Approximation Properties of a Sequence of Linear and Positive Operators

DANIEL FLORIN SOFONEA
University "Lucian Blaga"
Department of Mathematics
Dr. I. Raţiu Street, No. 5-7, Sibiu
ROMANIA

Abstract: In this paper we study the techniques of linear combinations starting from the studies made by H . Bohman (1952), P.L.Butzer (1953; [2]), (P.P. Korovkin (1953); [11]), T. Popovici (1959; [13]), D.D. Stancu ([15]) respectively the results obtained by E. W. Cheney and A. Sharma [3], S. Eisenberg and B. Wood [16], M. Frenţiu [5], A. Lupaş [9], [10], R. Martini [12]. We define the linear combinations for Favard-Szász S_{n} operators we obtain different estimation of the remainder for $S_{n}^{[2 k]}$ operator.

Key-Words: Approximation Theory, Linear Positive Operators. Typing manuscripts, $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$

1 Introduction

The Favard - Szász operators are defned by

$$
\left(S_{n} f\right)(x)=e^{-n x} \sum_{k=0}^{\infty} \frac{(n x)^{k}}{k!} f\left(\frac{k}{n}\right)
$$

$(n=1,2, \ldots \ldots$,$) . If further f$ is twice differentiable at x, there holds the asymptotic relation

$$
\lim _{n \rightarrow \infty} n\left[\left(S_{n} f\right)(x)-f(x)\right]=\frac{x}{2} f^{\prime \prime}(x)
$$

For their proofs etc. see E. W. Cheney and A. Sharma [3], S. Eisenberg and B. Wood [4], M. Frenţiu [5], A. Lupaş [7], [8], R. Martini [12], B. Wood [16].

We derive a few basic formulae about Favard Szász operators. We define

$$
\delta_{n, r}=e^{-n x} \sum_{k=0}^{\infty}\left(\frac{k}{n}-x\right)^{r} \frac{(n x)^{k}}{k!}
$$

and $m_{n, r}=n^{r} \delta_{n, r}, \quad r=0,1,2, \ldots$.
We have

$$
\begin{equation*}
\delta_{n, m}=\frac{x}{n^{m-1}} \sum_{k=0}^{m-2}\binom{m-1}{k} n^{k} \delta_{n, k} \tag{1}
\end{equation*}
$$

Now

$$
\begin{gathered}
\delta_{n, m}^{\prime}=-n \delta_{n, m}+ \\
+e^{-n x} \sum_{k=0}^{\infty}(-m)\left(\frac{k}{n}-x\right)^{m-1} \frac{(n x)^{k}}{k!}+
\end{gathered}
$$

$$
\begin{gathered}
+e^{-n x} \sum_{k=1}^{\infty}\left(\frac{k}{n}-x\right)^{m} \frac{(n x)^{k-1}}{(k-1)!} n= \\
=-n \delta_{n, m}-m \delta_{n, m-1}+\frac{n}{x}\left(\delta_{n, m+1}+x \delta_{n, m}\right)
\end{gathered}
$$

Thus

$$
\begin{equation*}
\delta_{n, m+1}=\frac{x}{n}\left(\delta_{n, m}^{\prime}+m \delta_{n, m-1}\right) \tag{2}
\end{equation*}
$$

$$
m_{n, m+1}=x\left(m_{n, m}^{\prime}+n m m_{n, m-1}\right)
$$

Science $\delta_{n, 0}=1, \delta_{n, 1}=0$, using (1) or (2) we easily find (see M. Frenţiu [5])

$$
\begin{gather*}
\delta_{n, 2}=\frac{x}{n}, \delta_{n, 3}=\frac{x}{n^{2}}, \delta_{n, 4}=\frac{3 x^{2}}{n^{2}}+\frac{x}{n^{3}}, \\
\delta_{n, 5}=\frac{10 x^{2}}{n^{3}}+\frac{x}{n^{4}}, \tag{3}\\
\delta_{n, 6}=\frac{15 x^{3}}{n^{3}}+\frac{25 x^{2}}{n^{4}}+\frac{x}{n^{5}}, \ldots
\end{gather*}
$$

