
Learning patterns of application architecture by looking at code

PAULO SOUSA

GECAD – Knowledge Engineering and Decision Support Group

Instituto Superior de Engenharia do Porto

R. Dr. António Bernardino de Almeida, 431

4200-072 Porto

PORTUGAL

psousa@dei.isep.ipp.pt

Abstract: - Typical approaches to design patterns present them in the catalog form. For undergraduate students this ab-

stract description of the pattern makes it even more difficult to understand its purpose and need. In this paper we describe

a tool used at a university course to enable the students to learn architectural patterns by looking at code. The tool pre-

sented in this paper shows the solution to a specific problem using different implementations, each following a different

architectural style. The results of informal surveys from users of the tool are presented.

Key words: Design patterns, application architecture

1. Introduction
The author teaches a course on software architecture and

patterns and faced a recurring problem when presenting

this subject: the difficulty of the students to understand

the use of patterns in “real” problems.

The concept of patterns appeared in the architecture field

by the 1970s by an architect called Christopher Alexan-

der [1] [2]. In his work “A pattern language” [1], Chris-

topher Alexander defines that “each pattern describes a

problem that occurs over and over again in our environ-

ment and then describes the core of the solution to that

problem in such a way that you can use this solution a

million times over without ever doing it the same way

twice.”. The concept has many similarities with the soft-

ware development industry and as such, by 1996, Erich

Gamma, Richard Helm, Ralph Johnson and the late John

Vissides (the Gang of Four) define the concept of a de-

sign pattern such that it “names, abstracts, and identifies

the key aspects of a common design structure that make

it useful for creating a reusable object-oriented design”

[5].

Typical approaches to patterns are based on pattern cata-

logs which are somewhat abstract in the sense that they

lack a coding context. Alan Holub [6] also notes this

problem and presents the Gang of Four [5] patterns “by

looking at code”. In what relates to enterprise application

architecture patterns, Martin fowler’s book [4] collects

and discusses the most common patterns in use. Howev-

er, from the author’s experience it is sometimes difficult

for 4
th
 year students to understand the connection be-

tween the different patterns cited in the book and how

they relate to each other to build complete applications.

In this paper we present a tool, the PoEAA Workbench

which presents several implementations of the same

problem (revenue recognition), each following a different

architectural style and patterns.

2. The Workbench

2.1 General description
The workbench uses the example problem of Revenue

Recognition described in [4]. The main goal is to calcu-

late future revenues (amount and date of occurrence) of

sales contracts of three kinds (each product with different

payment conditions):

 Word Processors – paid in full at acquisition

 Databases – three “equal” payments at acquisition,

30 days and 60 days after

 Spreadsheets – three “equal” payments at acquisi-

tion, 30 days and 90 days after

The business interface defined for the problem is:

public interface IRevenueRecognition

{

 void CalculateRevenueRecognitions(

 int contractID);

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 577

mailto:psousa@dei.isep.ipp.pt

 Money RecognizedRevenue(

 int contractID,

 DateTime asOf);

 object GetContracts();

 object GetCustomers();

 object GetProducts();

}

The workbench application (Figure 1) was developed

using Microsoft Visual Studio and the .Net framework

(downloadable from http://w2ks.dei.isep.ipp.pt/psou

sa/GetFile.aspx?file=PoEAAWorkbench.zip).

Figure 1 - workbench application's GUI

Figure 2 shows the package structure of the application.

RevenueGUI RevenueFacade

Common

implementation

Figure 2 - Workbench package structure

There is a separate layer for the user interface and a layer

with common data types (such as Money) to be used by all

the layers in the application. The RevenueFacade layer

defines the business interface as previously described and

also defines an Abstract Factory [5] for the creation of

business layer implementations according to the desired

architectural style. The “implementation” package

represents the several packages with specific implemen-

tations of an architectural style (transaction script, table

module, domain model).

2.2. The Transaction Script layers
A Transaction Script [4] organizes all logic as a single

procedure, making calls directly to the database or

through a thin database wrapper such as a Row Data Ga-

teway [4] (an object that mimics the structure of a data-

base record and provides methods for saving and loading

this data). A Transaction Script is a very simple approach

to decomposition of functionality; in the simplest case,

it’s just a collection of procedures callable by the presen-

tation and makes no separation of business logic from

data access logic.

