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Abstract: In this paper we investigate an inventory system with a fixed penalty cost that is incurred whenever there
is a shortage. To our knowledge it is the first time a model with a fixed penalty cost for lost demand is investigated.
Explicit solutions are derived in the case of uniform demands. In this paper the discussion is done in terms of
applying an (s, S) policy into a hotel booking problem.
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1 Introduction
In the inventory control literature (s, S) policies have
been used to specify ordering quantities when the de-
mand is stochastic and there is a fixed set-up cost, c.f.,
Arrow (1951), Veinott (1966) and Song and Zipkin
(1993). Iglehart (1963) derived an explicitly optimal
(s, S) policy for the stationary infinite horizon version
of the problem.

In this paper we use (s,S) policies in a hotel book-
ing environment, to model an agent that books ho-
tel rooms for its customers. In this environment we
need to consider a fixed penalty cost for lost demand
that is independent of the amount of the shortage.
Often, agents use a booking policy of the following
form. A fixed number of rooms S is booked at “book-
ing epochs”, to meet random customer demand at the
agent’s site. The booking process repeats instanta-
neously whenever the number of rooms at the disposal
of the agent at the end of a time period falls below a
critical level s. Let Dt, denote the demand customers
generate for rooms in period t. We assume that Dt are
i.i.d discrete random variables with probability mass
function f(x), (x = 0, 1, 2, ...), and cumulative dis-
tribution function F (x). Let the random variable Xt

denote the number of rooms at the agent’s disposal in
beginning of period t. Under this booking policy Xt

satisfies the following:

Xt+1 =

{
Xt −Dt, Xt −Dt > s
S, otherwise

(1)

The relation between the transition probabilities
for Xt and the probability mass function of the de-
mand is the following:

• P (Xt+1 = x′|Xt = x) = f(x′ − x),

if s < x′ < S, x′ 6= x;

• P (Xt+1 = x|Xt = x) = f(0)+
∑+∞

dt=x+1 f(dt);

• P (Xt+1 = S|Xt = x) =
∑x

dt=x−s f(dt).

The agent typically has a profit generating opera-
tions policy that works as follows. The agent can get
a gross profit of c units per room sold to a customer;
if he can’t satisfy the demand of the customer, then he
incurs a fixed penalty fee p, (which can be explained
as the cost paid by him to another agent for satisfy-
ing the demand of his customers). If the room still at
the agent’s disposal in the beginning the time period,
i.e the room hasn’t been occupied by a customer, the
agent needs to pay a reservation fee h for each room
at each time period.

The profit u(xt, dt) in the time period t with avail-
able rooms xt and demand dt can be written as:

u(xt, dt) =

{
dtc− xth, if dt ≤ xt

−p− xth, otherwise.
(2)

2 Formulation
Using standard theory from Markovian processes we
can calculate the stationary state distribution π(i), i =
s + 1, . . . , S; where we say the system is in state i if
Xt = i. Note that the number of states is S − s. Then
we have that π(i), is the unique solution to the system
of equations (3),(4) and (5) below

If s + 1 ≤ i < S,

π(i) =
S−i∑

j=1

f(j)π(i+j)+f(0)π(i)+
+∞∑

j=i+1

f(j)π(i);
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π(i)
i∑

j=1

f(j) =
S−i∑

j=1

f(j)π(i + j). (3)

If i = S,

π(S) =
S∑

i=1

i∑

j=i−s

f(j)π(i)+
+∞∑

j=S+1

f(j)π(S)+f(0)π(S);

π(S)
S∑

j=1

f(j) =
S∑

i=1

i∑

j=i−s

f(j)π(i). (4)

And
S∑

j=s+1

π(j) = 1 (5)

Then we can get the expected profit gi corre-
sponding to state i as follows

gi = c
i∑

j=0

jf(j) − p
+∞∑

j=i+1

f(j)− ih. (6)

Next we can got long run average profit for the
whole system:

g =
S∑

j=s+1

gjπ(j). (7)

3 Applications
Assume the demand follows the uniform distribution
in [0,m], (m ≥ S), then the probability mass func-
tion will be f(x) = 1

m+1 , (x = 0, · · · ,m). We first
obtain the solution of the stationary equations in the
next theorem. We still assume c > h.

Theorem 1 Under the suppositions made in this sec-
tion, the stationary probability distribution will be

π(i) =

{
s+1

i(i+1) , s + 1 ≤ i < S;
s+1
S , i = S.

(8)

Proof: Assume π(S) = θ, then we have

π(S − 1)
S−1∑

j=1

f(j) =
1∑

j=1

f(j)π(S − 1 + j);

π(S − 1)
S − 1
m + 1

=
1

m + 1
π(S);

π(S − 1) =
S

(S − 1)(S − 1 + 1)
θ.

Next we use mathematical induction to prove.