Let us assume that for $k<m$,

$$
\delta_{n, k}=\mathcal{O}\left(1 / n^{1 \frac{k}{2}[}\right)
$$

where $] t$ [denotes the smallest integer not less that t. By (1) we have

$$
\delta_{n, m}=\frac{x}{n^{m-1}} \sum_{k=0}^{m-2}\binom{m-1}{k} n^{k} \mathcal{O}\left(\frac{1}{n^{\frac{k}{2}}[}\right)=
$$

$$
=\mathcal{O}\left(\frac{1}{n^{]^{\frac{m}{2}}}}\right)
$$

Hence by (3) we find that

$$
\begin{equation*}
\delta_{n, m}=\mathcal{O}\left(\frac{1}{n^{\frac{m}{2}[}}\right), \quad m=2,3, \ldots \tag{4}
\end{equation*}
$$

Let $f(t)$ be a function bounded an all segments of non-negative real axis such that $f^{(2 k)}(t)$ exists at $t=$ x and that $f(t)$ does not grow more rapidly that some power of t as $t \rightarrow \infty$. In fact using of S . Eisenberg and B. Wood [4] we may take f to be of exponential type α for some $\alpha>0$. It follows therefore that (see [14])

$$
\begin{equation*}
\left(S_{n} f\right)(x)=f(x)+\sum_{j=1}^{2 k} \frac{f^{(j)}(x)}{j!} \delta_{n, j}(x)+\frac{\varepsilon_{n}}{n^{j}} \tag{5}
\end{equation*}
$$

where $\varepsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$. From (3) we have

$$
\begin{gathered}
m_{n, 0}=1, \quad m_{n, 1}=0, \quad m_{n, 2}=n x, \quad m_{n, 3}=n x \\
m_{n, 4}=3 n^{2} x^{2}+n x, \quad m_{n, 5}=10 x^{2} n^{2}+n x \\
m_{n, 6}=15 n^{3} x^{3}+25 n^{n} x^{2}+n x, \ldots
\end{gathered}
$$

and in general we can write $m_{n, r}$ as a polynomial in n, of the form similar to the one of Bernstein polynomials

$$
\begin{align*}
& m_{n, r}(x)=\psi_{r, r^{\prime}}(x) n^{r^{\prime}}+\psi_{r, r^{\prime}-1}(x) n^{r^{\prime}-1}+ \tag{6}\\
& \quad+\psi_{r, r^{-\prime}-2}(x) n^{r^{\prime}-2}+\ldots+\psi_{r, 1}(x) n
\end{align*}
$$

which is of degree $r^{\prime}=\left[\frac{1}{2} r\right]$, where $[t]$ denotes the largest integer not greater that t, with $\psi_{n, r^{\prime}-i}$ being polynomials in x, independent of n.

2 The linear combination of Favard Szász operators

We define the same combination for these operators as P.L. Butzer used for $\left(B_{n} f\right)(x)$. Thus the combinations $\left(S_{n}^{[2 k]} f\right)(x)$ of $\left(S_{n} f\right)(x)$ are defined inductively as follows:

$$
\begin{gather*}
S_{n}^{[0]} \equiv S_{n} \\
\left(2^{k}-1\right) S_{n}^{[2 k]} \equiv 2^{k} S_{2 n}^{[2 k-2]}-S_{n}^{[2 k-2]} \tag{7}\\
S_{n}^{[2 k]} e_{0}=e_{0}
\end{gather*}
$$

Then we have

$$
\begin{equation*}
S_{n}^{[2 k]}=\alpha_{k} S_{2^{k} n}+\alpha_{k-1} S_{2^{k-1} n}+\ldots+\alpha_{0} S_{n} \tag{8}
\end{equation*}
$$

where α_{i} are real constants depending on k only such that

$$
\begin{equation*}
\alpha_{k}+\alpha_{k-1}+\ldots+\alpha_{0}=1 \tag{9}
\end{equation*}
$$

Let us note that only those values of f that are needed in computing $S_{2} k_{n}$ are utilized in constructing $S_{n}^{[2 k]}$.

