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Abstract:We consider a rectangular covering problem, where a rectangular supportP is covered byk rectangular
piecesCi, for i=1, 2, ..., k, without gaps or overlapping. We intend to cover the supportP with the k pieces in
a certain order so that, at the moment of the placement of the pieceCi, the northern and western borders of this
piece are completely covered. Starting from a graph representation of a covering model we prove that this order is
a topological order. We present a kind of topological sorting for this problem, of linear complexity. At the end we
present some practical applications of this topological order.
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1 Introduction
The covering problems appear in many fields starting
from mathematical problems up to practical problems
of cutting-covering [4], problems of pattern recogni-
tion [5], or problems of communications [9]. On the
other hand, the topological sort of a set of elements is
an often treated problem, details can be found in in-
troductory algorithm literatures [2] [3]. The problem
is more complicated if the elements of the set are two-
dimensional and there are more sorting criteria which
must be fulfilled simultaneously (see for example [1],
where the elements are triangles). We are dealing in
this paper with the following ordering of a rectangular
covering problem: starting from the covering model,
(that can be obtained for example as in [4]), which
will be the order of the covering pieces for the place-
ment on the support? In this order we are taking into
account that at the moment of the placement of a piece
Ci, the northern and western borders of this piece are
completely covered. Also we take as starting point
for covering procces the N-W corner of the support
and for ending point the S-E corner. The problem can
be extended by choosing another starting, respectively
ending point, depending on the technological restric-
tions of some practical problems.

LetP, a rectangular plate, characterized by length
l and widthw. The plateP is covered withk rectan-
gular pieces,Ci , i =1, 2, ..., k, characterized by length
li and widthwi.

Definition 1 A rectangular covering model is an ar-
rangement of the k rectangular componentsCi on the
supporting plateP, so thatP is completely covered

Figure 1: A rectangular covering model

by the componentsCi, without gaps or overlapping.

Example 1. Let the covering model from Fig-
ure 1. whereP(235x164), C1(75x57), C2(37x57),
C3(42x107), C4(22x107), C5(59x107), C6(30x57),
C7(51x33),C8(154x57),C9(112x50),C10(51x24).

In the set of the rectangles{C1, C2, , Ck} from
the covering model we define a downwards adjacency
relation and a rightwards adjacency relation.

Definition 2 The rectangleCi is downward adjacent
with rectangleCj if in the covering model,Cj is to
be found downwardCi and their borders have at least
two common points.

Definition 3 The rectangleCi is rightward adjacent
with rectangleCj if in the covering model,Cj is to
be found rightwardCi and their borders have at least
two common points.
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Figure 2: GraphsGd andGr

Let C = { C1 , C2, ...,Ck } andRd, Rr /∈ C. For
any covering model, we can define a graph ofdown-
wards adjacency, Gd, and another one ofrightwards
adjacency, Gr.

Definition 4 [6] The graph of downward adjacency
Gd = (C∪{Rd}, Γd) has as vertices the rectangles
C1, C2, ..., Ck and a new vertexRd symbolizing the
northern borderline of the supporting plate P.Γd(Ci)
= Cj if and only ifCi is downward adjacent withCj.
Γd(Rd) = Cj if and only if there is no i∈{1, 2, ..., k}
so thatCi is downward adjacent withCj (the vertices
without ascendants of the subgraphGd = (C, Γd) are
connected to the vertexRd through an arch from ver-
texRd).

Definition 5 [6] The graph of rightward adjacency
Gr = (C∪{Rr}, Γr), whereRr symbolizes the western
border.Γr(Ci) = Cj if and only ifCi is rightward ad-
jacent withCj. Γr(Rd) = Cj if and only if there is no
i∈{1, 2, ..., k} so thatCi is rightward adjacent with
Cj (the vertices without ascendants of the subgraph
Gr = (C, Γr) are connected to the vertexRr through
an arch from vertexRr).

