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A topological order for a rectangular covering problem
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Abstract: We consider a rectangular covering problem, where a regtangupportP is covered by rectangular
piecesC;, for i=1, 2, ..., k without gaps or overlapping. We intend to cover the supportith the k pieces in

a certain order so that, at the moment of the placement ofidee @’;, the northern and western borders of this
piece are completely covered. Starting from a graph reptaten of a covering model we prove that this order is
a topological order. We present a kind of topological sgrfor this problem, of linear complexity. At the end we
present some practical applications of this topologicedkar
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1 Introduction

The covering problems appear in many fields starting
from mathematical problems up to practical problems
of cutting-covering [4], problems of pattern recogni-
tion [5], or problems of communications [9]. On the
other hand, the topological sort of a set of elements is
an often treated problem, details can be found in in-
troductory algorithm literatures [2] [3]. The problem
is more complicated if the elements of the set are two-
dimensional and there are more sorting criteria which
must be fulfilled simultaneously (see for example [1],
where the elements are triangles). We are dealing in
this paper with the following ordering of a rectangular
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Figure 1: A rectangular covering model

covering problem: starting from the covering model,
(that can be obtained for example as in [4]), which
will be the order of the covering pieces for the place-
ment on the support? In this order we are taking into
account that at the moment of the placement of a piece

by the componeni§;, without gaps or overlapping.

Example 1. Let the covering model from Fig-
ure 1. whereP(235x164), C;(75x57), C5(37x57),
C3(42x107), C4(22x107), C5(59x107), Cg(30x57),

C;, the northern and western borders of this piece are C7(51x33),Cs(154x57),C9(112x50),C10(51x24).

completely covered. Also we take as starting point
for covering procces the N-W corner of the support
and for ending point the S-E corner. The problem can
be extended by choosing another starting, respectively
ending point, depending on the technological restric-
tions of some practical problems.

LetP, arectangular plate, characterized by length
| and widthw. The plateP is covered withk rectan-
gular piecesC; ,i=1, 2, ..., k characterized by length
{; and widthw;.

In the set of the rectangleg”, Cs, , Ci} from
the covering model we define a downwards adjacency
relation and a rightwards adjacency relation.

Definition 2 The rectangle’; is downward adjacent
with rectangleC; if in the covering model(; is to
be found downward’; and their borders have at least
two common points.

Definition 3 The rectangleC; is rightward adjacent
with rectangleC; if in the covering model(; is to
be found rightward”; and their borders have at least
two common points.

Definition 1 A rectangular covering model is an ar-
rangement of the k rectangular componefitson the
supporting plateP, so thatP is completely covered
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Figure 2: Graphgr; andG,

LetC={Cy,Cy, ...,Cx } andRy, R, ¢ C. For
any covering model, we can define a graptdown-
wards adjacencyGy, and another one afghtwards
adjacencyG,.

Definition 4 [6] The graph of downward adjacency
Gq = (CU{R4}, I'y) has as vertices the rectangles
Ci, Cs, ..., Cy and a new vertex®; symbolizing the
northern borderline of the supporting plate P;(C;)

= Cj ifand only ifC; is downward adjacent with';.
I'q(Rq) = Cj if and only if there is no4{1, 2, ..., K
so thatC; is downward adjacent with’; (the vertices
without ascendants of the subgragh = (C, T'y) are
connected to the vertek, through an arch from ver-
tex Ry).

Definition 5 [6] The graph of rightward adjacency
G, =(CU{R,},T,), whereR, symbolizes the western
border.T'.(C;) = C; if and only if C; is rightward ad-
jacent withC;. I'.(R,4) = Cj if and only if there is no
ie{1, 2, ..., B so thatC; is rightward adjacent with
C; (the vertices without ascendants of the subgraph
G, =(C, T',) are connected to the verte®,. through

an arch from vertex,.).

Example 2.Let the covering model from Figure
1. The graph&7; andG,., are represented in Figure 2.

We remark that in the grapls; andG,. the vertex
R, (respectivelyR,) is connected by means of an arch
of vertex C; if and only if C; touches the northern
(respectively the western) border of the supgert
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Figure 3: The compound graph

2 Compound Graph for the Cover-
ing Model

Due to the properties of the grapig andG,. proved

in [6], it is possible to represent simultaneously these
graphs by a single trivalent adjacency matfixa ma-

trix with elements in{0, 1, 2} (see [8]). It results that
we can build a compound graph fraiy; andG,. as it
follows:

Definition 6 For any covering model, we define the
graph of compound adjacencg. = (C, I';), where
I'.(C;) = C; if and only ifI'4(C;) = C; or I'.(C;) =
Cj;.

