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Abstract: - This paper is devoted to investigation of problems of discrete or combinatorial optimization on the 
example of symmetric travelling salesman problem. A parametric algorithm for solving of TSP from very fast to 
exact, including the version with mobile nodes is offered. The developed software was tested by solving of TSPs that 
best-known solutions are already known. 
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1 Introduction 
The travelling salesman problem (TSP) [6] is a 
problem in discrete or combinatorial optimization. It is 
a prominent illustration of a class of problems in 
computational complexity theory, which are classified 
as NP-hard. At two hundred years history, numbers of 
algorithms offered for its solution are estimated in 
thousands. There are various kinds of heuristics, 
genetic algorithms, simulated annealing, Tabu search, 
ant system, etc [2]. 
     The elementary algorithm guaranteeing a finding of 
the exact solution is a full enumeration of all variants. 
For travelling salesman problem the number of 
possible tours is so great, that by this way the solution 
cannot be found at reasonable restrictions in time 
already at several tens of nodes. The branch-and-
bound algorithm and its numerous versions [8] a little 
improve situation, as in this case many variants can be 
rejected without search if it is possible to prove, that in 
a rejected array of variants the solution cannot be 
present. The existing algorithms allows raising 
dimension of a problem approximately up to 100 
nodes, and in some cases up to much lot  [1] [3]. 
Nevertheless, the labour input of calculation of the 
solution by this method, as well as by brute force 
algorithm, has exponential complexity.   
     Most of methods, developed up to present tense, are 
suitable for very limited number of nodes [4], and 
exact solutions are found for graphs only up to several 
tens thousand of nodes (13509, 15112, 24978, 33810), 
at that the processor time is estimated as tens of years. 
Moreover, how it is possible to tell about exact 
solutions, if distances round off to integer, i.e. are 
calculated approximately. 
     The main criteria of quality of algorithms are 
accuracy of the received solution and the time for its 
revelation. As additional criteria one can be considered 
the expense of hardware resources, influence of initial 
data on accuracy of solution, simplicity of software 
realization, etc. 

     We offer our own algorithm of search of TSP 
solution and based on graph DBMS [9] the adaptive 
software for its realization. The developed software 
should be able to find solutions for TSPs, stored in 
graph database within a reasonable time with possibly 
low error. Parametrical adjustments should allow 
focusing the software on achievement of the different 
purposes: search of exact or approximate solution, 
quick search of fairly good solution for very larger 
graphs, etc. This exploration was carried out within the 
limits of research of opportunities of graph DBMS. 
     The purposes of this paper is an examination of 
created software on well-known TSPs to test its 
applicability for solving of different kinds of travelling 
salesman problem and an attempt to use it for solving 
TSP on large and huge (millions of nodes) of graphs. 
 
 
2 Course of exploration 
It is evidently that for construction of the shortest tour 
it is not obligatory to repeat a way of salesman: it is 
possible to consider nodes and edges of the graph in 
arbitrary order, say, all simultaneously. The approach 
of iterative change of current tour seems to us 
successful. One of the popular methods, using this 
approach, is stated in [7]. This method in some 
development provides very good results [5]. We also 
suppose that at any moment there exist some solution 
(current tour). At start we simply connect the first 
node with the second, the second - with the third, the 
last - with the first. We’ll name the shortest tour as 
"best" and any shorter than current tour as "desired". 
     Let’s suppose that we already know the best tour. It 
is obvious that any not optimal current tour can be 
reformed to the best tour by replacing no more than in 
extreme case all tour edges: for example, on fig.1 are 
presented the best tour ABCDEFGHA and the current 
tour ABHCDFEGA. We’ll spend the replacement 
consistently, since some node (node A) that has "old" 
(dotted line), not included into best tour, an edge AG. 
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Fig.1. Detour of the contour. 
 
