A topological order for a rectangular covering problem

DANIELA MARINESCU
Transilvania University of Braşov Department of Computer Science
Iuliu Maniu 50, 500091 Brasov
ROMANIA

PAUL IACOB
Transilvania University of Braşov Department of Computer Science
Iuliu Maniu 50, 500091 Brasov
ROMANIA

KINGA KISS-IAKAB
Transilvania University of Braşov Department of Computer Science
Iuliu Maniu 50, 500091 Brasov
ROMANIA

Abstract

We consider a rectangular covering problem, where a rectangular support \mathcal{P} is covered by k rectangular pieces C_{i}, for $i=1,2, \ldots, k$, without gaps or overlapping. We intend to cover the support \mathcal{P} with the k pieces in a certain order so that, at the moment of the placement of the piece C_{i}, the northern and western borders of this piece are completely covered. Starting from a graph representation of a covering model we prove that this order is a topological order. We present a kind of topological sorting for this problem, of linear complexity. At the end we present some practical applications of this topological order.

Key-Words: covering problem, topological order

1 Introduction

The covering problems appear in many fields starting from mathematical problems up to practical problems of cutting-covering [4], problems of pattern recognition [5], or problems of communications [9]. On the other hand, the topological sort of a set of elements is an often treated problem, details can be found in introductory algorithm literatures [2] [3]. The problem is more complicated if the elements of the set are twodimensional and there are more sorting criteria which must be fulfilled simultaneously (see for example [1], where the elements are triangles). We are dealing in this paper with the following ordering of a rectangular covering problem: starting from the covering model, (that can be obtained for example as in [4]), which will be the order of the covering pieces for the placement on the support? In this order we are taking into account that at the moment of the placement of a piece C_{i}, the northern and western borders of this piece are completely covered. Also we take as starting point for covering procces the $\mathrm{N}-\mathrm{W}$ corner of the support and for ending point the $\mathrm{S}-\mathrm{E}$ corner. The problem can be extended by choosing another starting, respectively ending point, depending on the technological restrictions of some practical problems.

Let \mathcal{P}, a rectangular plate, characterized by length l and width w. The plate \mathcal{P} is covered with k rectangular pieces, $C_{i}, i=1,2, \ldots, k$, characterized by length l_{i} and width w_{i}.

Definition 1 A rectangular covering model is an arrangement of the k rectangular components C_{i} on the supporting plate \mathcal{P}, so that \mathcal{P} is completely covered

Figure 1: A rectangular covering model
by the components C_{i}, without gaps or overlapping.
Example 1. Let the covering model from Figure 1 . where $\mathcal{P}(235 \times 164), C_{1}(75 \times 57), C_{2}(37 \times 57)$, $C_{3}(42 \times 107), C_{4}(22 \times 107), C_{5}(59 \times 107), C_{6}(30 \times 57)$, $C_{7}(51 \times 33), C_{8}(154 \times 57), C_{9}(112 \times 50), C_{10}(51 \times 24)$.

In the set of the rectangles $\left\{C_{1}, C_{2}, C_{k}\right\}$ from the covering model we define a downwards adjacency relation and a rightwards adjacency relation.

Definition 2 The rectangle C_{i} is downward adjacent with rectangle C_{j} if in the covering model, C_{j} is to be found downward C_{i} and their borders have at least two common points.

Definition 3 The rectangle C_{i} is rightward adjacent with rectangle C_{j} if in the covering model, C_{j} is to be found rightward C_{i} and their borders have at least two common points.

Figure 2: Graphs G_{d} and G_{r}

Let $C=\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}$ and $R_{d}, R_{r} \notin C$. For any covering model, we can define a graph of downwards adjacency, G_{d}, and another one of rightwards adjacency, G_{r}.

