
Software for solving of TSP

ROMAN LUKATSKY, VLADIMIR RYBINKIN
Bureau of Internet Technologies BIT Ltd

Novoposelkovaja str., 6/7, Moscow, Russia, 123459
RUSSIA

lrs@2bit.ru, ryb@2bit.ru

Abstract: - This paper is devoted to investigation of problems of discrete or combinatorial optimization on the
example of symmetric travelling salesman problem. A parametric algorithm for solving of TSP from very fast to
exact, including the version with mobile nodes is offered. The developed software was tested by solving of TSPs that
best-known solutions are already known.

Key-Words: - Travelling Salesman Problem, TSP, DBMS, Graph

1 Introduction
The travelling salesman problem (TSP) [6] is a
problem in discrete or combinatorial optimization. It is
a prominent illustration of a class of problems in
computational complexity theory, which are classified
as NP-hard. At two hundred years history, numbers of
algorithms offered for its solution are estimated in
thousands. There are various kinds of heuristics,
genetic algorithms, simulated annealing, Tabu search,
ant system, etc [2].
 The elementary algorithm guaranteeing a finding of
the exact solution is a full enumeration of all variants.
For travelling salesman problem the number of
possible tours is so great, that by this way the solution
cannot be found at reasonable restrictions in time
already at several tens of nodes. The branch-and-
bound algorithm and its numerous versions [8] a little
improve situation, as in this case many variants can be
rejected without search if it is possible to prove, that in
a rejected array of variants the solution cannot be
present. The existing algorithms allows raising
dimension of a problem approximately up to 100
nodes, and in some cases up to much lot [1] [3].
Nevertheless, the labour input of calculation of the
solution by this method, as well as by brute force
algorithm, has exponential complexity.
 Most of methods, developed up to present tense, are
suitable for very limited number of nodes [4], and
exact solutions are found for graphs only up to several
tens thousand of nodes (13509, 15112, 24978, 33810),
at that the processor time is estimated as tens of years.
Moreover, how it is possible to tell about exact
solutions, if distances round off to integer, i.e. are
calculated approximately.
 The main criteria of quality of algorithms are
accuracy of the received solution and the time for its
revelation. As additional criteria one can be considered
the expense of hardware resources, influence of initial
data on accuracy of solution, simplicity of software
realization, etc.

 We offer our own algorithm of search of TSP
solution and based on graph DBMS [9] the adaptive
software for its realization. The developed software
should be able to find solutions for TSPs, stored in
graph database within a reasonable time with possibly
low error. Parametrical adjustments should allow
focusing the software on achievement of the different
purposes: search of exact or approximate solution,
quick search of fairly good solution for very larger
graphs, etc. This exploration was carried out within the
limits of research of opportunities of graph DBMS.
 The purposes of this paper is an examination of
created software on well-known TSPs to test its
applicability for solving of different kinds of travelling
salesman problem and an attempt to use it for solving
TSP on large and huge (millions of nodes) of graphs.

2 Course of exploration
It is evidently that for construction of the shortest tour
it is not obligatory to repeat a way of salesman: it is
possible to consider nodes and edges of the graph in
arbitrary order, say, all simultaneously. The approach
of iterative change of current tour seems to us
successful. One of the popular methods, using this
approach, is stated in [7]. This method in some
development provides very good results [5]. We also
suppose that at any moment there exist some solution
(current tour). At start we simply connect the first
node with the second, the second - with the third, the
last - with the first. We’ll name the shortest tour as
"best" and any shorter than current tour as "desired".
 Let’s suppose that we already know the best tour. It
is obvious that any not optimal current tour can be
reformed to the best tour by replacing no more than in
extreme case all tour edges: for example, on fig.1 are
presented the best tour ABCDEFGHA and the current
tour ABHCDFEGA. We’ll spend the replacement
consistently, since some node (node A) that has "old"
(dotted line), not included into best tour, an edge AG.

Proceedings of the 11th WSEAS International Conference on SYSTEMS, Agios Nikolaos, Crete Island, Greece, July 23-25, 2007 443

mailto:lrs@2bit.ru
mailto:ryb@2bit.ru

Fig.1. Detour of the contour.

 We delete the edge AG from the tour and insert the
"new" (thick line) edge GF that is entering into the
best tour from the second node G of old edge AG. The
second end of new edge necessarily point to node that
has one or two old edges. As this node F becomes
"overloaded" by edges, one of its edges should be
removed (edge FD). As in each node from which old
edges leave, the same quantity of new edges comes, so
process of consecutive replacement of old edges on
new ones come to the end with locking of a contour.
Certainly, having begun with any of nodes having an
old edge, we shall bypass all contour. Generally such
contours can be more than one and detour of some of
them can lead to temporary crippling of the tour.
 It is obvious that the sum of lengths of new edges
for all contours is less than the similar sum of deleted
edges, i.e.