RevenueFacade

«BLL»

Transaction

Script

Figure 3 - Transaction script

public class RecognitionService

{

 public Money RecognizedRevenue(

 int contractID,

 DateTime asOf)

 public void CalculateRevenueRecognitions(

 int contractID)

 public DataSet GetContracts()

 public DataTable GetProducts()

 public DataTable GetCustomers()

}

A more sophisticated version can use a thin database

wrapper in a separate package (Figure 4) or even a Row

Data Gateway [4].

RevenueFacade

«BLL»

Transaction

Script

«DAL»

Data Gateway

Figure 4 - Transaction script + data gateway

The package for the Row Data Gateway scenario exposes

one Row Data Gateway and one Finder class for each

table in the database. Following is an example of the

gateway and finder for the contract table:

public class ContractFinder

{

 private Contract CreateContractObject(DataRow r)

 public Contract GetContractByID(int contractID)

 public IList GetContracts()

}

public class ContractGateway

{

 public int CustomerID;

 public DateTime DateSigned;

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 578

http://w2ks.dei.isep.ipp.pt/psou%20sa/GetFile.aspx?file=PoEAAWorkbench.zip
http://w2ks.dei.isep.ipp.pt/psou%20sa/GetFile.aspx?file=PoEAAWorkbench.zip

 public int ID;

 public int ProductID;

 public decimal Revenue;

 public int Insert()

 public bool Update()

 public bool Delete()

}

The main difference of these two approaches reside in the

data access API: the data gateway has procedures to in-

sert, update, and fetch database records, while the Row

Data Gateway is an object that handles one single record

of the database but makes no use of OO techniques.

2.3. The Table Module layers
In this architectural style the business logic is organized

around the Table Module [4] pattern and the data access

layer is organized around the Table Data Gateway [4]

pattern. This style organizes the structure of the program

according to the table or views of the database. A Table

Module [4] is a business logic pattern where a single

instance handles the business logic for all rows in a data-

base table or view. A Table Data Gateway [4] is an ob-

ject that acts as a Gateway to a database table (one in-

stance handles all the rows in the table). These two pat-

terns provide a decomposition of the business and data

layer directly related to the database schema, providing a

good balance between decomposition, ease of mainten-

ance and flexibility. They are particularly useful in con-

junction with Record Set [4] (e.g., ADO.net’s DataSet or

JDBC’s ResultSet) and are a good opportunity for code

generation techniques.

Figure 5 shows the package structure for the “table mod-

ule + table data gateway with record set” implementation.

RevenueFacade
«BLL»

Table Module

«DAL»

Table Data Gateway

Figure 5 – TM + TDG with record set

There is one class for each table in the database: contract,

product and customer. The classes of the business logic

layer expose the following API:

public class Contract

{

 public Money RecognizedRevenue(

 int contractID,

 DateTime asOf)

 public void CalculateRevenueRecognitions(

 int contractID)

 public DataSet GetContracts()

}

public class Customer

{

 public DataTable GetCustomers()

}

public class Product

{

 public DataTable GetProducts()

}

In the data access layer there are the following classes:

public class ContractGateway

{

 public int InsertRecognition(

 int contractID,

 DateTime recognitionDate,

 decimal amount)

 public void DeleteRecognitions(int contractID)

 public DataSet GetContractByID(int contractID)

 public DataSet GetContracts()

}

public class CustomerGateway

{

 public DataTable GetCustomers()

}

public class ProductGateway

{

 public DataTable GetProducts()

}

Additionally there is an abstract base class for all gate-

ways that provides common data access functionality

(e.g., open connection, fill a dataset).

Figure 6 shows the package structure for the table mod-

ule variant with custom classes. The main difference

between this style and the previous one is the use of the

custom classes as data holders. As such, the methods of

the business logic layer classes have been modified to

return IList instead of DataSet/DataTable and the me-

thods in the data access classes were modified to receive

the custom classes as parameters.

RevenueFacade

Custom Classes

«BLL»

Table Module

«DAL»

Table Data Gateway

Figure 6 - TM + TDG with custom classes

The data access layer classes have additional private me-

thods for constructing the custom class object given a

DataRow read from the database. These methods perform

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 579

the mapping between the data access library (ADO.net)

and the program specific classes for holding data.

2.4. The Domain Model layers
This style organizes the structure of the program follow-

ing an object oriented approach of the domain of the

problem. A Domain Model [4]) is an object model of the

domain that incorporates both behavior and data. If this

object encapsulates a row in a database and its access

along with the business logic methods it is called an Ac-

tive Record [4]). A Data Mapper is an object that moves

data between objects and a database while keeping them

independent of each other and the mapper itself [4]. In

this scenario, the business classes only have attributes

and business related behavior.

