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Abstract: In this paper we study the techniques of linear combinations starting from the studies made by H.
Bohman (1952), PL.Butzer (1953; [2]), ( PP. Korovkin (1953); [11]), T. Popovici (1959; [13]), D.D. Stancu ([15])
respectively the results obtained by E. W. Cheney and A. Sharma[3], S. Eisenberg and B. Wood [16], M. Frentiu
[5], A. Lupas [9], [10], R. Martini [12]. We define the linear combinations for Favard-Szasz S,, operators we
obtain different estimation of the remainder for SL%} operator.
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1 Introduction
The Favard - Szasz operators are defned by

supw) =y el (1),

k!
k=0

(n=12... ,). If further f istwice differentiable
at x, there holds the asymptotic relation

lim n[(S.f)(@) - f(a)] = 51" (@).
For their proofs etc. see E. W. Cheney and A.
Sharma[3], S. Eisenberg and B. Wood [4], M. Frentiu
[5], A. Lupas[7], [8], R. Martini [12], B. Wood [16].
We derive a few basic formulae about Favard -
Széasz operators. We define

andmy, =n"6,,, r=0,1,2,...

We have
S = — mzf(m_l)nka PG
T k=0 k "
Now

%’m = —ndp,m+

—i—e*mi(—m) <§ _ $>m1 (n:c)k+

k=0

o0

ey (% - ””)m EZQ"_ DI

k=1

mn
== _n(sn,m - m5n,m—1 + E(én,m-‘rl + x(sn,m)-
Thus
T o
5n,m+1 = E((Sn,m + mén,m*1)>

2

mn7m+1 = x(mgz,m + nm mn,m—l)-

Science 6, 0 = 1, 0,1 = 0, using (1) or (2) we easily
find (see M. Frentiu [5])

2
T T 3z x
5n,2:ﬁa 571,,3:?’ 5n,4zﬁ ﬁ’
1022 x
Ons = —5 + — ©)
n, n3 n4>

1523 N 2522

G = DL r o
" n3 n nd’

Let us assume that for & < m,
5n,k =0 (1/71}5[)

where |¢[ denotes the smallest integer not less that .
By (1) we have

m—2
S — 723_1 (m — 1) ko < 1k ) _
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1
=0 — | .
<n]2[>

Hence by (3) we find that
1
Onp,m = O (W) ., m=23,.. (4
ni2

Let f(¢) beafunction bounded an all segments of
non-negative real axis such that f(%)(t) exists at t =
x and that f(¢) does not grow more rapidly that some
power of ¢t ast — oo. Infact using of S. Eisenberg
and B. Wood [4] we may take f to be of exponential
type o for some o > 0. It follows therefore that (see
[14])

k0 (2) e,
(Snf)(w) = f(2) + Z; 5 Oni@) 5 )
J:
wheree,, — 0 asn — oco. From (3) we have
Mn,o0 = 17 mnp1 = 07 Mp2 = NI, Mp3 =N,

My 4 = 3nz? + nT, Mys= 1022n? + nxt,

M = 150323 + 25n™2? + nx, ...

and in general we can write m,, ,» as a polynomial in
n, of the form similar to the one of Bernstein polyno-
mials

mn,r(m) = @Z}r,r’(x)nw + ¢r,r’—1(x)nT,_1+
| ©
+wr,r*’—2(x)nr -2 +...+ wr,l(x)n7

which is of degree ' = | =r|, where [t] denotes the

largest integer not greater that ¢, with +, ,»_; being
polynomialsin z, independent of n.

2 Thelinear combination of Favard -
Szasz operators

We define the same combination for these operators
as PL. Butzer used for (B,, f)(x). Thus the combina-

tions (S £)(x) of (S, f)(x) are defined inductively
asfollows:

SP=s,,

2ks[2k 2]

(2k . 1)57[3]6] 51[12]»(:—2]7 (7)

S}fk} €y = €9.

Then we have
Sr[L%] = agSak, + gp_1S9k-1, + ... +aSn, (8)

where «; are real constants depending on & only such
that
ap +op_1+ ... +ag=1. 9

Let us note that only those values of f that are
needed in computing S2k,, are utilized in constructing
S[%]

Let us define the quantltlesg[mC (x),
r=1,23,..;k=012..;n=12_., by
& =6, (10
(2F — 1)¢l2H = okl 2k =10

Asin the case of Bernstein polynomials we have

Lemmal If f(2k+29) (1) exists at the point z, then

- 2(k+s) f(r) (z) K] -
Sn (.’IJ) = f(l') + E 7'! 577,,7“ (I') + n]g+57
= (11)

wheree,, — 0asn — oo.