The adjacency matrixt’, for G, is similar to the
trivalent matrixT [7, 8], where we omit the first two
columns and lines (corresponding to vertides and
R,) and we replace 2 by 1.

Example 3.Let the covering model from Figure 1.
The compound grap8y. is presented in the Figure 3.

We consider in the following that every arch in the
compound grapldz. has the value 1.

Definition 7 The length of paths in the compound
graph is defined by the function p : & Z(IR")
where p(E) is the set formed with the lengths of the
paths from the northwestern corner to the vertex E.

So the length of a path in the compound graph is
the number of its arches.

Definition 8 The longest path in the compund graph
is defined by the function Ip : & IR™ , where Ip(E)
=max{ x| x € p(E) }, where Ec C.
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Theorem 9 For any rectangular covering model, the
attached compound graph. is acyclic.

Proof: The graphG. is composed of two acyclic
graphs, G; and G,, which represent the covering
model. In [8] it is proved that these two graphs do
not overlap so that if there is an arch fra to C;
in Gg or G, then there is no arch frorg’; to C; in
G4 (respectivelyG,) nor fromC; to C;. In addition,
this property is also extended to the paths in the two
graphs: if there is a path fro; to C; in G4 or G,
then:

e there is no path frony’; to C; in G4 (respectively
Gr);

e there is no path frond’; to C; in G, (respectively
Ga);

e there is no path fron’; to C; in G, (respectively
Ga).

We presume that by the compounding of the two
graphsG, and G, we obtain a cyclic grapléz.. In
this case there is a simple paitin G., which leaves
from an elemenst; and it returns ta5;. This path can
be:

e a path fromG,, but theny can'’t return toS; be-
cause(y, is acyclic;

e a path fromG,., but theny can't return toS; be-
causes,. is acyclic;

e a path compound of paths frodd,; alternating
with paths fromG,..

In this last case, we presume that the pattbe-
gins with an arch fromG,; and has the form
(11, 2, s i), WhETELD; 41 1S @ path ING4 and po;

is a path inG,.. Then the pathu; in G, starts withS;
and goes downwards (to the left or to the right) to a
vertex.S;. Theny continues with the paths in G,
which goes rightwards (up or down) frof} to Sj.

As it is proved in [8] the pathis does not cross
w1 (exceptS;) and is rightwards tuq, so it does not
containS;. Continuing in the same way it results that
no one of the pathgs, us, ..., 1, Can containS;. So
the presumption thak . is cyclic is false. O

Definition 10 [2] A topological sorting of a directed
acyclic graph G = (CI) is a linear ordering of all its
vertices so that, if G contains an arctif, C';) thenC;;
appears in the order befor€;.
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Theorem 11 There is a topological order of the ver-
tices from the set C in the compound gragh

Proof: Applying Theorem 9 and the results from
[3], it results that there is a topological order of the
vertices fromC, because the compound gra@h is
acyclic. O

Due to the Definition 6 of the grapfi.., a topolog-
ical order of the vertices from the s& means that
if there is an arch fronC; to C; in G, i.e. if C; is
on the right ofC; or underC; and has two common
points withC; thenC; appears in the order befo€g .
Returning to the significance of the compound graph
G for a covering model, it results that an elemént
appears in the order after all the elements from the
western and northern border Of.

Theorem 12 The compound graph for a rectangular
covering mode(5, is a particular transport network,
where there is a single vertex without ascendants and
there is a single vertex without descendants.

Proof: Let 54,55, ..., Sk the topological order of
C. In [8] it is proved that there is only one vertex
C; €Ty (Ry) NI, (R,), i.e. a single vertex with-
out ascendants in the graph and this element is the
northwestern corner. Of course this elemerfijisthe
first in the topological order. Also there is only one
C; without descendants if¥. and this element is the
southeastern cornef;. in the topological order. In
addition for everyS; € C there is a path fron%; to
Sk, which goes througly;. O

3 Topological Sorting Algorithm

We can use the algorithm for topological sorting from
[3] or a new algorithm, OVERDIAG, based on our
particular networkG...

