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Abstract: Since the ability to describe dynamic in high level, Petri Nets has already been used extensively in
logic circuits and systems community for state analysis. As others formal methods, extending Petri Nets to analog
circuits analysis requires continuous feature enhanced. In this paper, the object of study is dynamic of circuits
with random nonlinear feature (such as random noise and random interface) by using a Hybrid Statistical Petri Net
(HSPN). A formal definition of hybrid Petri Net is derived from hybrid automata to model the dynamic of nonlinear
analog circuits. Furthermore, we improve the hybrid Petri Net to abstract the statistical feature by enhancing the
ability of describe random continuous transition. And a formal definition of the novel Hybrid Statistical Petri Net
is presented. Within this HSPN, the fundamental method of analyzing the dynamic of random analog circuits is
studied. A sample circuit with random noise illustrates this technique.
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1 Introduction

Recently, As an alternative approach to verify circuits,
formal method which bases on the finite state abstrac-
tion of analog circuits has been studied in several pre-
vious works [1] [2] [3] [4] [5]. They extend for-
mal verification method to nonlinear analog circuits.
In [1] [3], an analog system is approximated by a dis-
crete system in which classical model-checking algo-
rithms can be applied. [2] [4] present a potential ex-
tension of formal verification methodology in order to
deal with time-domain properties of nonlinear circuits
whose dynamic behavior is described by differential
algebraic equations. An other significative paper [5]
introduces the algorithm for approximating the reach-
able sets of analog system.

From the point of manufacturing technology, the
fluctuation caused by random features in circuits be-
comes more and more significant. This stochastic dy-
namic has to be considered and evaluated in early level
of design works. Since formal verification method-
ologies have been introduced into the field of analog
nonlinear circuits, they can model this random fluc-
tuation by enhancing in nonlinear statistical charac-
ters. However the statistical evaluation needs to uti-
lize some statistical natured methods such as the Petri
Net with statistical transition factors. In this paper,
we propose and study a novel Hybrid statistical Petri
Net(HSPN) in this research corner. HSPN is derived
from hybrid automata, and extended to the continuous

statistical transition. HSPN has the ability that ana-
lyze the hybrid dynamic system with nonlinear statis-
tic.

The remainder of this paper is organized as fol-
lows. In section 2, we propose a brief introduction
of hybrid automata, since this method is derived from
hybrid automata. Then we propose and study the ap-
proach to model nonlinear analog circuits by using hy-
brid automata. And we propose the Hybrid Petri Net
which is based on the hybrid automata. This Petri Net
operates with a variable continuous transition veloc-
ity. In section 3, the Hybrid Petri Net is extended to
stochastic analog transition of which velocity follows
the given stochastic distribution. And the definition
of HSPN is presented in this section. Since the non-
linear noise in oscillator circuits affects its phase and
duty cycle in random, in the fourth section, the HSPN
based method is explained by analyzing the statistical
feature of relaxation oscillator’s phase and duty cycle.
Finally, we drawn a conclusion in section 5.
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2 Hybrid Petri Net Model Derived
from Hybrid Automata

2.1 Introduction to Hybrid Automata Based
Model

2.1.1 Definition
A hybrid automata H is assigned as a 6-tuple H =
〈Q,X, Init, f,Dom,Reset〉 [6], in which

• Q is the finite set of discrete variable with values
in Q;

• X is the finite set of continuous variables with
values in X = R2;

• Init ⊆ Q× Xis the set of initial states;

• f : Q×X→ TXis the vector field;

• Dom ⊆ Q×X is the domain of H;

• Reset: Q×X→ P (Q×X) is the reset relation.

From the definition, hybrid automata is an efficient
model to abstract the system with both continuous and
discrete dynamics. Some analog circuits have proved
to be a system with both dynamics. The method to
model analog circuits by using hybrid automata is pre-
sented as follows.

2.1.2 Hybrid Automata Model of Analog Circuits
An analog system (including analog circuits) can be
described as a DAE (differential algebraic equations)
[2] [7].

f(ẋ(t), X(t), u(t)) = 0 (1)

in which x(t) is the vector of system variables and u(t)
denotes the vector of input variables.

We denote γ(t, x0, u(t)) as the solution of (1) at
t, and Φ as the space of whole solutions In a time slice
T = {t|0 ≤ t ≤ t′}, the solution vector space can be
denoted as (2).