1+2+3+… +k > 1’+2’+3’+… +k’ (1)
Thus, there always exists at least one contour for
which edges rightly similar inequality and at least one
order of its detour when this inequality is correct on
each step of detour. Differently, from any current tour
it is always possible to create the best tour at keeping
of benefit on each step of replacement of old edges on
new ones. Therefore, the search of the best tour
consists in revealing of contours and of continuously
profitable order of detour of contours and also of
nodes in each of them. Unlike [5] our algorithm do not
stop until exact solution.

2.1 Algorithm for TSP
Let's consider on a concrete example step-by-step
action of algorithm based on above principles. Each
edge of current tour ABHCDFEGA (fig. 2) is
consistently checked at each of its ends on existence of
shorter edges that are not including into the tour yet.
For example, an edge GE (fig. 2a) has three shorter
edges: GF, GH and DE. Each of them is consistently
checked on an opportunity of inclusion in tour instead
of deleted edge GE. If we lead the detour from node G
towards to node E, owing to selected direction of
detour, we must insert the edge DE (fig. 2b). Then one
of edges of overloaded node D is deleted from the tour
(edge DF) and next new edge FG is inserted. We shall
note that after this operation we have already received
shorter tour ABHCDEFGA. Of course, the sum length
of new and old edges must be profitable. Recursively
continuing the search of the best tour by replacement
already not two but three edges (fig. 2c), we again
shall receive shorter tour. All next attempts of
replacement of edges are unsuccessful.
 On prima facie, at worst labour input of search of
the solution by the offered method is even worse than
that of brute force. However this laboriousness
strongly depends on configuration of current tour. In
particular, if current tour pass on sides of regular
polygon, there is no shorter edge in the graph than an
edges of the tour (at observance of triangle inequality),
and the same algorithm will come to end without any
recursive call, i.e. will have the polynomial (quadratic)
complexity. An efficiency of an inequality (1) as
criterion of termination of depth first search directly
depends on current tour length (beta-boundary). The
reduction of beta-boundary sharply abates amount of
computations and accordingly raises the efficiency of
the offered approach. As each new tour is always
shorter than current tour, we’ll replace the current tour
on any new immediately to decrease the labour input
of following computations.
 Search of way from current tour to desired it is
advisable to carry out with minimal calculations.

 2a 2b 2c

Fig.2. Step-by step algorithm of detour.

Proceedings of the 11th WSEAS International Conference on SYSTEMS, Agios Nikolaos, Crete Island, Greece, July 23-25, 2007 444

Table 1. Experimental results.

Start Fast Depth 2 Stop Range
(nodes)

Number
of graphs Mean (%) Max (%) Mean (%) Max (%) Mean (%) Max (%) Mean (%) Max (%)

1-100 16 398.8 799.3 92.5 265.4 7.6 20.5 0 0
101-1000 43 727.3 3289.2 38.7 119.3 11.5 23.5 0.7 3.4

1001-10000 25 1559.2 4225.3 22.5 58.5 16.1 28.8 3.9 4.9
>10000 6 5888.7 9281.8 38.2 82.6 15.8 18.8 4.2 4.9

Total 90 1244.1 9281.8 43.7 119.3 12.4 28.8 1.4 4.9

Obvious way of decrease of processing time for
recursive algorithms is the cascade increasing of
recursion depth. Therefore we shall carry out the
search iteratively, by replacing on each iteration
minimally possible quantity of edges. Differently,
simultaneous replacement of k edges must be made
only in case of impossibility of tour improvement at
previous iterations with smaller quantity of edges (1,
2, 3, … k-1). Inasmuch as replacement of one edge is
allowable only in case of presence of multiple edges
that is impossible in classical statement of TSP, we
shall raise the depth of recursion consistently, starting
with 2. The above algorithm have been programmed
and checked on real graphs for TSP.

2.2 Benchmark data and tools
Original data and exact solutions were received from
site of symmetric TSP [10]. Computer Pentium-4, 2.4
GHz (512 Mb RAM), Windows-2000, the
programming language C were used. Compilation was
carried out by means of compiler BC ++ v3.1.