Assume ∀i + 1 ≤ k < S,

π(k) =
Sθ

k(k + 1)
.

Then

π(i)
i∑

j=1

f(i) =
S−i∑

j=1

f(j)π(i + j);

iπ(i)
m + 1

=
1

m + 1
(π(S)+π(S−1)+π(S−2)+· · ·+π(i+1));

iπ(i) = θ(1 +
S

(S − 1)S
+

S

(S − 2)(S − 1)

+ · · ·+ S

(i + 1)(i + 2)
);

iπ(i) = θ(1 +
S

S − 1
− S

S
+

S

S − 2
− S

S − 1

+ · · ·+ S

i + 1
+

S

i + 2
);

iπ(i) = θ(
S

i + 1
);

π(i) =
Sθ

i(i + 1)
.

That is to say, ∀i ≤ k < S,π(k) = Sθ
k(k+1) . Then

according to mathematic induction, we have

∀s + 1 ≤ k < S, π(k) =
Sθ

k(k + 1)
.

Hence,

S∑

j=s+1

π(j) = θ(
S

(s + 1)(s + 2)
+

S

(s + 2)(s + 3)

+ · · ·+ S

(S − 1)S
+ 1);

S∑

j=s+1

π(j) = θ(
S

s + 1
− S

s + 2
+

S

s + 2
− S

s + 3

+ · · ·+ S

S − 1
− S

S
+ 1);

S∑

j=s+1

π(j) =
Sθ

s + 1

Because of eq (4),
∑S

j=s+1 π(j) = 1, we have

θ =
s + 1

S

Therefore,
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• π(i) = s+1
i(i+1) , s + 1 ≤ i < S − s;

• π(S) = s+1
S .

ut

Remark 2 Notice the expression of stationary proba-
bility distribution has no relation to the parameter of
the uniform demand distribution.

At the same time, under the uniform demand as-
sumption and eq (6) we obtain:

gi = c i(i+1)
2(m+1) − p m−i

m+1 − ih

Then we can get the long run average profit for eq
(7):

g =
S−1∑

i=s+1

(c
i(i + 1)

2(m + 1)
− p

m− i

m + 1
− ih)

s + 1
i(i + 1)

+(c
S(S + 1)
2(m + 1)

− p
m− S

m + 1
− Sh)

s + 1
S

.

g =
S−1∑

i=s+1

(
c

s + 1
2(m + 1)

− p
m(s + 1)
m + 1

(
1

i(i + 1)
)

+(
p

m + 1
− h)

s + 1
i + 1

)

+(c
S(S + 1)
2(m + 1)

− p
m− S

m + 1
− Sh)

s + 1
S

;

g = (s + 1)
(

c(2S − s)
2(m + 1)

− pm

m + 1
(

1
s + 1

− 1
S

+
1
S

)

+(
p

m + 1
− h)(

S−1∑

i=s+1

1
i + 1

+ 1)


 ;

g = (s + 1)
c(2S − s)
2(m + 1)

− pm

m + 1

+(s + 1)(
p

m + 1
− h)(

S−1∑

i=s+1

1
i + 1

+ 1);

Here, g can be looked as a function about (s, S).
Then we have

g(s, S) = (s + 1)(
p

m + 1
− h)(

S−1∑

i=s+1

1
i + 1

+ 1)

+(s + 1)
c(2S − s)
2(m + 1)

− pm

m + 1
. (9)

Next we want to maximize with resect to s and S
g(s, S) and compute the following

max
0≤s+1≤S≤m

{ g(s, S)}. (10)

Theorem 3 Under the assumptions made in this sec-
tion, (m − 1,m) is the unique optimal solution for
(10), if p

m+1 ≥ h.

Proof: First for all 1 ≤ s + 1 ≤ S ≤ m, we have:

g(s, S) = (s + 1)
c(2S − s)
2(m + 1)

− pm

m + 1

+(s + 1)(
p

m + 1
− h)(

S−1∑

i=s+1

1
i + 1

+ 1);

g(s− 1, S) = s
c(2S − s + 1)

2(m + 1)
− pm

m + 1

+s(
p

m + 1
− h)(

S−1∑

i=s

1
i + 1

+ 1).

Then

g(s, S)− g(s− 1, S) =
c(2S − 2s)
2(m + 1)

+(
p

m + 1
− h)(− s

s + 1
+

S−1∑

i=s+1

1
i + 1

+ 1).

g(s, S)− g(s− 1, S) =

c(2S − 2s)
2(m + 1)

+ (
p

m + 1
− h)

S−1∑

i=s

1
i + 1

(11)

And according to the condition of the theorem,

c(2S − 2s)
2(m + 1)

> 0,

(
p

m + 1
− h)

S−1∑

i=s

1
i + 1

≥ 0.