In the domain model / active record scenario, both the

business logic and the data access logic are placed in the

same classes (Figure 7).

RevenueFacade
Domain Model /

Active Record

Figure 7 - Domain Model / Active Record

This combination is very interesting in the sense that it is

object oriented while simplifying the decomposition of

the application and providing a natural place for the data

access logic (an objects knows how to handle its business

as well as how to load itself from and save itself to the

database).

public class Contract : ActiveRecord

{

 private int _CustomerID;

 private DateTime _DateSigned;

 private int _ProductID;

 private decimal _Revenue;

 private IList _RevenueRecognitions

 private Customer _Customer;

 private Product _Product;

 // PROTECTED CONSTRUCTOR/MAPPERS

 protected Contract(DataRow row)

 // PUBLIC BUSINESS API

 public Contract()

 public Money RecognizedRevenue(DateTime asOf)

 public void CalculateRecognitions()

 // PUBLIC DATA ACCESS API

 public static Contract LoadById(int contractID)

 public static IList LoadAll()

 public override void Save()

}

public class Customer : ActiveRecord

{

 private string _Name;

 // PROTECTED CONSTRUCTOR/MAPPER

 protected Customer(DataRow row)

 // PUBLIC BUSINESS API

 public Customer()

 // PUBLIC DATA ACCESS API

 public static Customer LoadById(int customerID)

 public static IList LoadAll()

 public override void Save()

}

public class Product : ActiveRecord

{

 private string _name;

 private string _type;

 // PROTECTED CONSTRUCTOR/MAPPER

 protected Product(DataRow row)

 // PUBLIC BUSINESS API

 public Product()

 // PUBLIC DATA ACCESS API

 public static Product LoadById(int productID)

 public static IList LoadAll()

 public override void Save()

}

A Contract object is now in charge of representing a spe-

cific contract. You also use the contract object to save the

changes you made to the database as well as use class

methods in the contract class to load a specific object in

to memory. A protected constructor is used by the class

load methods to perform the mapping between the Data-

Row and the object’s internal data structure.

This pattern provides a good way to do OOP without

abstracting the database to much. It is particularly useful

when the database schema is relatively stable and the

class’s attributes and the table fields are similar). Howev-

er, in some situations one wants to be independent of the

database schema; thus, a data mapper can be used to hide

the persistence details from the business logic (Figure 8).

RevenueFacade

«BLL»

Domain Model

«DAL»

Data Mapper

Figure 8 - Domain Model + Data Mapper

The data access layer provides the following data mapper

classes:

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 580

public class ContractMapper

{

 protected Contract ApplyMap(

 DataSet dsContractAndRecognitions)

 public Contract LoadById(int contractID)

 public IList LoadAll()

 public void Save(Contract c)

}

public class CustomerMapper

{

 protected Customer ApplyMap(DataRow row)

 public Customer LoadById(int customerID)

 public IList LoadAll()

}

public class ProductMapper

{

 protected Product ApplyMap(DataRow row)

 public Product LoadById(int productID)

 public IList LoadAll()

}

The mappers’ protected method ApplyMap constructs a

business object given a DataRow read from the database.

The Save method perform the mapping between the busi-

ness object and ADO.net.

The use of a domain model brings additional problems

such as how to guarantee that no duplicate objects are

read into memory (for instance, if we load all the con-

tracts of a customer, only one customer object will exist

in memory). In order to solve this problem we can apply

the Identity Map pattern (ensures that each object gets

loaded only once by keeping every loaded object in a

map; looks up objects using the map when referring to

them [4]). In this scenario, both CustomerMapper and Pro-

ductMapper are realizations of the Identity Map and Data

Mapper patterns.

Using a domain model you also have to guarantee that

loading an object won’t bring into memory all related

objects. For instance, when loading all the orders for a

month we probably must avoid loading all the referred

products. This can be solved using the Lazy Load pattern:

an object that doesn't contain all of the data you need but

knows how to get it [4]. Contract objects use the lazy

load pattern regarding its Customer and Product attribute.

2.5. The RevenueFacade layer
The RevenueFacade layer defines a factory class which

uses reflection to dynamically create an object with the

desired implementation. This object is a realization of the

Façade pattern [5] hiding the complexity of calling the

real business layer and data access layer objects. There is

a sub-package with a façade for each architectural style

(Figure 9)

Figure 9 - RevenueFacade classes

Since the workbench application provides implementa-

tions of the various architectural styles and the classes

and operations to call for each case are different, the Re-

venueFacade layer hides these details.