Example 2.Let the covering model from Figure
1. The graphsGd andGr, are represented in Figure 2.

We remark that in the graphsGd andGr the vertex
Rd (respectivelyRr) is connected by means of an arch
of vertex Ci if and only if Ci touches the northern
(respectively the western) border of the supportP.

Figure 3: The compound graph

2 Compound Graph for the Cover-
ing Model

Due to the properties of the graphsGd andGr proved
in [6], it is possible to represent simultaneously these
graphs by a single trivalent adjacency matrix,T, a ma-
trix with elements in{0, 1, 2} (see [8]). It results that
we can build a compound graph fromGd andGr as it
follows:

Definition 6 For any covering model, we define the
graph of compound adjacency,Gc = (C, Γc), where
Γc(Ci) = Cj if and only ifΓd(Ci) = Cj or Γr(Ci) =
Cj.

The adjacency matrix,T’, for Gc is similar to the
trivalent matrixT [7, 8], where we omit the first two
columns and lines (corresponding to verticesRd and
Rr) and we replace 2 by 1.

Example 3.Let the covering model from Figure 1.
The compound graphGc is presented in the Figure 3.

We consider in the following that every arch in the
compound graphGc has the value 1.

Definition 7 The length of paths in the compound
graph is defined by the function p : C→ P(IR+)
where p(E) is the set formed with the lengths of the
paths from the northwestern corner to the vertex E.

So the length of a path in the compound graph is
the number of its arches.

Definition 8 The longest path in the compund graph
is defined by the function lp : C→ IR+ , where lp(E)
= max{ x | x∈ p(E)}, where E∈ C.
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Theorem 9 For any rectangular covering model, the
attached compound graphGc is acyclic.

Proof: The graphGc is composed of two acyclic
graphs, Gd and Gr, which represent the covering
model. In [8] it is proved that these two graphs do
not overlap so that if there is an arch fromCi to Cj

in Gd or Gr then there is no arch fromCi to Cj in
Gd ( respectivelyGr) nor fromCj to Ci. In addition,
this property is also extended to the paths in the two
graphs: if there is a path fromCi to Cj in Gd or Gr

then:

• there is no path fromCj to Ci in Gd (respectively
Gr);

• there is no path fromCi toCj in Gr (respectively
Gd);

• there is no path fromCj to Ci in Gr (respectively
Gd).

We presume that by the compounding of the two
graphsGd andGr we obtain a cyclic graphGc. In
this case there is a simple pathµ in Gc, which leaves
from an elementSi and it returns toSi. This path can
be:

• a path fromGd, but thenµ can’t return toSi be-
causeGd is acyclic;

• a path fromGr, but thenµ can’t return toSi be-
causeGr is acyclic;

• a path compound of paths fromGd alternating
with paths fromGr.

In this last case, we presume that the pathµ be-
gins with an arch fromGd and has the form
(µ1, µ2, ..., µn), whereµ2i+1 is a path inGd andµ2i

is a path inGr. Then the pathµ1 in Gd starts withSi

and goes downwards (to the left or to the right) to a
vertexSj. Thenµ continues with the pathµ2 in Gr

which goes rightwards (up or down) fromSj to Sk.

As it is proved in [8] the pathµ2 does not cross
µ1 (exceptSj) and is rightwards toµ1, so it does not
containSi. Continuing in the same way it results that
no one of the pathsµ2, µ3, ..., µn can containSi. So
the presumption thatGc is cyclic is false. ut

Definition 10 [2] A topological sorting of a directed
acyclic graph G = (C,Γ) is a linear ordering of all its
vertices so that, if G contains an arch (Ci, Cj) thenCi

appears in the order beforeCj.

Theorem 11 There is a topological order of the ver-
tices from the set C in the compound graphGc.