     We delete the edge AG from the tour and insert the 
"new" (thick line) edge GF that is entering into the 
best tour from the second node G of old edge AG. The 
second end of new edge necessarily point to node that 
has one or two old edges. As this node F becomes 
"overloaded" by edges, one of its edges should be 
removed (edge FD). As in each node from which old 
edges leave, the same quantity of new edges comes, so 
process of consecutive replacement of old edges on 
new ones come to the end with locking of a contour. 
Certainly, having begun with any of nodes having an 
old edge, we shall bypass all contour. Generally such 
contours can be more than one and detour of some of 
them can lead to temporary crippling of the tour. 
     It is obvious that the sum of lengths of new edges 
for all contours is less than the similar sum of deleted 
edges, i.e. 

1+2+3+… +k > 1’+2’+3’+… +k’ (1) 
Thus, there always exists at least one contour for 
which edges rightly similar inequality and at least one 
order of its detour when this inequality is correct on 
each step of detour. Differently, from any current tour 
it is always possible to create the best tour at keeping 
of benefit on each step of replacement of old edges on 
new ones. Therefore, the search of the best tour 
consists in revealing of contours and of continuously 
profitable order of detour of contours and also of 
nodes in each of them. Unlike [5] our algorithm do not 
stop until exact solution. 

2.1 Algorithm for TSP 
Let's consider on a concrete example step-by-step 
action of algorithm based on above principles. Each 
edge of current tour ABHCDFEGA (fig. 2) is 
consistently checked at each of its ends on existence of 
shorter edges that are not including into the tour yet. 
For example, an edge GE (fig. 2a) has three shorter 
edges: GF, GH and DE. Each of them is consistently 
checked on an opportunity of inclusion in tour instead 
of deleted edge GE. If we lead the detour from node G 
towards to node E, owing to selected direction of 
detour, we must insert the edge DE (fig. 2b). Then one 
of edges of overloaded node D is deleted from the tour 
(edge DF) and next new edge FG is inserted. We shall 
note that after this operation we have already received 
shorter tour ABHCDEFGA. Of course, the sum length 
of new and old edges must be profitable. Recursively 
continuing the search of the best tour by replacement 
already not two but three edges (fig. 2c), we again 
shall receive shorter tour. All next attempts of 
replacement of edges are unsuccessful.  
     On prima facie, at worst labour input of search of 
the solution by the offered method is even worse than 
that of brute force. However this laboriousness 
strongly depends on configuration of current tour. In 
particular, if current tour pass on sides of regular 
polygon, there is no shorter edge in the graph than an 
edges of the tour (at observance of triangle inequality), 
and the same algorithm will come to end without any 
recursive call, i.e. will have the polynomial (quadratic) 
complexity. An efficiency of an inequality (1) as 
criterion of termination of depth first search directly 
depends on current tour length (beta-boundary). The 
reduction of beta-boundary sharply abates amount of 
computations and accordingly raises the efficiency of 
the offered approach. As each new tour is always 
shorter than current tour, we’ll replace the current tour 
on any new immediately to decrease the labour input 
of following computations. 
     Search of way from current tour to desired it is 
advisable to carry out with minimal calculations. 

 
 

   
                2a             2b                2c 

 
Fig.2. Step-by step algorithm of detour. 

Proceedings of the 11th WSEAS International Conference on SYSTEMS, Agios Nikolaos, Crete Island, Greece, July 23-25, 2007         444



Table 1. Experimental results. 

Start Fast Depth 2 Stop Range 
(nodes) 

Number 
of graphs Mean (%) Max (%) Mean (%) Max (%) Mean (%) Max (%) Mean (%) Max (%) 

1-100 16 398.8 799.3 92.5 265.4 7.6 20.5 0 0
101-1000 43 727.3 3289.2 38.7 119.3 11.5 23.5 0.7 3.4

1001-10000 25 1559.2 4225.3 22.5 58.5 16.1 28.8 3.9 4.9
>10000 6 5888.7 9281.8 38.2 82.6 15.8 18.8 4.2 4.9

Total 90 1244.1 9281.8 43.7 119.3 12.4 28.8 1.4 4.9 
 
 
Obvious way of decrease of processing time for 
recursive algorithms is the cascade increasing of 
recursion depth. Therefore we shall carry out the 
search iteratively, by replacing on each iteration 
minimally possible quantity of edges. Differently, 
simultaneous replacement of k edges must be made 
only in case of impossibility of tour improvement at 
previous iterations with smaller quantity of edges (1, 
2, 3, … k-1). Inasmuch as replacement of one edge is 
allowable only in case of presence of multiple edges 
that is impossible in classical statement of TSP, we 
shall raise the depth of recursion consistently, starting 
with 2. The above algorithm have been programmed 
and checked on real graphs for TSP. 
 
