pu  on 

the line connecting 1u  and 2u  can be 
obtained. Try to find the most suitable 
slope of this line passing the pu . After 
PSO optimization process, an optimal 
separating line which passes pu  can be 
found. 

    Since the previous coefficients of the phase and 
amplitude curves have much more variation, we 
focus on zero-crossing rate only along with the 
previous 30 coefficients. In Fig. 5, the 
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horizontal-axis stands for the zero-crossing rate of 
phase, and vertical-axis the zero-crossing rate of 
amplitude. Besides, symbol ‘ ’ denotes the healthy 
samples and ‘× ’ the patient ones. Additionally, there 
may not involve whole ‘ ’ or ‘× ’ notations as the 
original test samples because some test samples with 
the same characteristic values will locate on identical 
positions.  

In Fig. 5, the mean values of 1u and 2u  are 
connected by solid line 1L . The dotted line 2L  
represents a separating cut to distinguish the ‘ ’ and 
‘× ’ samples. We can find that PSO algorithm can be 
successfully applied on the identification of 
cardiovascular system disease. The final 
identification rate can reach to 80%. Meanwhile, 
only about 10 iterations are required for the overall 
simulation to find the optimal point pu .  
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Fig. 5 The identification results by using the 

proposed scheme. The ‘ ’ notations 
represent health samples and ‘× ’ represent 
abnormal samples. 

  
4 Conclusions 
Since the heart and arterial system play an important 
role in the human body, cardiovascular-related 
diseases have been one of the major causes of death. 
Furthermore, they often cause sudden death without 
warning. To identify the initial pathological sign of a 
disease in advance, it is helpful to study the system 
characteristics. Regarding the system level analysis, 
it is particularly important to comprehend the power 
flow from input to output. 

In this paper, the cardiovascular system is 
simulated by the linearly modeling system. Based on 
the modeling system, the cardiovascular disease 
samples can be successfully identified. We 
discovered that either signal amplitude or phase of 
the frequency response of the healthy samples is 
significantly smaller than that of the cardiovascular 

disease samples. In order to effectively classify those 
samples with the eigenvalues, the mean value 1u  
for both the healthy samples and 2u  for the patient 
ones were calculated respectively. After that, we 
connected 1u  and 2u , and applied the PSO on the 
line to search a optimal position of classification. 
Through the PSO clustering, the identification rate 
can reach to 80%. We had also tried the k-means 
approach to cluster the zero-crossing rate of gradient 
sample. Nevertheless, due to the position mixing of 
the zero-crossing rate for both the healthy samples 
and the patient ones, k-means algorithm can not 
present a better identification rate. 

In summary, the results provide us with a new 
scope to study blood circulation using the linearly 
modeling system. It should be noted that for each 
human body organ, there may exist difference in 
frequency response derived from ECG or BPW. We 
also observed that the zero-crossing rate of the 
corresponding frequency response should be used as 
a measured index. If we can establish the database of 
the zero-crossing rate of gradient, it will become 
very useful and convenient to discriminate healthy 
cases from patients in detecting the 
cardiovascular-related diseases.       
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