The façade to the Table Module with Table Data Gate-

way using Record Set implements the “Calculate Reve-

nue” business operation in the following way:

using TM.BLL;

public void CalculateRevenueRecognitions(

 int contractID)

{

 Contract bll = new Contract();

 bll.CalculateRevenueRecognitions(

 contractID);

}

The façade for Domain Model with Active Record does it

by calling operations in the Contract object:

using DM_AR;

public void CalculateRevenueRecognitions(

 int contractID)

{

 Contract c = Contract.LoadById(contractID);

 if (c != null)

 {

 c.CalculateRevenueRecognitions();

 c.Save();

 }

}

While the façade to the Domain Model with Data Map-

per implements it in the following way:

using DM.BLL;

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 581

using DM.DAL;

public void CalculateRevenueRecognitions(

 int contractID)

{

 ContractMapper mapper = new ContractMapper();

 Contract c = mapper.LoadById(contractID);

 if (c != null)

 {

 c.CalculateRevenueRecognitions();

 mapper.Save(c);

 }

}

This package is useful for showing the interaction of the

business logic and data access logic layers with the call-

ing layer (typically the presentation layer). The transac-

tion script and table module are the most straight forward

implementations since the caller only needs to know

about the business logic layer (it’s the BLL class that

invokes the data access logic that it needs). Both Active

Record and Data Mapper require the caller to know about

the business and data access logic layer; the main differ-

ence is if there is only one object for both function sets

(such as in Active Record) or two different objects (as in

domain model and data mapper).

3. Conclusions and future work
This paper presented several pattern based implementa-

tions of the Revenue Recognition problem in order pro-

vide a better understanding of the different architectural

styles available for layered enterprise applications.

As a summary, you can use the following rules of thumb:

 If the complexity of the problem is moderate and

you have a good understanding of relational model

and a good support for Record sets in your devel-

opment environment – choose Table Module and

Table Data Gateway

 If the complexity of the problem is moderate to

high but are at ease with OO concepts and your da-

tabase schema is similar to your OO model,

choose Domain Model with Active Record

 If the complexity of the problem is moderate to

high, there is dissonance between your relational

model and your OO model or you need indepen-

dence from each other, choose Domain Model and

Data Mapper.

One thing to note about patterns is that there are similar

patterns and that typically patterns are used in conjunc-

tion with each other and not alone [6]. This indeed is a

reason why code generators for patterns are almost use-

less [6].

This project has been used in a university level course on

design patterns to help the students understand the differ-

ences between each enterprise architecture pattern. My

experience shows that the students have some difficulties

when presented only with the general description of the

pattern. In the years before the introduction of this tool,

the majority of the students had some difficulties when

presented only with the general description of the pattern

(as from the pattern catalog). From an informal survey

conducted with the students, the majority of the students

have acknowledged that the workbench allowed them to

understand the patterns and their differences as well as

their use in a coherent and related way. The post-graduate

students were all full time employed in the area of soft-

ware development. Even this group had little or no pre-

vious contact with the concept of design patterns; the tool

helped them to understand the patterns and to use then in

the day-to-day application development of their own.

Future work for this project includes the enhancement of

the workbench with more architectural styles as well as

other GoF patterns and patterns for transaction manage-

ment and data access concurrency. This tool will also be

extended to show the use of ORM patterns and tools

(e.g., Hibernate [7]) and code generators for the data

access layer.

Acknowledgements:

The author would like to acknowledge FCT, FEDER,

POCTI, POSI, POCI and POSC for their support to R&D

Projects and the GECAD Unit.

References:

[1] Alexander, C. (1977) A Pattern Language: Towns,

Buildings, Construction. Oxford University Press.

[2] Alexander, C. (1979) The Timeless Way of Building.

Oxford University Press.

[3] Crocker, A., Olsen, A. and Jezierski E. (2002) “De-

signing Data Tier Components and Passing Data

Through Tiers”.

http://msdn.microsoft.com/library/en-

us/dnbda/html/BOAGag.asp

[4] Fowler, M. (2002), Patterns of Enterprise Application

Architecture. Addison-Wesley.

[5] Gamma, E., Helm, R., Johnson, R. and Vissides, J.

(1995) Design patterns: elements of reusable object-

oriented software. Addison-Wesley

[6] Holub, A. (2004) Holub on patterns: learning design

patterns by looking at code. Apress.

[7] www.hibernate.org

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 582

http://www.hibernate.org/