Proof: Applying Theorem 9 and the results from
[3], it results that there is a topological order of the
vertices fromC, because the compound graphGc is
acyclic. ut

Due to the Definition 6 of the graphGc, a topolog-
ical order of the vertices from the setC means that
if there is an arch fromCi to Cj in Gc i.e. if Cj is
on the right ofCi or underCi and has two common
points withCi thenCi appears in the order beforeCj.
Returning to the significance of the compound graph
Gc for a covering model, it results that an elementCj

appears in the order after all the elements from the
western and northern border ofCj.

Theorem 12 The compound graph for a rectangular
covering modelGc is a particular transport network,
where there is a single vertex without ascendants and
there is a single vertex without descendants.

Proof: Let S1, S2, ..., Sk the topological order of
C. In [8] it is proved that there is only one vertex
Ci ∈ Γd (Rd) ∩ Γr (Rr), i.e. a single vertex with-
out ascendants in the graphGc and this element is the
northwestern corner. Of course this element isS1, the
first in the topological order. Also there is only one
Ci without descendants inGc and this element is the
southeastern corner,Sk in the topological order. In
addition for everySi ∈ C there is a path fromS1 to
Sk, which goes throughSi. ut

3 Topological Sorting Algorithm
We can use the algorithm for topological sorting from
[3] or a new algorithm, OVERDIAG, based on our
particular networkGc.

3.1 OVERDIAG Algorithm

We proved in 2 that there is a topological order inGc.
Then the adjacency matrixT’, of Gc, where the ver-
tices are in topological order, is an over diagonal ma-
trix with the main diagonal equal to 0.

We will base our algorithm on two observations:

1. By changing lines and columns in the adjacency
matrix, the number of elements equal to zero re-
mains unchanged;

2. We can always find a column with the necessary
number of zeroes.
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If T’ is a matrix of dimensionk x k then we have
the next algorithm for transformation of the matrix in
an over diagonal matrix by changing at the same time
a line and a column.

OVERDIAG(T’,k)
for i = 1 tok - 1
{ looking for the column containingk - i + 1 zeros,

in the submatrixT’[r, j] (r = i, ...,k; j = i, ...,k) }
for j = i to k

num= 0
for r = i to k

if (T’[r, j] = 0) then
num= num+ 1

endif
endfor
if (num= k - i + 1) then

jfix = j
break

endfor
{ changing line[jfix] with line[i]

and column[jfix] with column[i] }
for j = i to k

T’[jfix, j] ↔ T’[i, j]
endfor
for r = i to k

T’[r, jfix] ↔ T’[r, i]
endfor
{ now we have to fix two corners of the rectangle}
T’[jfix, jfix] ↔ T’[i, i]

endfor
return

3.1.1 Correctness and Complexity

Applying the OVERDIAG algorithm we change the
order of the verticesCi so that the adjacency matrix
T’ for the compound graphGc became an over diag-
onal matrix. It follows thatT ′

ij = 0 for all i ≥ j and
it is possible to haveT ′

ij 6= 0 only if i < j. For the
compound graphGc that means there is an arch from
Ci to Cj only if i < j soCi appears beforeCj in the
ordered setC. It follows thatC is topologically sorted.

Remark that the OVERDIAG algorithm is linear
in k2 - the maximal number of edges in the compound
graphGc.

4 Conclusions
Rectangular covering problems appear in many do-
mains: covering of a rectangular surface with mate-
rial: linoleum, carpet [4], iron plate, glass etc.

A problem here, after the determination of a cov-
ering model, is to determine the order in which the
pieces have to be placed (glued) on the support. An
order like this presumes that a piece from the mid-
dle of the surface is not placed until we do not ”get”
to this element. This kind of order can be the topo-
logical order given by us, where the placement begins
with the northwestern corner of the surface and it ends
with the southeastern corner. An elementCi is glued
on the support only if its western and northern borders
are already glued.

We intend to extend these results by considering
an intial starting point and an ending point, which dif-
fer from the northwestern corner, respectively from
the southeastern corner, and which depend on certain
technological conditions.
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