Φ(X0, t) = {γ(t, x0, u(t))|t ∈ Tandx0 ∈ X0andu(t) ∈ U}
(2)

where X0 is the initial condition set of DAE and T is
the set of time slice, and Φ(X0, t) ∈ Φ.

If there are some hard nonlinear boundaries in the
vector space of solutions, this continuous space can be
divided into several continuous sub-spaces with the
boundary. Each of the continuous sub-space can be
represented by a discrete state q ∈ Q in semantic (Q
denotes the discrete variable in hybrid automata def-
inition). The continuous dynamic, which continuous
variables in space Φ change from one sub-space to an-
other, can be represented by the discrete states transi-
tion, i.e. if we refer that discrete state q1 transit to state

q2, it will means that the vector γ changes from sub-
space q1 to sub-space q2. The discrete state such q rep-
resents a set of continuous variables X in semantic(X
is defined in hybrid automata).

The transition of discrete states is a result
that continuous variables change with time, e.g.
two discrete states q1 and q2 map to the contin-
uous variable set Φ1(X0, t1) and Φ2(X1, t2) sep-
arately. These two sets form a consequence
Φ1(X0, t1),Φ2(φ1(X0, t1), t2), i.e. these two sets
have the same convex polyhedron when q1 transits to
q2.

The hybrid automata model provides a fundamen-
tal abstraction to analog circuits, and some important
circuit property can be analysis.

2.2 Hybrid Petri Nets Derived from Hybrid
Automata

In [8], a Timed Hybrid Petri Net(THPN) is introduced
into circuits verification. However, the velocity of
continuous transitions is constant, i.e. the dynamic
response reacts in the fixed velocity. From the view
of the general definition of hybrid automata [2], the
velocity of continuous transition is a continuous func-
tion. And the fire rate of discrete transitions is re-
stricted by this function. It is more significant for
mixed-signal circuits. Besides that, in analog circuits,
the flow of electric charge can be abstracted as the
flow of continuing token in hybrid Petri net. Review-
ing the hybrid automata defined in section 2.1, the hy-
brid Petri net can not model the hybrid dynamic sys-
tem until it is expanded the fixed firing velocity of
continuous transition to a variable.

According to the traditional hybrid Petri Net
[9], we define a Hybrid Petri Net(HPN) with timed
variable firing velocity as a 7-tuple HPN =<
P, T, F,B,M, δ, ν > where:

• P: PD ∪ PC , PD is discrete place, and PC is the
continuous place;

• T: TD ∪ TC , TD is discrete transition , and TC is
the continuous transition;

• F ⊆ (P × T ) ∪ (T × P ) is a relation specifying
the arcs from place to transition and vice versa.
F ⊆ (PX×TY )∪(TX×PY ) forX,Y ∈ (D,C);

• B: (PC ×TD)→ (−∞∪Q)× (Q∪∞) assigns
a set of bound [bl(p, t), bu(p, t)] for all continu-
ous places with arcs to discrete transition where
bl(p, t) ≤ bu(p, t) and Q is a rational. If the value
of continuous place current marking exceed the
bound (upper or lower), the discrete transition
with a arc from the continuous place will enable;
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• M is the set of marking where m0 is assigned to
be the initial marking of hybrid Petri net. The
initial marking must be within the bound B;

• δ: time delay variable associating to each dis-
crete transition;

• ν: is the firing velocity of continuous transition.

3 Statistical Factor Set in Hybrid
Petri Net

The HPN defined in section 2.2 abstracts the both con-
tinuous and discrete dynamics of analog circuits. Be-
cause the noise affects the dynamic in random, the
HPN needs to be extend to statistic field.

It is assumed that all the nonlinear random noise
can be isolated from the both continuous and discrete
transition. We add the statistical continuous transi-
tion to HPN defined in section 2.2. And this transition
following some given probability density function is
abstracted as the statistical effect of noise.

The Hybrid Petri Net is extended to the Hybrid
Statistical Petri Net(HSPN) as a 8-tuple HSPN =<
P, T, F,B,M, δ, νC , νS > in which:

• P is the same with the one defined in section 2.2;

• T : TD∪TC∪TS , TD is discrete transition , TC is
the continuous transition, and TS is the statistical
transition;

• F ⊆ (PX×TY )∪(TX×PY )∪(PC×TS)∪(TS×
PC) for X,Y ∈ (D,C), statistical transition is
added to the arc relation set.