2.3 Experiments
To check the quality of created algorithm we solved
some symmetric TSPs with already known exact
solutions [10]. Initial tours have been created by
consecutive connection of nodes according to
increasing of their indexes. At that such initial tours
for some graphs already have an error in a few
percents or less (for instance, for the graph pr2392 the
initial tour already represents the exact solution).
Hence for detailed checking of algorithm at various
states of current tour we created an additional initial
tour by connection of nodes in correspondence with
ascending of their coordinates, and took for processing
worst of two ones. As calculation by declared
algorithm is executed right up to revealing of exact
solution that can demand heavy expenses of processor
time, computations were artificially interrupted after 4
hours if the algorithm did not finish earlier of this time
by acknowledged receipt of the best tour (burma14,
ulysses16, eil51, st70, eil76, rat99 - 6 problems
altogether). Results are shown in table 1.

Start: 7039.5%

After 1 minute: 171.3%

After 4 hours: 4.9%

Fig.3. Solving of TSP for d15112

Proceedings of the 11th WSEAS International Conference on SYSTEMS, Agios Nikolaos, Crete Island, Greece, July 23-25, 2007 445

Table 2. Experimental results for top 50 graphs.

Graph Start, % Fast, % Depth 2, % Stop, % Length Graph Start, % Fast, % Depth 2, % Stop, % Length
pr264 298,2 30,6 23,5 0,5 49378 rl1323 1256,4 27,3 20 2,3 276476
a280 239,3 15,5 10,7 1,4 2614 nrw1379 1157,7 18,1 14,4 2,4 57990
pr299 404,9 26,1 11,8 1,1 48715 fl1400 3607,1 9,9 9,9 2,3 20583
lin318 1020,7 22,4 15,3 0,9 42428 u1432 164,4 14 11,3 2,8 157301
rd400 1310,6 107,4 13,4 1,4 15498 fl1577 3489,6 16,7 15,8 3 22926
fl417 3289,2 12,7 11,3 0,1 11878 d1655 459,9 18,3 16,2 2,2 63507
gr431 614,6 19,9 8,5 1,5 173902 vm1748 2872,9 45,9 12,8 3,7 349062
pr439 411,7 26,3 15,4 0 107255 u1817 408,7 26,5 21,3 3,5 59180

pcb442 470,2 24,2 13,1 1,6 51599 rl1889 1985,5 58,5 15,4 3,8 328527
d493 509,9 22,1 14,5 1,6 35545 d2103 680,4 31 28,8 2,2 82240

ali535 1565,6 42,9 14,4 0,4 203225 u2152 373,1 22 20,6 3,5 66487
u574 629,9 17,6 13,3 2,4 37797 u2319 107 7,2 4,5 0,8 236136

rat575 1292,2 21,6 16,9 1,7 6890 pr2392 1451,3 18,2 15,7 3.7 392157
p654 251,4 13,6 9,6 0,1 34669 pcb3038 1356,6 16,5 13,6 2,9 141693
d657 738,8 18,8 14,4 1,7 49751 fl3795 4225,3 19,7 19,1 3,9 29898
gr666 1139,5 15,3 10 3,4 304491 fnl4461 3116,5 17 14,9 2,5 187203
u724 554,4 22 16,4 1,7 42639 rl5915 2226,3 25,7 21,6 4,9 593039

rat783 1504 22,5 17,8 1,7 8960 rl5934 1977,7 27,9 22,2 4,8 582941
dsj1000 2888,4 94,9 14,3 1,3 18894359 pla7397 1910,6 14,8 12,7 3,6 24104074
pr1002 671,5 21,9 12,2 1,6 263073 rl11849 9281,8 82,6 18,8 3,6 956265
u1060 703,7 16,4 13,2 2,5 229664 usa13509 7861 18,1 15,4 4,6 20895464

vm1084 2136 33,6 12,5 2,5 245314 brd14051 4925,3 16,5 15,1 4,1 488619
pcb1173 940,8 12 11,1 3,8 59040 d15112 7039,5 72,4 14,4 4,9 1650770
d1291 420,2 17,5 17,4 3,8 52711 d18512 5248,3 15,4 14,6 3,8 669600
rl1304 1279,9 26,1 24,9 3,8 262641

 sw24978 976,3 24 16,5 4,5 894130

 Apparently from the table that algorithm finds
quite acceptable solutions for reasonable time. For 32
graphs from 90 investigated (and for all graphs with
quantity of nodes up to 150 inclusively) the length of
final tour is equal that of best-known tour. In other
cases an error is always less than 5%. Any dependence
of quality of the solution on initial data is not revealed.
Detailed results for 50 graphs with the greatest
quantity of nodes are shown in table 2.