3.1 OVERDIAG Algorithm

We proved in 2 that there is a topological ordefip
Then the adjacency matrik’, of GG., where the ver-
tices are in topological order, is an over diagonal ma-
trix with the main diagonal equal to O.

We will base our algorithm on two observations:

1. By changing lines and columns in the adjacency
matrix, the number of elements equal to zero re-
mains unchanged:;

2. We can always find a column with the necessary
number of zeroes.
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If T"is a matrix of dimensiork x k then we have
the next algorithm for transformation of the matrix in
an over diagonal matrix by changing at the same time
a line and a column.

OVERDIAG(T’ k)

fori=1tok-1
{ looking for the column containing - i + 1 zeros,
in the submatrixr’[r, j1 (r =i, ...,k j =1, ...,K) }
forj=itok
num=0
forr=itok

if (T'[r, j]=0) then
num=num+ 1
endif
endfor
if (num=k-i+ 1) then
jfix =]
break
endfor
{ changing lingffix] with line[i]
and columnifix] with column[i] }
forj=itok
T'[ifix, j] < T, ]
endfor
forr=itok
T'[r, jfix] < T'[r, i]
endfor
{ now we have to fix two corners of the rectangle
T'[jfix, jfix] < T'[i, i]
endfor
return

3.1.1 Correctness and Complexity

Applying the OVERDIAG algorithm we change the
order of the verticeg’; so that the adjacency matrix
T’ for the compound graptr. became an over diag-
onal matrix. It follows that7}; = 0 for alli > j and
it is possible to havdl}; # 0 only if i <j. For the
compound grapld-. that means there is an arch from
C;to Cjonly if i < soC; appears befor€’; in the
ordered se€. It follows thatC is topologically sorted.
Remark that the OVERDIAG algorithm is linear
in k2 - the maximal number of edges in the compound
graphG..

4 Conclusions

Rectangular covering problems appear in many do-
mains: covering of a rectangular surface with mate-
rial: linoleum, carpet [4], iron plate, glass etc.
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A problem here, after the determination of a cov-
ering model, is to determine the order in which the
pieces have to be placed (glued) on the support. An
order like this presumes that a piece from the mid-
dle of the surface is not placed until we do not "get”
to this element. This kind of order can be the topo-
logical order given by us, where the placement begins
with the northwestern corner of the surface and it ends
with the southeastern corner. An eleméiitis glued
on the support only if its western and northern borders
are already glued.

We intend to extend these results by considering
an intial starting point and an ending point, which dif-
fer from the northwestern corner, respectively from
the southeastern corner, and which depend on certain
technological conditions.

References:

[1] Chi-Wing Fu, Tien-Tsin Wong, Pheng-Ann
Heng: Triangle-based view Interpolation with-
out depth-buffering, Journal of Graphics Tools,
Vol. 3, Issue 4, 1998, pp.13-31.

Ciurea, E., Ciupala, L.: Algoritmi - Introduc-
ere in algoritmica fluxurilor in retele. Ed. Matrix
ROM Bucuresti 2006.

Cormen, T.H., Leiserson, C.E., Rivest, R.R.,: In-
troduction to Algorithms. MIT Press, 1990.
lacob, P., Marinescu, D., Luca, C.: L-Shape
room. Proceeding of WMSCI Orlando Florida
USA 2005 Vol lll pp. 175-179.

Godoy-Calderon, S., Batiz, J.D., Lazo-Cortez,
M.: A non-Classical View of Coverings and
its Implications in the Formalization of Pattern
Recognition Problems, Proc. of WSEAS Confer-
ence, 2003, paper 459-151.

Marinescu, D.: Graphs attached to a rectangu-
lar cutting-stock model (French), Itinerant Sem-
inar of Functional Equation, Approximation and
Convexity Cluj-Napoca 1988 Preprint No. 6 pp.
209-212.

Marinescu, D.: Properties of the matrices at-
tached to a rectangular cutting-stock model
(French), Buletin of the Transilvania University
of Brasov seria C Vol XXXIV pp 41-48.
Marinescu, D.: A representation problem for
a rectangular cutting-stock model, Foundations
of Computing and Decision Sciences Poznan
Poland (to appear).

Paschos, S.A., Paschos,V.Th., Zissimopoulos,
V.. A model to approximately cover an area by
antennas, Proc. of WSEAS Conference, 2003,
paper 458-187.

[2]

[3]
[4]

[5]

[6]

[7]

[8]

[9]