Definition 4 [6] The graph of downward adjacency $G_{d}=\left(C \cup\left\{R_{d}\right\}, \Gamma_{d}\right)$ has as vertices the rectangles $C_{1}, C_{2}, \ldots, C_{k}$ and a new vertex R_{d} symbolizing the northern borderline of the supporting plate $P . \Gamma_{d}\left(C_{i}\right)$ $=C_{j}$ if and only if C_{i} is downward adjacent with C_{j}. $\Gamma_{d}\left(R_{d}\right)=C_{j}$ if and only if there is no $i \in\{1,2, \ldots, k\}$ so that C_{i} is downward adjacent with C_{j} (the vertices without ascendants of the subgraph $G_{d}=\left(C, \Gamma_{d}\right)$ are connected to the vertex R_{d} through an arch from vertex R_{d}).

Definition 5 [6] The graph of rightward adjacency $G_{r}=\left(C \cup\left\{R_{r}\right\}, \Gamma_{r}\right)$, where R_{r} symbolizes the western border. $\Gamma_{r}\left(C_{i}\right)=C_{j}$ if and only if C_{i} is rightward adjacent with $C_{j} . \Gamma_{r}\left(R_{d}\right)=C_{j}$ if and only if there is no $i \in\{1,2, \ldots, k\}$ so that C_{i} is rightward adjacent with C_{j} (the vertices without ascendants of the subgraph $G_{r}=\left(C, \Gamma_{r}\right)$ are connected to the vertex R_{r} through an arch from vertex R_{r}).

Example 2. Let the covering model from Figure 1. The graphs G_{d} and G_{r}, are represented in Figure 2.

We remark that in the graphs G_{d} and G_{r} the vertex R_{d} (respectively R_{r}) is connected by means of an arch of vertex C_{i} if and only if C_{i} touches the northern (respectively the western) border of the support \mathcal{P}.

Figure 3: The compound graph

2 Compound Graph for the Covering Model

Due to the properties of the graphs G_{d} and G_{r} proved in [6], it is possible to represent simultaneously these graphs by a single trivalent adjacency matrix, T, a matrix with elements in $\{0,1,2\}$ (see [8]). It results that we can build a compound graph from G_{d} and G_{r} as it follows:

Definition 6 For any covering model, we define the graph of compound adjacency, $G_{c}=\left(C, \Gamma_{c}\right)$, where $\Gamma_{c}\left(C_{i}\right)=C_{j}$ if and only if $\Gamma_{d}\left(C_{i}\right)=C_{j}$ or $\Gamma_{r}\left(C_{i}\right)=$ C_{j}.

The adjacency matrix, T^{\prime}, for G_{c} is similar to the trivalent matrix $T[7,8]$, where we omit the first two columns and lines (corresponding to vertices R_{d} and R_{r}) and we replace 2 by 1.

Example 3. Let the covering model from Figure 1. The compound graph G_{c} is presented in the Figure 3.

We consider in the following that every arch in the compound graph G_{c} has the value 1 .

Definition 7 The length of paths in the compound graph is defined by the function $p: C \rightarrow \mathscr{P}\left(\mathbb{R}^{+}\right)$ where $p(E)$ is the set formed with the lengths of the paths from the northwestern corner to the vertex E.

So the length of a path in the compound graph is the number of its arches.

Definition 8 The longest path in the compund graph is defined by the function $l p: C \rightarrow \mathbb{R}^{+}$, where $\operatorname{lp}(E)$ $=\max \{x \mid x \in p(E)\}$, where $E \in C$.

Theorem 9 For any rectangular covering model, the attached compound graph G_{c} is acyclic.

Proof: The graph G_{c} is composed of two acyclic graphs, G_{d} and G_{r}, which represent the covering model. In [8] it is proved that these two graphs do not overlap so that if there is an arch from C_{i} to C_{j} in G_{d} or G_{r} then there is no arch from C_{i} to C_{j} in G_{d} (respectively G_{r}) nor from C_{j} to C_{i}. In addition, this property is also extended to the paths in the two graphs: if there is a path from C_{i} to C_{j} in G_{d} or G_{r} then:

- there is no path from C_{j} to C_{i} in G_{d} (respectively G_{r});
- there is no path from C_{i} to C_{j} in G_{r} (respectively G_{d};
- there is no path from C_{j} to C_{i} in G_{r} (respectively G_{d}).

