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Abstract: In this paper we study the techniques of linear combinations starting from the studies made by H.
Bohman (1952), P.L.Butzer (1953; [2]), ( P.P. Korovkin (1953); [11]), T. Popovici (1959; [13]), D.D. Stancu ([15])
respectively the results obtained by E. W. Cheney and A. Sharma [3], S. Eisenberg and B. Wood [16], M. Frenţiu
[5], A. Lupaş [9], [10], R. Martini [12]. We define the linear combinations for Favard-Szász Sn operators we
obtain different estimation of the remainder for S

[2k]
n operator.
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1 Introduction
The Favard - Szász operators are de£ned by

(Snf)(x) = e−nx
∞∑

k=0

(nx)k

k!
f

(
k

n

)
,

(n = 1, 2, ......, ). If further f is twice differentiable
at x, there holds the asymptotic relation

lim
n→∞n[(Snf)(x) − f(x)] =

x

2
f ′′(x).

For their proofs etc. see E. W. Cheney and A.
Sharma [3], S. Eisenberg and B. Wood [4], M. Frenţiu
[5], A. Lupaş [7], [8], R. Martini [12], B. Wood [16].

We derive a few basic formulae about Favard -
Szász operators. We define

δn,r = e−nx
∞∑

k=0

(
k

n
− x

)r (nx)k

k!

and mn,r = nrδn,r , r = 0, 1, 2, ....
We have

δn,m =
x

nm−1

m−2∑
k=0

(
m − 1

k

)
nkδn,k. (1)

Now
δ′n,m = −nδn,m+

+e−nx
∞∑

k=0

(−m)
(

k

n
− x

)m−1 (nx)k

k!
+

+e−nx
∞∑

k=1

(
k

n
− x

)m (nx)k−1

(k − 1)!
n =

= −nδn,m − mδn,m−1 +
n

x
(δn,m+1 + xδn,m).

Thus

δn,m+1 =
x

n
(δ′n,m + mδn,m−1),

mn,m+1 = x(m′
n,m + nm mn,m−1).

(2)

Science δn,0 = 1, δn,1 = 0, using (1) or (2) we easily
find (see M. Frenţiu [5])

δn,2 =
x

n
, δn,3 =

x

n2
, δn,4 =

3x2

n2
+

x

n3
,

δn,5 =
10x2

n3
+

x

n4
,

δn,6 =
15x3

n3
+

25x2

n4
+

x

n5
, . . . .

(3)

Let us assume that for k < m,

δn,k = O
(
1/n] k

2
[
)

where ]t[ denotes the smallest integer not less that t.
By (1) we have

δn,m =
x

nm−1

m−2∑
k=0

(
m − 1

k

)
nkO

(
1

n] k
2
[

)
=
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= O
(

1
n]m

2
[

)
.

Hence by (3) we find that

δn,m = O
(

1
n]m

2
[

)
, m = 2, 3, .... (4)

Let f(t) be a function bounded an all segments of
non-negative real axis such that f (2k)(t) exists at t =
x and that f(t) does not grow more rapidly that some
power of t as t → ∞. In fact using of S. Eisenberg
and B. Wood [4] we may take f to be of exponential
type α for some α > 0. It follows therefore that (see
[14])

(Snf)(x) = f(x) +
2k∑

j=1

f (j)(x)
j!

δn,j(x) +
εn

nj
, (5)

where εn → 0 as n → ∞. From (3) we have

mn,0 = 1, mn,1 = 0, mn,2 = nx, mn,3 = nx,

mn,4 = 3n2x2 + nx, mn,5 = 10x2n2 + nx,

mn,6 = 15n3x3 + 25nnx2 + nx, . . . ;

and in general we can write mn,r as a polynomial in
n, of the form similar to the one of Bernstein polyno-
mials

mn,r(x) = ψr,r′(x)nr′ + ψr,r′−1(x)nr′−1+

+ψr,r−′−2(x)nr′−2 + . . . + ψr,1(x)n,

(6)

which is of degree r′ =
[
1
2
r

]
, where [t] denotes the

largest integer not greater that t, with ψn,r′−i being
polynomials in x, independent of n.

2 The linear combination of Favard -
Szász operators

We define the same combination for these operators
as P.L. Butzer used for (Bnf)(x). Thus the combina-

tions (S[2k]
n f)(x) of (Snf)(x) are defined inductively

as follows:

S[0]
n ≡ Sn,

(2k − 1)S[2k]
n ≡ 2kS

[2k−2]
2n − S[2k−2]

n ,

S[2k]
n e0 = e0.

(7)

Then we have

S[2k]
n = αkS2kn + αk−1S2k−1n + ... + α0Sn, (8)

where αi are real constants depending on k only such
that

αk + αk−1 + ... + α0 = 1. (9)

Let us note that only those values of f that are
needed in computing S2kn are utilized in constructing
S

[2k]
n .