Proof. It isthe same asthat for Bernstein Polyno-
mials. Assume (11) holds; then if f(2k+25+2)(1) ex-
ists, we show that (11) holdswith & replaced by k + 1
and since (11) istrue for kK = 0 by (5), the proof will
follow by induction. We have

2k+2s5+2

S[Qk] Z f 2k] (z)+ €n

nk—l—s—l—l )

replacing s by s + 1 in (11). By (7) and (10) we have
(@1 = 1) |SE (@) - ()] =

— ok+1 {ngk] _ f} _ [57[12143] _ f} _

k42542
FO(@) ok

_ ok+1 Z; - ggn}r(‘r)_

2k+25+2

f [2k En
Z J;) + nkts+1’

which proves the lemma.

Now we state our main theorem giving the ap-
proximation for 2k - times differentiable function by
SL2H (x). The proof isthe same as for Bernstein poly-
nomials.
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Theorem 2 If f2%)(z) exists at the point z, then

S A@) — f@)| = 0w (@2

and

S (@) = f(@)| =otn™), (13
asn —o00,k=1,2,....

Proof. By lemma 1
2k (r)
2% o S®@) ow | En
SPH — f = E_ng’LL,T}_FW?

en — 0,asn — oo. So, if we show that

50 ()

rl

=00, 9

r=1

then (13) will follow. First we prove
Lemma 3 Wth &2 defined by (10)
PHz)=0for 1 <r<k+1, (15)

M)y =0m ™ Yforr=1,2,3,... (16)

To proveit, by (6) we have
€00 () = ()R~ + (17)

+¢r,r’,1(.’£>ﬁ(r—r’+l) R wr,l(x)n_(r_l)-

The difference operator connecting ¢[2#! with
€122 transform n=° to (2= — 1)n—° whichis zero
if & = s exactly asin the case of Bernstein polyno-
mials. Thus, operating on the right-hand side of (17)
with difference operators for s = 1,2,3,...,k and
omitting vanishing terms we have

PH (@) = s ()n D 4
(18)
o+ (@),

where the v; () are polynomialsin 2 independent of
n. This proves (16). For k +1 > r — 1, all terms
vanish and (15) follows, proving lemma.

Thus (13) and (17) follows by lemma 1 and (16),
and the proof of the theorem is complete.

In particular for k£ = 3 in the theorem the explicit
formulae are

lim n® |SH (z) — f(a:)] = lim n? [§S4n(f;$)—

n—oo n—oo

2Sau(fix) + LSu(fix) f<x>] ~ @9

fO@) 5 2O 15 4 fO)
4! 4 5! 8 6!

1
= -
8
and

lim 73 [5[61 (z) f(x)} -

n
n—oo

. [64 56
nh_)rgon‘i [ﬁsgn(f;x) — ﬁsm(f;x)Jr (20)

4
F3rSu(fio) = grS(fia) = )] <o

3 Approximation of function in
C?0, a]

Let
Y={f:[0,00) = R,[f(z)] < A(f)e"",
JA(f) > 0,B > 0}
and f € C?*[0,a], a > 0.

Theorem 4 Let f € Y N C?0,a], a > 0. Then, we
have
<

(S 1)(@) - f(@)

C k) 1 C’
Smax{mw<f( );%>,W}a z € [0, a]
where C = C(k) and C" = C'(k; f).

Proof: With can write

2k F@) (g
1) - fa) = 3o - o/
=1
+w[f(2k) ()= FPO (@) A (@) +(t—z) ™ h(t, )
(2k)! |

withm > k, foral ¢t > 0, withz € [0,a] and n lying
between ¢ and x. Here ) is the characteristic function
of [0, a| and h is bounded by a positive constant M .

k
SEHf — f = {aj[Sain — f1} =

J=0

k 00
> {aj FY) - f(x)}ty,zjn(w)} -

7=0 v=0
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k oo 2 v ) (z)‘r
= ZO&jZZ(2_jE _x)lf Z'( )tu,2jn(x)+

j=0  v=0i=1

k o0
" Z A Z ( FERER)
j=0  v=0
_ ((jf)) tu,2jn($))\(2_j%)+
+ Z Qj Z )2 h (2 % L)ty 9in () =

where §;
Now

ZZ i! tuajn(z) =

v=0 i=1

2k oo

-3 3

i=1 v=0
—zfgﬂ 124z)
Therefore
> - S S asell 00
=1 j=0
2k

Zg[%( )f()( )

7!
=1

Then from lemma3wehave |, | < Cin~ kL.
To evaluate ZQ we proceed as follows:

0 (2—]'% _ :E)Qk
ZOW ‘f(zk)(fj)—

- x)thV,an(x) +

1 v
52270 - w|2’“+1tu,2jn<x>} .
v=0

This expression does not exceed

w(f®;8) [ Ap Al
@R\ @) @iyt [

=¢(v) isbetweenz and277%,0 < j < k.

Then

)= e (e )

(2]n)k+2

with § = n‘%, we have

S| < e (1t

n
2

We have

k 00
<MY g (27
7=0 v=0

- x)thu,an(m) <

k
A, Cs
< MZ | (2in)m < k1’
j=0

The theorem follows from these estimates.

Corollary 5 Let f € Y N Lip,[0,al, a > 0. Then

(SH ) (@) — f() SMﬁ, .

where M is a constant independent of x.

€ [0, a]
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