We presume that by the compounding of the two graphs G_{d} and G_{r} we obtain a cyclic graph G_{c}. In this case there is a simple path μ in G_{c}, which leaves from an element S_{i} and it returns to S_{i}. This path can be:

- a path from G_{d}, but then μ can't return to S_{i} because G_{d} is acyclic;
- a path from G_{r}, but then μ can't return to S_{i} because G_{r} is acyclic;
- a path compound of paths from G_{d} alternating with paths from G_{r}.

In this last case, we presume that the path μ begins with an arch from G_{d} and has the form $\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)$, where $\mu_{2 i+1}$ is a path in G_{d} and $\mu_{2 i}$ is a path in G_{r}. Then the path μ_{1} in G_{d} starts with S_{i} and goes downwards (to the left or to the right) to a vertex S_{j}. Then μ continues with the path μ_{2} in G_{r} which goes rightwards (up or down) from S_{j} to S_{k}.

As it is proved in [8] the path μ_{2} does not cross μ_{1} (except S_{j}) and is rightwards to μ_{1}, so it does not contain S_{i}. Continuing in the same way it results that no one of the paths $\mu_{2}, \mu_{3}, \ldots, \mu_{n}$ can contain S_{i}. So the presumption that G_{c} is cyclic is false.

Definition 10 [2] A topological sorting of a directed acyclic graph $G=(C, \Gamma)$ is a linear ordering of all its vertices so that, if G contains an arch $\left(C_{i}, C_{j}\right)$ then C_{i} appears in the order before C_{j}.

Theorem 11 There is a topological order of the vertices from the set C in the compound graph G_{c}.

Proof: Applying Theorem 9 and the results from [3], it results that there is a topological order of the vertices from C, because the compound graph G_{c} is acyclic.

Due to the Definition 6 of the graph G_{c}, a topological order of the vertices from the set C means that if there is an arch from C_{i} to C_{j} in G_{c} i.e. if C_{j} is on the right of C_{i} or under C_{i} and has two common points with C_{i} then C_{i} appears in the order before C_{j}. Returning to the significance of the compound graph G_{c} for a covering model, it results that an element C_{j} appears in the order after all the elements from the western and northern border of C_{j}.

Theorem 12 The compound graph for a rectangular covering model G_{c} is a particular transport network, where there is a single vertex without ascendants and there is a single vertex without descendants.

Proof: Let $S_{1}, S_{2}, \ldots, S_{k}$ the topological order of C. In [8] it is proved that there is only one vertex $C_{i} \in \Gamma_{d}\left(R_{d}\right) \cap \Gamma_{r}\left(R_{r}\right)$, i.e. a single vertex without ascendants in the graph G_{c} and this element is the northwestern corner. Of course this element is S_{1}, the first in the topological order. Also there is only one C_{i} without descendants in G_{c} and this element is the southeastern corner, S_{k} in the topological order. In addition for every $S_{i} \in C$ there is a path from S_{1} to S_{k}, which goes through S_{i}.

3 Topological Sorting Algorithm

We can use the algorithm for topological sorting from [3] or a new algorithm, OVERDIAG, based on our particular network G_{c}.

3.1 OVERDIAG Algorithm

We proved in 2 that there is a topological order in G_{c}. Then the adjacency matrix T^{\prime}, of G_{c}, where the vertices are in topological order, is an over diagonal matrix with the main diagonal equal to 0 .

We will base our algorithm on two observations:

1. By changing lines and columns in the adjacency matrix, the number of elements equal to zero remains unchanged;
2. We can always find a column with the necessary number of zeroes.