2.4 Processing of very large graphs
Usually it is considered, that the opportunity of using
of polynomial-time algorithms allows solving TSP.
However for larger graphs, with many millions of
nodes, any algorithms except linear-time, as a matter
of fact, appear useless. We shall note that observance
of triangle inequality is not obligatory. Whether the
search of good enough tours at this case is possible?
 We modified our algorithm (fig. 2) a little as
follows. Search of edges for replacement we shall
make not among all edges of tour, but only among k
first of them - of nearest neighbors of a current edge in
tour. On the first iteration we accepted k = 1, but only
for those edges which length exceeds average length
of an edge of current tour. For long edges (twice

exceeding average length) the value k is doubled, and
for superlong (four times and more) is doubled once
again. On the contrary, for short edges the value k
accordingly decreases. Thus, longer edges are
examined more closely, and short, less than average
length of current tour, are not considered at all. It is
obvious, that such edges in any tour there is more than
half, therefore labour input of work of algorithm on
the first iteration appears even below linear on number
of nodes of the graph.
 At next iteration the value k is doubled, i.e. the
algorithm smoothly "flows" from linear to quadratic
complexity. Transition to new iteration is carried out,
however, not always but only in case the previous
iteration cannot essentially improve current tour.
Otherwise, if on current iteration it is revealed a
significant amount of new tours (we have set their
amount as 1/32 or more from number of nodes), it
repeats at the same value of k. Work of high-speed
algorithm comes to end, when k will exceed a quarter
from number of nodes of the graph.
 Experiments have shown, that application of the
declared high-speed algorithm allows to lower a total
operating time of first iteration in tens times. The beta-
boundary even for very far from optimal tours was

Proceedings of the 11th WSEAS International Conference on SYSTEMS, Agios Nikolaos, Crete Island, Greece, July 23-25, 2007 446

 1. Length 128795.59 2. Length 4716223.02 3. Length 330898

Fig.4. Solving of TSP in special cases

sharply decreased (fig. 3). The length of tour after the
termination of work of high-speed algorithm in most
cases makes up 20-30% from optimum, so it is already
possible to recommend it for practical utilization. On
usual PC software allows to find a satisfactory
solutions at reasonable time for graphs with number of
nodes up to some millions (maximal size of the really
tested graph was 123456789 of nodes).
 Various variants of solutions for the graph of 1234
nodes are shown on fig. 4: the shortest tour (1), the
longest tour (2) and the shortest tour with wrong
triangle inequality (3). In last variant the length of
edges between two nodes was calculated as product of
their indexes. Despite of "awful" view, the initial
length of tour was decreased more than on two orders.

2.5 Specificity of search of exact solution
The idea of increasing the speed of search of exact
solution is simple enough: at "heavy" iterations the
only task is to find though any solution, to "tousle" the
current tour, not doing any attempt to improve the
found solution. However after each "heavy" iteration
an attempt of optimization of current tour on depth 2 is
done. Besides already after the termination of the first
iteration there remain in tour, as a rule, only 30-40 %
of "interesting" edges (that demand a recursive call).
After each next iteration the appreciable part of
"interesting" edges becomes "uninteresting" as all
deeper iterations terminate not on recursion depth, but
"naturally" (if losses as a result of distortion of current
tour will exceed the maximal expected benefit).
Therefore on each new iteration there remains less and
less edges for consideration and, despite of increase of
recursion depth, the time spent on new iteration
sometimes even decreases a little.

 As it has been told above, exact solutions, as a
matter of fact, are not exact in reality, as they
minimize the length of tour together with errors of
rounding off. This "petty fraud" is not harmless at all,
as rounding off of distances sharply (it is better to say
"radically") decreases the labour input of calculations,
say, by branch-and-bound method. Many routes which
after rounding off of distances up to integers become
equal, at really exact calculations will have different
length, and cannot be excluded from consideration any
more. Differently, the exact solutions for graphs with
tens thousand of nodes will demand not decades but
millennia of processor time. One of advantages of our
approach is that accuracy of calculations practically
does not influence on effectiveness of algorithm.
 As the created software is suitable for checking of
existing solutions (for this purpose it is enough to set
such solution as initial tour), it has been revealed, that
many exact solutions can be "improved", if length of
edges do not round off to integers. So, it has been
shown that for graphs eil51, st70, eil101, ch130, ch150
and others the found tours, strictly speaking, are not
optimal. In particular, 9 solutions for the graph d15112
(profit 0,00027%) have been found. It is easy to be
convinced of correctness of the solution: it is enough
to replace a final chain of the author's solution 5755-
12438-4501-11824-13059 on 5755-11824-12438-
4501-13059 or to replace 4757-10600-8259-7265 on
4757-8259-10600-7265, etc. The author's solution of
the graph sw24978 nodes also it has appeared possible
"to improve": 147 tours, which length less resulted as
the best (maximal profit 0,00159%) have been found.
Correctness of the solution also is easily to check by
replacement of a chain, for example, 483-501-530-
546-502-484 on 483-530-501-502-546-484.