Let us define the quantities ξ
[2k]
n,r (x),

r = 1, 2, 3, . . .; k = 0, 1, 2, . . .; n = 1, 2, . . ., by

ξ[0]
n,r ≡ δn,r, (10)

(2k − 1)ξ[2k]
n,r = 2kξ

[2k−2]
2n,r − ξ[2k−2]

n,r , k = 1, 2, . . . .

As in the case of Bernstein polynomials we have

Lemma 1 If f (2k+2s)(x) exists at the point x, then

S[2k]
n (x) = f(x) +

2(k+s)∑
r=1

f (r)(x)
r!

ξ[2k]
n,r (x) +

εn

nk+s
,

(11)
where εn → 0 as n → ∞.

Proof. It is the same as that for Bernstein Polyno-
mials. Assume (11) holds; then if f (2k+2s+2)(x) ex-
ists, we show that (11) holds with k replaced by k + 1
and since (11) is true for k = 0 by (5), the proof will
follow by induction. We have

S[2k]
n (x) = r(x)+

2k+2s+2∑
r=1

f (r)(x)
r!

ξ[2k]
n,r (x)+

εn

nk+s+1
,

replacing s by s + 1 in (11). By (7) and (10) we have

(2k+1 − 1)
[
S[2k+2]

n (x) − f(x)
]

=

= 2k+1
[
S

[2k]
2n − f

]
−

[
S[2k]

n − f
]

=

= 2k+1
2k+2s+2∑

r=1

f (r)(x)
r!

ξ
[2k]
2n,r(x)−

−
2k+2s+2∑

r=1

f (r)(x)
r!

ξ[2k]
n,r (x) +

εn

nk+s+1
,

which proves the lemma.
Now we state our main theorem giving the ap-

proximation for 2k - times differentiable function by
S

[2k]
n (x). The proof is the same as for Bernstein poly-

nomials.
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Theorem 2 If f (2k)(x) exists at the point x, then∣∣∣S[2k−2]
n (x) − f(x)

∣∣∣ = O(n−k) (12)

and ∣∣∣S[2k]
n (x) − f(x)

∣∣∣ = o(n−k), (13)

as n → ∞, k = 1, 2, . . ..

Proof. By lemma 1

S[2k]
n − f =

2k∑
r=1

f (r)(x)
r!

ξ[2k]
n,r +

εn

nk
,

εn → 0, as n → ∞. So, if we show that

2k∑
r=1

f (r)(x)
r!

ξ
[2k]
n,k = O(n−k−1), (14)

then (13) will follow. First we prove

Lemma 3 With ξ
[2k]
n,r defined by (10)

ξ[2k]
n,r (x) = 0 for 1 ≤ r ≤ k + 1, (15)

ξ[2k]
n,r (x) = O(n−k−1) for r = 1, 2, 3, . . . (16)

To prove it, by (6) we have

ξ[0]
n,r(x) = ψr,r′(x)n̄(r−r′)+ (17)

+ψr,r′−1(x)n̄(r−r′+1) + ... + ψr,1(x)n−(r−1).

The difference operator connecting ξ[2k] with
ξ[2k−2] transform n−s to (2k−s − 1)n−s which is zero
if k = s exactly as in the case of Bernstein polyno-
mials. Thus, operating on the right-hand side of (17)
with difference operators for s = 1, 2, 3, . . . , k and
omitting vanishing terms we have

ξ[2k]
n,r (x) = ψk+1(x)n−(k+1) + . . .

. . . + ψr−1(x)n−(r−1),

(18)

where the ψi(x) are polynomials in x independent of
n. This proves (16). For k + 1 > r − 1, all terms
vanish and (15) follows, proving lemma.

Thus (13) and (17) follows by lemma 1 and (16),
and the proof of the theorem is complete.

In particular for k = 3 in the theorem the explicit
formulae are

lim
n→∞n3

[
S[4]

n (x) − f(x)
]

= lim
n→∞n3

[
8
3
S4n(f ; x)−

−2S2n(f ; x) +
1
3
Sn(f ; x) − f(x)

]
= (19)

=
1
8
x

f (4)(x)
4!

+
5
4
x2 f (5)(x)

5!
+

15
8

x3 f (6)(x)
6!

and

lim
n→∞n3

[
S[6]

n (x) − f(x)
]

=

lim
n→∞n3

[
64
21

S8n(f ; x) − 56
21

S4n(f ; x)+

+
14
21

S2n(f ; x) − 1
21

Sn(f ; x) − f(x)
]

= 0.

(20)

3 Approximation of function in
C2k[0, a]

Let

Y = {f : [0,∞) → R, |f(x)| ≤ A(f)eBx,

, A(f) > 0, B > 0}
and f ∈ C2k[0, a], a > 0.