• B, M and δ are the same with the definition in
section 2.2;

• νC denotes the absolute velocity function with-
out statistical effect;

• νS denotes the statistical velocity function (non-
linear function) which follows a given stochastic
distribution (such as Gauss Distribution).

Since variables disturbed by random noise are always
continuous, and the statistical distribution is continu-
ous, the statistical transition is defined to be continu-
ous. And it is the statistical continuous transition that
causes the fluctuation of discrete states. It is illustrated
in Fig. 1, the HSPN of the relaxation oscillator which
we will explain in section four.

Pφ1 and Pφ2 are denote the discrete places. e.g.
the charging state and discharging state. Due to the
control of the fire condition by continuous place PC1

Figure 1: Hybrid Petri Net Model of Relaxation Os-
cillator

(its boundary conditions controls the discrete transi-
tion), the change of discrete states is restricted by con-
tinuous state. Transitions TNC1 and TNC2 are two
statistical transition. They cause the random fluctu-
ation of variable in place PC1. Therefor a model of
state transition with random fluctuation is abstracted
by HSPN.

4 Transient Noise Analysis of Relax-
ation Oscillator

The output voltage of relaxation oscillator changes pe-
riodically with the charging and discharging of capac-
itor. Such as Fig. 2, where V1 and V2 denote two
reference voltages of Schmitt Comparator. If the volt-
age of capacitor (VC) is lower than reference voltage
V1, Schmitt circuit output a high level voltage Vdd. On
the other hand, if VC is higher than reference voltage
V2, Schmitt circuit output a low GND.

Figure 2: Schematic of Relaxation Oscillator
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4.1 Analysis of Random Phase Noise
The time constant of RC based oscillator is denoted as
τ = RC (the total resistance and total capacitance on
Vout node). If the circuit keeps steady, the period of
relaxation oscillator will be very accurate and stable in
theory. Unfortunately, in non-ideal CMOS integrated
circuits, the stochastic property of oscillator always
exists. As for frequency, the noise source connected
to node Vdd disturbs its phase and duty cycle. It makes
the phase and duty cycle act in nonlinear feature with
statistic. If it is assumed that the noise follows Gaus-
sian distribution, the output of relaxation oscillator
can be approximated to a stochastic square wave sig-
nal with mutually independent, Gaussian-distributed
period jitter [10]. The period T0 of relaxation oscilla-
tor is found to be (5).

T1 = RC × ln(
Vdd − V1

Vdd − V2
) (3)

T2 = RC × ln(
V2

V1
) (4)

T0 = T1 + T2 = RC × ln(
Vdd − V1

Vdd − V2
× V2

V1
) (5)

where T1 is the first half period of oscillator, and T2

is the second one. The jitter at each of period can be
found in (5)

∆V 2
C(t) =

kT

C
(1− e−2t/RC) (6)

If we denote VC as the voltage crossing capacitor and
∆VC as the fluctuation of VC . The variance of VC
fluctuation is given by (6).

in which T is circuit temperature and if we as-
sume a duty cycle of 50%, 2t will be replaced by T0.
The detail about phase noise of relaxation oscillator
can be found in [10].

We substitute ∆VC as a fluctuation of the circuit
in Fig. 2. Then the dynamic, noise involved, can be
analyzed.

4.2 Hybrid Petri Net Model of Relaxation
Oscillator

The circuit equation set is showed in (7).

VC(t) =

{
Vdd + e−t/RC(−Vdd + V1) if 0 ≤ t ≤ T1

V2 · et/RC if T1 ≤ t ≤ T2

(7)
The capacitor storing energy in the relaxation oscilla-
tor is the key in modeling.

In order to make discretion simple and clear, and
focus on the nonlinear dynamic caused by statistic,

we linearize (7) by standard PWL (Piecewise Linear)
method [11]. As for preciseness, some more accurate
algorithm can be used in this step.

According to (7), the relaxation oscillator circuit
can be abstracted to two discrete states. One is ca-
pacitor charging state and another one is discharging
state. The system operates as a hybrid automata with
two discrete states.

In Fig. 1, this hybrid Petri net consists of two
parts. The left part represents discrete transition. Dis-
crete place PΦ1 denotes the capacitor charging state
and PΦ2 is the discharging state. The transitions of
discrete states are contributed by continuous states.