2.2 Benchmark data and tools  
Original data and exact solutions were received from 
site of symmetric TSP [10]. Computer Pentium-4, 2.4 
GHz (512 Mb RAM), Windows-2000, the 
programming language C were used. Compilation was 
carried out by means of compiler BC ++ v3.1. 
 

2.3 Experiments 
To check the quality of created algorithm we solved 
some symmetric TSPs with already known exact 
solutions [10]. Initial tours have been created by 
consecutive connection of nodes according to 
increasing of their indexes. At that such initial tours 
for some graphs already have an error in a few 
percents or less (for instance, for the graph pr2392 the 
initial tour already represents the exact solution). 
Hence for detailed checking of algorithm at various 
states of current tour we created an additional initial 
tour by connection of nodes in correspondence with 
ascending of their coordinates, and took for processing 
worst of two ones. As calculation by declared 
algorithm is executed right up to revealing of exact 
solution that can demand heavy expenses of processor 
time, computations were artificially interrupted after 4 
hours if the algorithm did not finish earlier of this time 
by acknowledged receipt of the best tour  (burma14, 
ulysses16, eil51, st70, eil76, rat99 - 6 problems 
altogether). Results are shown in table 1. 

 
 

 
 

Start: 7039.5% 
 

After 1 minute: 171.3% 
 

After 4 hours: 4.9% 
 

Fig.3. Solving of TSP for d15112 
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Table 2. Experimental results for top 50 graphs. 
            

Graph Start, % Fast, % Depth 2, % Stop, % Length Graph Start, % Fast, % Depth 2, % Stop, % Length 
pr264 298,2 30,6 23,5 0,5 49378 rl1323 1256,4 27,3 20 2,3 276476
a280 239,3 15,5 10,7 1,4 2614 nrw1379 1157,7 18,1 14,4 2,4 57990
pr299 404,9 26,1 11,8 1,1 48715 fl1400 3607,1 9,9 9,9 2,3 20583
lin318 1020,7 22,4 15,3 0,9 42428 u1432 164,4 14 11,3 2,8 157301
rd400 1310,6 107,4 13,4 1,4 15498 fl1577 3489,6 16,7 15,8 3 22926
fl417 3289,2 12,7 11,3 0,1 11878 d1655 459,9 18,3 16,2 2,2 63507
gr431 614,6 19,9 8,5 1,5 173902 vm1748 2872,9 45,9 12,8 3,7 349062
pr439 411,7 26,3 15,4 0 107255 u1817 408,7 26,5 21,3 3,5 59180

pcb442 470,2 24,2 13,1 1,6 51599 rl1889 1985,5 58,5 15,4 3,8 328527
d493 509,9 22,1 14,5 1,6 35545 d2103 680,4 31 28,8 2,2 82240

ali535 1565,6 42,9 14,4 0,4 203225 u2152 373,1 22 20,6 3,5 66487
u574 629,9 17,6 13,3 2,4 37797 u2319 107 7,2 4,5 0,8 236136

rat575 1292,2 21,6 16,9 1,7 6890 pr2392 1451,3 18,2 15,7 3.7 392157
p654 251,4 13,6 9,6 0,1 34669 pcb3038 1356,6 16,5 13,6 2,9 141693
d657 738,8 18,8 14,4 1,7 49751 fl3795 4225,3 19,7 19,1 3,9 29898
gr666 1139,5 15,3 10 3,4 304491 fnl4461 3116,5 17 14,9 2,5 187203
u724 554,4 22 16,4 1,7 42639 rl5915 2226,3 25,7 21,6 4,9 593039