Theorem 4 Let f ∈ Y ∩ C2k[0, a], a > 0. Then, we
have ∣∣∣(S[2k]

n f)(x) − f(x)
∣∣∣ ≤

≤ max
{

C

nk
ω

(
f (2k);

1√
n

)
,

C ′

nk+1

}
, x ∈ [0, a]

where C = C(k) and C ′ = C ′(k; f).

Proof: With can write

f(t) − f(x) =
2k∑
i=1

(t − x)i f
(i)(x)
i!

+

+
(t − x)2k

(2k)!
[f (2k)(η)−f (2k)(x)]λ(t)+(t−x)2mh(t, x)

with m > k, for all t ≥ 0, with x ∈ [0, a] and η lying
between t and x. Here λ is the characteristic function
of [0, a] and h is bounded by a positive constant M .

S[2k]
n f − f =

k∑
j=0

{αj [S2jn − f ]} =

k∑
j=0

{
αj

∞∑
ν=0

[f(2−j ν

n
) − f(x)]tν,2jn(x)

}
=
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=
k∑

j=0

αj

∞∑
ν=0

2k∑
i=1

(2−j ν

n
− x)i f

(i)(x)
i!

tν,2jn(x)+

+
k∑

j=0

αj

∞∑
ν=0

(2−j ν
n − x)2k

(2k)!

(
f (2k)(ξn)−

−f
(2k)
(x)

)
tν,2jn(x)λ(2−j ν

n
)+

+
k∑

j=0

αj

∞∑
ν=0

(2−j ν

n
− x)2mh(2−j ν

n
, x)tν.2jn(x) =

=
∑

1

+
∑

2

+
∑

3

,

where ξj = ξj(ν) is between x and 2−j ν
n , 0 ≤ j ≤ k.

Now

∞∑
ν=0

2k∑
i=1

(2−j ν

n
− x)i f

(i)(x)
i!

tν,2jn(x) =

=
2k∑
i=1

∞∑
ν=0

(2−j ν

n
− x)itν,2jn(x)

f (i)(x)
i!

=

=
2k∑
i=1

ξ
[0]
2jn,i

(x)
f (i)(x)

i!

Therefore

∑
1

=
2k∑
i=1

k∑
j=0

αjξ
[0]

2jn,i
(x)

f (i)(x)
i!

=

=
2k∑
i=1

ξ
[2k]
n,i (x)

f (i)(x)
i!

.

Then from lemma 3 we have |∑1 | ≤ C1n
−k−1.

To evaluate
∑

2
we proceed as follows:

∞∑
ν=0

(2−j ν
n − x)2k

(2k)!

∣∣∣f (2k)(ξj)−

−f
(2k)
(x)

∣∣∣ λ(2−j ν

n
)tν,2jn(x) ≤

≤ ω
(
f (2k); δ

)
(2k)!

{ ∞∑
ν=0

(2−j ν

n
− x)2ktν,2jn(x) +

+
1
δ

∞∑
ν=0

|2−j ν

n
− x|2k+1tν,2jn(x)

}
.

This expression does not exceed

ω
(
f (2k); δ

)
(2k)!

{
Ak

(2jn)k
+

A′
k

δ(2jn)k+ 1
2

}
.

Then∣∣∣∣∣
∑

2

∣∣∣∣∣ ≤ ω
(
f (2k); δ

)
(2k)!

k∑
j=0

|αj |
(

Ak

(2jn)k
+

A′
k

(2jn)k+ 1
2

)
,

with δ = n− 1
2 , we have∣∣∣∣∣
∑

2

∣∣∣∣∣ ≤ C2

nk
ω

(
f (2k); n− 1

2

)
.

We have∣∣∣∣∣
∑

3

∣∣∣∣∣ ≤ M

k∑
j=0

|αj |
∞∑

ν=0

(2−j ν

n
− x)2mtν,2jn(x) ≤

≤ M

k∑
j=0

|αj | Am

(2jn)m
≤ C3

nk+1
.

The theorem follows from these estimates.

Corollary 5 Let f ∈ Y ∩ Lipα[0, a], a > 0. Then

∣∣∣(S[2k]
n f)(x) − f(x)

∣∣∣ ≤ M
1

nk
√

nα
, x ∈ [0, a]

where M is a constant independent of x.
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(1976).

[11] Korovkin P.P., Lineinie operatori i teoria pribli-
jenii. Fizmatgiz, (1959).

[12] Martini R., On the approximation functions
toghether with their derivatives by certain liniar
positive operators. Nederl. Akad. Wetensch.
Proc. Ser. A 72 = Indag. Math. 31, 1969, 473-
481.

[13] Popoviciu T., Sur le reste dans certaines for-
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