Let us define the quantities $\xi_{n, r}^{[2 k]}(x)$, $r=1,2,3, \ldots ; k=0,1,2, \ldots ; n=1,2, \ldots$, by

$$
\begin{equation*}
\xi_{n, r}^{[0]} \equiv \delta_{n, r} \tag{10}
\end{equation*}
$$

$$
\left(2^{k}-1\right) \xi_{n, r}^{[2 k]}=2^{k} \xi_{2 n, r}^{[2 k-2]}-\xi_{n, r}^{[2 k-2]}, \quad k=1,2, \ldots
$$

As in the case of Bernstein polynomials we have
Lemma 1 If $f^{(2 k+2 s)}(x)$ exists at the point x, then

$$
\begin{equation*}
S_{n}^{[2 k]}(x)=f(x)+\sum_{r=1}^{2(k+s)} \frac{f^{(r)}(x)}{r!} \xi_{n, r}^{[2 k]}(x)+\frac{\varepsilon_{n}}{n^{k+s}} \tag{11}
\end{equation*}
$$

where $\varepsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$.
Proof. It is the same as that for Bernstein Polynomials. Assume (11) holds; then if $f^{(2 k+2 s+2)}(x)$ exists, we show that (11) holds with k replaced by $k+1$ and since (11) is true for $k=0$ by (5), the proof will follow by induction. We have

$$
S_{n}^{[2 k]}(x)=r(x)+\sum_{r=1}^{2 k+2 s+2} \frac{f^{(r)}(x)}{r!} \xi_{n, r}^{[2 k]}(x)+\frac{\varepsilon_{n}}{n^{k+s+1}}
$$

replacing s by $s+1$ in (11). By (7) and (10) we have

$$
\begin{aligned}
& \left(2^{k+1}-1\right)\left[S_{n}^{[2 k+2]}(x)-f(x)\right]= \\
= & 2^{k+1}\left[S_{2 n}^{[2 k]}-f\right]-\left[S_{n}^{[2 k]}-f\right]= \\
= & 2^{k+1} \sum_{r=1}^{2 k+2 s+2} \frac{f^{(r)}(x)}{r!} \xi_{2 n, r}^{[2 k]}(x)- \\
& -\sum_{r=1}^{2 k+2 s+2} \frac{f^{(r)}(x)}{r!} \xi_{n, r}^{[2 k]}(x)+\frac{\varepsilon_{n}}{n^{k+s+1}}
\end{aligned}
$$

which proves the lemma.
Now we state our main theorem giving the approximation for $2 k$ - times differentiable function by $S_{n}^{[2 k]}(x)$. The proof is the same as for Bernstein polynomials.

Theorem 2 If $f^{(2 k)}(x)$ exists at the point x, then

$$
\begin{equation*}
\left|S_{n}^{[2 k-2]}(x)-f(x)\right|=\mathcal{O}\left(n^{-k}\right) \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|S_{n}^{[2 k]}(x)-f(x)\right|=o\left(n^{-k}\right) \tag{13}
\end{equation*}
$$

as $n \rightarrow \infty, k=1,2, \ldots$.
Proof. By lemma 1

$$
S_{n}^{[2 k]}-f=\sum_{r=1}^{2 k} \frac{f^{(r)}(x)}{r!} \xi_{n, r}^{[2 k]}+\frac{\varepsilon_{n}}{n^{k}},
$$

$\varepsilon_{n} \rightarrow 0$, as $n \rightarrow \infty$. So, if we show that

$$
\begin{equation*}
\sum_{r=1}^{2 k} \frac{f^{(r)}(x)}{r!} \xi_{n, k}^{[2 k]}=\mathcal{O}\left(n^{-k-1}\right) \tag{14}
\end{equation*}
$$

then (13) will follow. First we prove
Lemma 3 With $\xi_{n, r}^{[2 k]}$ defined by (10)

$$
\begin{gather*}
\xi_{n, r}^{[2 k]}(x)=0 \text { for } 1 \leq r \leq k+1, \tag{15}\\
\xi_{n, r}^{[2 k]}(x)=\mathcal{O}\left(n^{-k-1}\right) \text { for } r=1,2,3, \ldots \tag{16}
\end{gather*}
$$

To prove it, by (6) we have

$$
\begin{gather*}
\xi_{n, r}^{[0]}(x)=\psi_{r, r^{\prime}}(x) \bar{n}^{\left(r-r^{\prime}\right)}+ \tag{17}\\
+\psi_{r, r^{\prime}-1}(x) \bar{n}^{\left(r-r^{\prime}+1\right)}+\ldots+\psi_{r, 1}(x) n^{-(r-1)}
\end{gather*}
$$