rat783 1504 22,5 17,8 1,7 8960 rl5934 1977,7 27,9 22,2 4,8 582941
dsj1000 2888,4 94,9 14,3 1,3 18894359 pla7397 1910,6 14,8 12,7 3,6 24104074
pr1002 671,5 21,9 12,2 1,6 263073 rl11849 9281,8 82,6 18,8 3,6 956265
u1060 703,7 16,4 13,2 2,5 229664 usa13509 7861 18,1 15,4 4,6 20895464

vm1084 2136 33,6 12,5 2,5 245314 brd14051 4925,3 16,5 15,1 4,1 488619
pcb1173 940,8 12 11,1 3,8 59040 d15112 7039,5 72,4 14,4 4,9 1650770
d1291 420,2 17,5 17,4 3,8 52711 d18512 5248,3 15,4 14,6 3,8 669600
rl1304 1279,9 26,1 24,9 3,8 262641

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 sw24978 976,3 24 16,5 4,5 894130

 
 
      Apparently from the table that algorithm finds 
quite acceptable solutions for reasonable time. For 32 
graphs from 90 investigated (and for all graphs with 
quantity of nodes up to 150 inclusively) the length of 
final tour is equal that of best-known tour. In other 
cases an error is always less than 5%. Any dependence 
of quality of the solution on initial data is not revealed. 
Detailed results for 50 graphs with the greatest 
quantity of nodes are shown in table 2. 
 
2.4 Processing of very large graphs 
Usually it is considered, that the opportunity of using 
of polynomial-time algorithms allows solving TSP. 
However for larger graphs, with many millions of 
nodes, any algorithms except linear-time, as a matter 
of fact, appear useless. We shall note that observance 
of triangle inequality is not obligatory. Whether the 
search of good enough tours at this case is possible? 
     We modified our algorithm (fig. 2) a little as 
follows. Search of edges for replacement we shall 
make not among all edges of tour, but only among k 
first of them - of nearest neighbors of a current edge in 
tour. On the first iteration we accepted k = 1, but only 
for those edges which length exceeds average length 
of an edge of current tour. For long edges (twice 

exceeding average length) the value k is doubled, and 
for superlong (four times and more) is doubled once 
again. On the contrary, for short edges the value k 
accordingly decreases. Thus, longer edges are 
examined more closely, and short, less than average 
length of current tour, are not considered at all. It is 
obvious, that such edges in any tour there is more than 
half, therefore labour input of work of algorithm on 
the first iteration appears even below linear on number 
of nodes of the graph. 
     At next iteration the value k is doubled, i.e. the 
algorithm smoothly "flows" from linear to quadratic 
complexity. Transition to new iteration is carried out, 
however, not always but only in case the previous 
iteration cannot essentially improve current tour. 
Otherwise, if on current iteration it is revealed a 
significant amount of new tours (we have set their 
amount as 1/32 or more from number of nodes), it 
repeats at the same value of k. Work of high-speed 
algorithm comes to end, when k will exceed a quarter 
from number of nodes of the graph. 
     Experiments have shown, that application of the 
declared high-speed algorithm allows to lower a total 
operating time of first iteration in tens times. The beta-
boundary even for very far from optimal tours was
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             1. Length 128795.59      2. Length 4716223.02       3. Length 330898 
 

Fig.4. Solving of TSP in special cases 
 
sharply decreased (fig. 3). The length of tour after the 
termination of work of high-speed algorithm in most 
cases makes up 20-30% from optimum, so it is already 
possible to recommend it for practical utilization. On 
usual PC software allows to find a satisfactory 
solutions at reasonable time for graphs with number of 
nodes up to some millions (maximal size of the really 
tested graph was 123456789 of nodes). 
     Various variants of solutions for the graph of 1234 
nodes are shown on fig. 4: the shortest tour (1), the 
longest tour (2) and the shortest tour with wrong 
triangle inequality (3). In last variant the length of 
edges between two nodes was calculated as product of 
their indexes. Despite of "awful" view, the initial 
length of tour was decreased more than on two orders. 
 