If T^{\prime} is a matrix of dimension $k \times k$ then we have the next algorithm for transformation of the matrix in an over diagonal matrix by changing at the same time a line and a column.

```
OVERDIAG \(\left(T^{\prime}, k\right)\)
    for \(i=1\) to \(k-1\)
    \{ looking for the column containing \(k-i+1\) zeros,
        in the submatrix \(\left.T{ }^{\prime}[r, j](r=i, \ldots, k ; j=i, \ldots, k)\right\}\)
        for \(j=i\) to \(k\)
            num \(=0\)
            for \(r=i\) to \(k\)
                    if \(\left(T^{\prime}[r, j]=0\right)\) then
                        num \(=\) num +1
                    endif
            endfor
            if \((\) num \(=k-i+1)\) then
                    \(j f i x=j\)
                    break
        endfor
        \(\{\) changing line \([j f i x]\) with line \([i]\)
            and column \([j f i x]\) with column \([i]\}\)
        for \(j=i\) to \(k\)
            \(T^{\prime}[j f i x, j] \leftrightarrow T^{\prime}[i, j]\)
        endfor
        for \(r=i\) to \(k\)
            \(T^{\prime}[r, j f x] \leftrightarrow T^{\prime}[r, i]\)
        endfor
        \{ now we have to fix two corners of the rectangle \}
        \(T^{\prime}[j f i x, j f i x] \leftrightarrow T \quad[i, i]\)
    endfor
return
```


3.1.1 Correctness and Complexity

Applying the OVERDIAG algorithm we change the order of the vertices C_{i} so that the adjacency matrix T^{\prime} for the compound graph G_{c} became an over diagonal matrix. It follows that $T_{i j}^{\prime}=0$ for all $i \geq j$ and it is possible to have $T_{i j}^{\prime} \neq 0$ only if $i<j$. For the compound graph G_{c} that means there is an arch from C_{i} to C_{j} only if $i<j$ so C_{i} appears before C_{j} in the ordered set C. It follows that C is topologically sorted.

Remark that the OVERDIAG algorithm is linear in k^{2} - the maximal number of edges in the compound graph G_{c}.

4 Conclusions

Rectangular covering problems appear in many domains: covering of a rectangular surface with material: linoleum, carpet [4], iron plate, glass etc.

A problem here, after the determination of a covering model, is to determine the order in which the pieces have to be placed (glued) on the support. An order like this presumes that a piece from the middle of the surface is not placed until we do not "get" to this element. This kind of order can be the topological order given by us, where the placement begins with the northwestern corner of the surface and it ends with the southeastern corner. An element C_{i} is glued on the support only if its western and northern borders are already glued.

We intend to extend these results by considering an intial starting point and an ending point, which differ from the northwestern corner, respectively from the southeastern corner, and which depend on certain technological conditions.

References:

[1] Chi-Wing Fu, Tien-Tsin Wong, Pheng-Ann Heng: Triangle-based view Interpolation without depth-buffering, Journal of Graphics Tools, Vol. 3, Issue 4, 1998, pp.13-31.
[2] Ciurea, E., Ciupala, L.: Algoritmi - Introducere in algoritmica fluxurilor in retele. Ed. Matrix ROM Bucureşti 2006.
[3] Cormen, T.H., Leiserson, C.E., Rivest, R.R.,: Introduction to Algorithms. MIT Press, 1990.
[4] Iacob, P., Marinescu, D., Luca, C.: L-Shape room. Proceeding of WMSCI Orlando Florida USA 2005 Vol III pp. 175-179.
[5] Godoy-Calderon, S., Batiz, J.D., Lazo-Cortez, M.: A non-Classical View of Coverings and its Implications in the Formalization of Pattern Recognition Problems, Proc. of WSEAS Conference, 2003, paper 459-151.
[6] Marinescu, D.: Graphs attached to a rectangular cutting-stock model (French), Itinerant Seminar of Functional Equation, Approximation and Convexity Cluj-Napoca 1988 Preprint No. 6 pp. 209-212.
[7] Marinescu, D.: Properties of the matrices attached to a rectangular cutting-stock model (French), Buletin of the Transilvania University of Braşov seria C Vol XXXIV pp 41-48.
[8] Marinescu, D.: A representation problem for a rectangular cutting-stock model, Foundations of Computing and Decision Sciences Poznan Poland (to appear).
[9] Paschos, S.A., Paschos,V.Th., Zissimopoulos, V.: A model to approximately cover an area by antennas, Proc. of WSEAS Conference, 2003, paper 458-187.