The difference operator connecting $\xi^{[2 k]}$ with $\xi^{[2 k-2]}$ transform n^{-s} to $\left(2^{k-s}-1\right) n^{-s}$ which is zero if $k=s$ exactly as in the case of Bernstein polynomials. Thus, operating on the right-hand side of (17) with difference operators for $s=1,2,3, \ldots, k$ and omitting vanishing terms we have

$$
\begin{gather*}
\xi_{n, r}^{[2 k]}(x)=\psi_{k+1}(x) n^{-(k+1)}+\ldots \tag{18}\\
\ldots+\psi_{r-1}(x) n^{-(r-1)}
\end{gather*}
$$

where the $\psi_{i}(x)$ are polynomials in x independent of n. This proves (16). For $k+1>r-1$, all terms vanish and (15) follows, proving lemma.

Thus (13) and (17) follows by lemma 1 and (16), and the proof of the theorem is complete.

In particular for $k=3$ in the theorem the explicit formulae are
$\lim _{n \rightarrow \infty} n^{3}\left[S_{n}^{[4]}(x)-f(x)\right]=\lim _{n \rightarrow \infty} n^{3}\left[\frac{8}{3} S_{4 n}(f ; x)-\right.$

$$
\begin{align*}
& \left.-2 S_{2 n}(f ; x)+\frac{1}{3} S_{n}(f ; x)-f(x)\right]= \tag{19}\\
= & \frac{1}{8} x \frac{f^{(4)}(x)}{4!}+\frac{5}{4} x^{2} \frac{f^{(5)}(x)}{5!}+\frac{15}{8} x^{3} \frac{f^{(6)}(x)}{6!}
\end{align*}
$$

and

$$
\lim _{n \rightarrow \infty} n^{3}\left[S_{n}^{[6]}(x)-f(x)\right]=
$$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{3}\left[\frac{64}{21} S_{8 n}(f ; x)-\frac{56}{21} S_{4 n}(f ; x)+\right. \tag{20}
\end{equation*}
$$

$$
\left.+\frac{14}{21} S_{2 n}(f ; x)-\frac{1}{21} S_{n}(f ; x)-f(x)\right]=0
$$

3 Approximation of function in $C^{2 k}[0, a]$

Let

$$
\begin{gathered}
\mathcal{Y}=\left\{f:[0, \infty) \rightarrow \mathbb{R},|f(x)| \leq A(f) e^{B x}\right. \\
, A(f)>0, B>0\}
\end{gathered}
$$

and $f \in C^{2 k}[0, a], a>0$.
Theorem 4 Let $f \in \mathcal{Y} \cap C^{2 k}[0, a], a>0$. Then, we have

$$
\begin{gathered}
\left|\left(S_{n}^{[2 k]} f\right)(x)-f(x)\right| \leq \\
\leq \max \left\{\frac{C}{n^{k}} \omega\left(f^{(2 k)} ; \frac{1}{\sqrt{n}}\right), \frac{C^{\prime}}{n^{k+1}}\right\}, x \in[0, a]
\end{gathered}
$$

where $C=C(k)$ and $C^{\prime}=C^{\prime}(k ; f)$.
Proof: With can write

$$
\begin{gathered}
f(t)-f(x)=\sum_{i=1}^{2 k}(t-x)^{i} \frac{f^{(i)}(x)}{i!}+ \\
+\frac{(t-x)^{2 k}}{(2 k)!}\left[f^{(2 k)}(\eta)-f^{(2 k)}(x)\right] \lambda(t)+(t-x)^{2 m} h(t, x)
\end{gathered}
$$

with $m>k$, for all $t \geq 0$, with $x \in[0, a]$ and η lying between t and x. Here λ is the characteristic function of $[0, a]$ and h is bounded by a positive constant M.