2.5 Specificity of search of exact solution 
The idea of increasing the speed of search of exact 
solution is simple enough: at "heavy" iterations the 
only task is to find though any solution, to "tousle" the 
current tour, not doing any attempt to improve the 
found solution. However after each "heavy" iteration 
an attempt of optimization of current tour on depth 2 is 
done. Besides already after the termination of the first 
iteration there remain in tour, as a rule, only 30-40 % 
of "interesting" edges (that demand a recursive call).  
After each next iteration the appreciable part of 
"interesting" edges becomes "uninteresting" as all 
deeper iterations terminate not on recursion depth, but 
"naturally" (if losses as a result of distortion of current 
tour will exceed the maximal expected benefit). 
Therefore on each new iteration there remains less and 
less edges for consideration and, despite of increase of 
recursion depth, the time spent on new iteration 
sometimes even decreases a little. 

     As it has been told above, exact solutions, as a 
matter of fact, are not exact in reality, as they 
minimize the length of tour together with errors of 
rounding off. This "petty fraud" is not harmless at all, 
as rounding off of distances sharply (it is better to say 
"radically") decreases the labour input of calculations, 
say, by branch-and-bound method. Many routes which 
after rounding off of distances up to integers become 
equal, at really exact calculations will have different 
length, and cannot be excluded from consideration any 
more. Differently, the exact solutions for graphs with 
tens thousand of nodes will demand not decades but 
millennia of processor time. One of advantages of our 
approach is that accuracy of calculations practically 
does not influence on effectiveness of algorithm.  
     As the created software is suitable for checking of 
existing solutions (for this purpose it is enough to set 
such solution as initial tour), it has been revealed, that 
many exact solutions can be "improved", if length of 
edges do not round off to integers. So, it has been 
shown that for graphs eil51, st70, eil101, ch130, ch150 
and others the found tours, strictly speaking, are not 
optimal. In particular, 9 solutions for the graph d15112 
(profit 0,00027%) have been found. It is easy to be 
convinced of correctness of the solution: it is enough 
to replace a final chain of the author's solution 5755-
12438-4501-11824-13059 on 5755-11824-12438-
4501-13059 or to replace 4757-10600-8259-7265 on 
4757-8259-10600-7265, etc. The author's solution of 
the graph sw24978 nodes also it has appeared possible 
"to improve": 147 tours, which length less resulted as 
the best (maximal profit 0,00159%) have been found. 
Correctness of the solution also is easily to check by 
replacement of a chain, for example, 483-501-530-
546-502-484 on 483-530-501-502-546-484. 
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Fig. 5. Some examples of TSP solutions 
 

 
3 Discussion of results 
The offered algorithms show quite satisfactory quality 
of the solution and high enough efficiency for graphs 
of large dimension and arbitrary configuration. They 
are suitable for revelation of both approximate and 
exact solution, at that the productivity of receiving of 
approximate solution is commensurable with that of 
heuristic algorithms [5]. The software can be easily 
modified for graphs with incomplete or superfluous 
number of edges, for asymmetric TSP. Speed of search 
of the exact solution can be considerably increased by 
using of multiprocessor hardware as the algorithm can 
be modified for parallel architecture on arbitrary 
number of computers and practically without loss of 
efficiency. Some examples of TSPs solutions are 
shown at fig. 5. 
     Our software is rather unpretentious to available 
computing resources. It can work even at the processor 
8086 and 640К RAM. Nevertheless, in such conditions 
a number of nodes can reach 1000 and more. Fast 
speed of algorithm allows using it for solution of TSP 
even if all nodes of the graph move. The version of 
software for dynamic TSP is presented in [11]. 
     As the graph and current state of calculation is kept 
in a database, calculations can be interrupted at any 
moment to continue it later, at that the solution is the 
best tour found to the moment of a stop. This 
circumstance allows using our software for 
improvement of the tours received by other (heuristic) 
algorithms or for the proof of their optimality. Even 
more interesting use of a DB consists in an opportunity 
of storage of a tree of variants of current calculation 
and its reduction to cyclic graph. Thus all permutations 
of profitable pairs of edges "new-old" are reduced to 
their combinations that, certainly, should reduce 
extremely the search time. Unfortunately, this problem 
demands deeper algorithmic study, and is not realized 
within the limits of this paper. 
 

4   Conclusion 
The experimental results show that the offered 
algorithms have competitive potential for solving 
discrete optimization problems. 
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