In the first half period of oscillator, we de-
note PS as a power source, a continuous place
which provides infinite continuous token, as an ideal
power source provides infinite current (electric charge
source). Continuous place PNS denotes a ideal noise
current source, providing infinite continuous token
too. The last continuous place in the first half period
is PC1 as the state of voltage accumulating in capaci-
tor, of which bound is [V1, V2]. The upper bound is V2,
and its initial value is V1. TC1 is continuous transition.
TNC1 is the statistical transition. The firing velocity of
TC1 follows (6), dVC(t)/dt can be view as the electric
charge flow rate from the source PS (i.e. the charge
current iC(t) = (Vdd − VC(t))/R). And TNC1 fol-
lows the Gaussian distribution with zero mean and a
variance of ∆V 2

C .
If the value of PC1 becomes higher than its upper

bound, the oscillator will move into the second half
period, discharging period. PSINK is viewed as cur-
rent sink to discharge the capacitor, and PNSINK is
another noise source. The firing velocity of transition
TC2 also fellows (7), dVC(t)/dt in discharge period.
Since the noise source in the second half period is in-
dependent, the firing velocity of TNC2 follows inde-
pendent Gaussian distribution with the same parame-
ters.

Once the circuit powers on, the Petri net can start
from the initial mark m0. The discrete token is stored
in place PΦ1, and the current marking of the contin-
uous place PC1(i.e. the initial value of place PC1)
satisfy bound condition, therefore the transition TC1

and TNC1 fires with the variable velocity dVC(t)/dt
and νS until place PC1 reaches its upper bound V2.
The value of PC1 increases with TC1 and TNC1. If
the current marking of PC1 reaches upper bound V2,
the discrete transition TD1 will be fireable, and TD1

fires. The discrete token flows to next discrete place
PΦ2. And the transitions TC1 and TNC1 stop firing
because lost the discrete token. The circuit step into
the second half period.

If the token in place PΦ2 and place PC1 satisfy its
bound condition, TC2 and TNC2 will fire. The contin-
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Table 1: Condition of Simulation

Vdd T R C Frequency in Theory

1.8V 300K 500Ω 10pF 200MHz

Figure 3: The Fluctuation of Duty Cycle

uous place PC1 decreases in value with TC2 and TNC2

till the marking of PC1 reaches its lower bound. If the
lower bound of PC1 is reached, TD2 will be fireable
and fire. Then the discrete token returns to PΦ1. A
period of relaxation oscillator is completed.

In order to obtain the timed information, we com-
pute the time delay variable for the Petri net. Firstly,
when PC1 increases in value, the time delay is calcu-
lated with (m(PC1)−V1)/νsum1 wherem(PC1) is the
marking of PC1 and νsum1 denotes the sum of the ve-
locity of TC1 and TNC1. Then in second half period,
it is (V2 − m(PC1))/νsum2 in which νsum2 denotes
sum of TC2 and TNC2.

4.3 Simulation
Since this TSPN model abstracts the dynamic prop-
erty of relaxation oscillator circuit with random noise,
the stability of duty cycle is analyzed during the TSPN
simulation. The parameters of relaxation oscillator we
used are in Table 1 where the absolute temperature is
approximated to 273 degrees. The theoretic frequency
of this oscillator is 200MHz.

We use Matlab as the platform of simulation.
In order to obtain the non-ideal duty cycle, we set
V1 = 0.6V and V2 = 1.2V . Fig. 3 illustrates the
fluctuation of duty cycle caused by the random noise.
The vertical axis represents the value of duty cycle,
and the horizontal axis represents the time. If we
change V1 to 0.42V (V1 = 0.24Vdd), V2 to 1.38V . All
the duty cycle approximates to 50%. This result cor-
responds with [10].

5 Conclusion
In this paper, we have highlighted hybrid automata as
a formal method to model the hybrid nonlinear cir-
cuits. Both discrete and continuous dynamics of the
circuit can be analyzed through hybrid automata. De-
riving from it, we propose a novel hybrid Petri net,
HSPN, to analyze the circuits with nonlinear random
noise. HSPN utilizes the hybrid automata based the-
ory and extension of continuous statistical transition
to analyze the hybrid statistical dynamic system.

HSPN proposes a quickly approach to analyze the
dynamic of circuits with random features before the
generation of netlist files. It is important to mention
that HSPN is not only limited in analog phase noise
verification. The all statistical fluctuation of circuits,
which exists in nonlinear dynamic and follows some
given statistical distribution independently, can be an-
alyzed by HSPN. In addition, we plan to find more
fluctuation model to optimize the algorithm of HSPN
simulation, and establish an automatic platform to rec-
ognize the circuits in hardware description language
in the future.
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