$$
\begin{gathered}
S_{n}^{[2 k]} f-f=\sum_{j=0}^{k}\left\{\alpha_{j}\left[S_{2} j_{n}-f\right]\right\}= \\
\sum_{j=0}^{k}\left\{\alpha_{j} \sum_{\nu=0}^{\infty}\left[f\left(2^{-j} \frac{\nu}{n}\right)-f(x)\right] t_{\nu, 2^{j} n}(x)\right\}=
\end{gathered}
$$

$$
\begin{gathered}
=\sum_{j=0}^{k} \alpha_{j} \sum_{\nu=0}^{\infty} \sum_{i=1}^{2 k}\left(2^{-j} \frac{\nu}{n}-x\right)^{i} \frac{f^{(i)}(x)}{i!} t_{\nu, 2^{j} n}(x)+ \\
+\sum_{j=0}^{k} \alpha_{j} \sum_{\nu=0}^{\infty} \frac{\left(2^{-j} \frac{\nu}{n}-x\right)^{2 k}}{(2 k)!}\left(f^{(2 k)\left(\xi_{n}\right)}-\right. \\
\left.\quad-f_{(x)}^{(2 k)}\right) t_{\nu, 2^{j} n}(x) \lambda\left(2^{-j} \frac{\nu}{n}\right)+ \\
+\sum_{j=0}^{k} \alpha_{j} \sum_{\nu=0}^{\infty}\left(2^{-j} \frac{\nu}{n}-x\right)^{2 m} h\left(2^{-j} \frac{\nu}{n}, x\right) t_{\nu, 2^{j} n}(x)= \\
=\sum_{1}+\sum_{2}+\sum_{3},
\end{gathered}
$$

where $\xi_{j}=\xi_{j}(\nu)$ is between x and $2^{-j} \frac{\nu}{n}, 0 \leq j \leq k$. Now

$$
\begin{gathered}
\sum_{\nu=0}^{\infty} \sum_{i=1}^{2 k}\left(2^{-j} \frac{\nu}{n}-x\right)^{i} \frac{f^{(i)}(x)}{i!} t_{\nu, 2} j_{n}(x)= \\
=\sum_{i=1}^{2 k} \sum_{\nu=0}^{\infty}\left(2^{-j} \frac{\nu}{n}-x\right)^{i} t_{\nu, 22^{j} n}(x) \frac{f^{(i)}(x)}{i!}= \\
=\sum_{i=1}^{2 k} \xi_{2^{j}, i}^{[0]}(x) \frac{f^{(i)}(x)}{i!}
\end{gathered}
$$

Therefore

$$
\begin{aligned}
\sum_{1}= & \sum_{i=1}^{2 k} \sum_{j=0}^{k} \alpha_{j} \xi_{22_{n, i}}^{[0]}(x) \frac{f^{(i)}(x)}{i!}= \\
& =\sum_{i=1}^{2 k} \xi_{n, i}^{[2 k]}(x) \frac{f^{(i)}(x)}{i!}
\end{aligned}
$$

Then from lemma 3 we have $\left|\sum_{1}\right| \leq C_{1} n^{-k-1}$.
To evaluate \sum_{2} we proceed as follows:

$$
\begin{gathered}
\left.\sum_{\nu=0}^{\infty} \frac{\left(2^{-j} \frac{\nu}{n}-x\right)^{2 k}}{(2 k)!} \right\rvert\, f^{(2 k)}\left(\xi_{j}\right)- \\
-f_{(x)}^{(2 k)} \left\lvert\, \lambda\left(2^{-j} \frac{\nu}{n}\right) t_{\nu, 2^{j} n}(x) \leq\right. \\
\leq \frac{\omega\left(f^{(2 k)} ; \delta\right)}{(2 k)!}\left\{\sum_{\nu=0}^{\infty}\left(2^{-j} \frac{\nu}{n}-x\right)^{2 k} t_{\nu, 2^{j} n}(x)+\right. \\
\left.+\frac{1}{\delta} \sum_{\nu=0}^{\infty}\left|2^{-j} \frac{\nu}{n}-x\right|^{2 k+1} t_{\nu, 2^{j} n}(x)\right\} .
\end{gathered}
$$

This expression does not exceed

$$
\frac{\omega\left(f^{(2 k)} ; \delta\right)}{(2 k)!}\left\{\frac{A_{k}}{\left(2^{j} n\right)^{k}}+\frac{A_{k}^{\prime}}{\delta\left(2^{j} n\right)^{k+\frac{1}{2}}}\right\} .
$$