Proceedings of the 11th WSEAS International Conference on SYSTEMS, Agios Nikolaos, Crete Island, Greece, July 23-25, 2007 447

ts225
.

u2319

fnl4461

Fig. 5. Some examples of TSP solutions

3 Discussion of results
The offered algorithms show quite satisfactory quality
of the solution and high enough efficiency for graphs
of large dimension and arbitrary configuration. They
are suitable for revelation of both approximate and
exact solution, at that the productivity of receiving of
approximate solution is commensurable with that of
heuristic algorithms [5]. The software can be easily
modified for graphs with incomplete or superfluous
number of edges, for asymmetric TSP. Speed of search
of the exact solution can be considerably increased by
using of multiprocessor hardware as the algorithm can
be modified for parallel architecture on arbitrary
number of computers and practically without loss of
efficiency. Some examples of TSPs solutions are
shown at fig. 5.
 Our software is rather unpretentious to available
computing resources. It can work even at the processor
8086 and 640К RAM. Nevertheless, in such conditions
a number of nodes can reach 1000 and more. Fast
speed of algorithm allows using it for solution of TSP
even if all nodes of the graph move. The version of
software for dynamic TSP is presented in [11].
 As the graph and current state of calculation is kept
in a database, calculations can be interrupted at any
moment to continue it later, at that the solution is the
best tour found to the moment of a stop. This
circumstance allows using our software for
improvement of the tours received by other (heuristic)
algorithms or for the proof of their optimality. Even
more interesting use of a DB consists in an opportunity
of storage of a tree of variants of current calculation
and its reduction to cyclic graph. Thus all permutations
of profitable pairs of edges "new-old" are reduced to
their combinations that, certainly, should reduce
extremely the search time. Unfortunately, this problem
demands deeper algorithmic study, and is not realized
within the limits of this paper.

4 Conclusion
The experimental results show that the offered
algorithms have competitive potential for solving
discrete optimization problems.

References:
[1] D.Applegate, R.Bixby, V.Chvatal and W.Cook.
Implementing the Dantzig-Fulkerson-Johnson
algorithm for large traveling salesman problems,
Math. Program, no. 1-2, Ser. B, 91-153, ISMP, 2003
[2] N.Biggs, E.LLoyd and R.Wilson. Graph Theory
1736-1936б, Clarendon Press, Oxford, 1976.
[3] Concorde TSP solver for Windows
http://www.tsp.gatech.edu/concorde.html
[4] L.Fang, P.Chen, S.Liu. Particle Swarm
Optimization with Simulated Annealing for TSP. 6th
WSEAS International Conference AIKED'07, 2007
[5] K.Helsgaun. An Effective Implementation of K-opt
Moves for the Lin-Kernighan TSP Heuristic, Roskilde
University, 2006
[6] E.Lawler, J.Lenstra, A.Khan and D.Shmoys. The
travelling Salesman Problem: A Guided Tour of
Combinatorial Optimization John Wiley & Sons, 1985.
[7] S.Lin, B.Kernighan, An effective heuristic
algorithm for the traveling-salesman problem.
Operations Res. 21, 498-516, 1973
[8] H.Perez, J. Salazar-Gonzalez. A branch-and-cut
algorithm for a traveling salesman problem with
pickup and delivery. Discrete Applied Mathematics,
vol. 145, 2004.
[9] V.Rybinkin, R.Lukatsky. Elastic model for
processing of heterogeneous data, WSEAS transactions
on systems and control, Vol.2, 2007
[10] Symmetric travelling salesman problem,
http://www.iwr.uni-heidelberg.de
[11] Symmetric travelling salesman problem, demo
version of software for graphs with mobile nodes,
http://www2bit.ru/d_tsp.zip

Proceedings of the 11th WSEAS International Conference on SYSTEMS, Agios Nikolaos, Crete Island, Greece, July 23-25, 2007 448

http://www.tsp.gatech.edu/concorde.html
http://www.iwr.uni-heidelberg.de/

	1 Introduction
	2 Course of exploration
	Fig.1. Detour of the contour.
	Graph
	Graph

	3 Discussion of results
	4 Conclusion