Then

$$
\left|\sum_{2}\right| \leq \frac{\omega\left(f^{(2 k)} ; \delta\right)}{(2 k)!} \sum_{j=0}^{k}\left|\alpha_{j}\right|\left(\frac{A_{k}}{\left(2^{j} n\right)^{k}}+\frac{A_{k}^{\prime}}{\left(2^{j} n\right)^{k+\frac{1}{2}}}\right),
$$

with $\delta=n^{-\frac{1}{2}}$, we have

$$
\left|\sum_{2}\right| \leq \frac{C_{2}}{n^{k}} \omega\left(f^{(2 k)} ; n^{-\frac{1}{2}}\right) .
$$

We have

$$
\begin{aligned}
&\left|\sum_{3}\right| \leq M \sum_{j=0}^{k}\left|\alpha_{j}\right| \sum_{\nu=0}^{\infty}\left(2^{-j} \frac{\nu}{n}-x\right)^{2 m} t_{\nu, 2^{j} n}(x) \leq \\
& \leq M \sum_{j=0}^{k}\left|\alpha_{j}\right| \frac{A_{m}}{\left(2^{j} n\right)^{m}} \leq \frac{C_{3}}{n^{k+1}}
\end{aligned}
$$

The theorem follows from these estimates.
Corollary 5 Let $f \in \mathcal{Y} \cap \operatorname{Lip}_{\alpha}[0, a], a>0$. Then

$$
\left|\left(S_{n}^{[2 k]} f\right)(x)-f(x)\right| \leq M \frac{1}{n^{k} \sqrt{n^{\alpha}}}, x \in[0, a]
$$

where M is a constant independent of x.

References:

[1] Aramã O., Proprietãţi privind monotonia şirului polinoamelor de interpolare ale lui S.N. Bernstein şi aplicarea lor la studiul aproximãrii funcţiilor. Studii şi cercetãri de matematica (Cluj) VIII (1957) 195-210, MR 23\#A1986 a;
[2] Butzer P.L., Linear combination of Bernstein polynomials. Canad. J. Math, 1953, 107-113.
[3] Cheney E.W.; Sharma A., Bernstein power series. Can. J. Math. 16, 1964, 241-252.
[4] Eisenberg S.; Wood B., On the order of approximation of unbounded functions by positive linear operators. SIAM J. Numer. Anal. 9, 1972, 266276.
[5] M. Frențiu , Combinaţii liniare de polinoame Bernstein şi de operatori Mirakyan, series Math-ematica-Mechanica, fasciculus 1, 1970, 63-68.
[6] Lorentz G.G., Bernstein Polynomials. University of Toronto Press, Toronto Ont. 1953.
[7] Lupaş A., A property of the S.N. Bernstein operator. Mathematica Cluj, 9(32), 1967, 2, 299301, MR 37 \# 6417.
[8] Lupaş A., On Bernstein Power Series. Matematica (Cluj), Volumul 8(31), 2, 1966, 287-296.
[9] Lupaş A., The approximation by means of some linear positive operators. IDoMAT 95, March 13-17, (1995).
[10] Lupaş A., Contribuţii la teoria aproximãrii prin operatori liniari., Tezã de Doctorat (Cluj), (1976).
[11] Korovkin P.P., Lineinie operatori i teoria priblijenii. Fizmatgiz, (1959).
[12] Martini R., On the approximation functions toghether with their derivatives by certain liniar positive operators. Nederl. Akad. Wetensch. Proc. Ser. A 72 = Indag. Math. 31, 1969, 473481.
[13] Popoviciu T., Sur le reste dans certaines formules linéaires d'approximation de l'analyse. Mathematica (Cluj), 1(24), (1959), 95-143, MR 23 \#B 2567.
[14] Sofonea F., Linear Combinations of FavardSzász Operators, Proceeding of the 11th Symposium of Mathematics and its Application, "Politehnica" University of Timişoara, ISSN 12246069, (2006), 248-253.
[15] Stancu D.D., Evaluation of the remainder term in approximation formulas by Bernstein polynomials, Math. Comp. 83, 1963, 270-278.
[16] Wood B., Generalized Szász Operators for the approximation in the complex domain, Siam, J. Appl. Math., 17, 1969, 790-801.