Hence for all 1 ≤ s + 1 ≤ S ≤ m,

g(s, S)− g(s− 1, S) > 0 (12)

Second, for all 0 ≤ s + 1 < S ≤ m, we have:

g(s, S) = (s + 1)
c(2S − s)
2(m + 1)

− pm

m + 1

+(s + 1)(
p

m + 1
− h)(

S−1∑

i=s+1

1
i + 1

+ 1);

g(s, S − 1) = (s + 1)
c(2S − s− 2)

2(m + 1)
− pm

m + 1

+(s + 1)(
p

m + 1
− h)(

S−2∑

i=s+1

1
i + 1

+ 1);
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Then

g(s, S)−g(s, S−1) =
2(s + 1)c
2(m + 1)

+(
p

m + 1
−h)

s + 1
S

.

(13)
And according to assumption of the theorem,

2(s + 1)c
2(m + 1)

> 0,

(
p

m + 1
− h)

s + 1
S

≥ 0.

Hence for all 0 ≤ s + 1 < S ≤ m

g(s, S)− g(s, S − 1) > 0 (14)

Because of equation (12), (14), we have
∀0 ≤ s + 1 < S < m,

g(s, S) < g(s, m) < g(m− 1, m).

The proof is complete. ut

Theorem 4 Under the assumptions made in this sec-
tion,
a) if c

m+1 ≥ h− p
m+1 > 0, and 0 ≤ s + 1 ≤ S < m,

then
g(s, S) < g(s,m);

b) if c
m+1 ≤ (h− p

m+1) 1
m , and 0 ≤ s + 1 < S ≤ m,

then
g(s, S) < g(s, s + 1).

c) if (h− p
m+1) 1

m < c
m+1 < h− p

m+1 , and
0 ≤ s + 1 < S < m, then

g(s, S) < max{g(s, s + 1), g(s,m)}.

Proof: Because to all 0 ≤ s + 1 < S ≤ m, it follows
from equation (13):

g(s, S)−g(s, S−1) = (s+1)
(

c

m + 1
− (h− p

m + 1
)
1
S

)
.

If
c

m + 1
≥ h− p

m + 1
,

then ∀2 ≤ S ≤ m,

c

m + 1
≥ h− p

m + 1
> (h− p

m + 1
)
1
S

.

Hence,

g(s,m) > g(s,m−1) > · · · > g(s, s+2) ≥ g(s, s+1),

Therefore, if c
m+1 ≥ h− p

m+1 > 0,

then ∀0 ≤ s + 1 ≤ S < m,

g(s, S) < g(s,m).

To show (b) note that if

c

m + 1
≤ (h− p

m + 1
)

1
m

,

then ∀0 ≤ s + 1 < S < m,

c

m + 1
≤ (h− p

m + 1
)

1
m

< (h− p

m + 1
)
1
S

;

(h− p

m + 1
)
1
S

< (h− p

m + 1
)

1
s + 1

.

Hence,

g(s, s+1) > g(s, s+2) > · · · > g(s,m−1) ≥ g(s,m),

Therefore, if c
m+1 ≤ (h− p

m+1) 1
m ,

then ∀0 ≤ s + 1 < S ≤ m

g(s, S) < g(s, s + 1).

To show (c) note that if (h − p
m+1) 1

m < c
m+1 <

h− p
m+1 and if we let n∗ = b(h(m + 1)− p)cc, then

we have
n∗ ≤ (h(m + 1)− p)c;
c

m + 1
≤ (h− p

m + 1
)

1
n∗

.

And
n∗ + 1 ≥ (h(m + 1)− p)c
c

m + 1
≥ (h− p

m + 1
)

1
n∗ + 1

.

Because (h− p
m+1) 1

m < c
m+1 < h− p

m+1 ,
∀1 ≤ n < n∗,

c

m + 1
< (h− p

m + 1
)
1
n

;

∀n∗ + 1 < n ≤ m,

c

m + 1
> (h− p

m + 1
)
1
n

.

Take S∗ = max{n∗, s + 1},
then we have

g(s, s+1) > g(s, s+2) > · · · > g(s, S∗−1) ≥ g(s, S∗);

g(s,m) > g(s,m−1) > · · · > g(s, S∗+1) ≥ g(s, S∗).

Hence, if (h− p
m+1) 1

m < c
m+1 < h− p

m+1 ,
then ∀0 ≤ s + 1 < S < m,

g(s, S) < max{g(s, s + 1), g(s,m)}.
The proof is complete. ut
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Lemma 5 If h− p
m+1 > 0, and 0 ≤ s + 1 ≤ m then

g(s, s + 1) ≤ g(m− 1,m).

Proof:Because

g(s, s+1) =
c(s + 1)(s + 2)

2(m + 1)
− pm

m + 1
+(s+1)(

p

m + 1
−h);

g(s− 1, s) =
cs(s + 1)
2(m + 1)

− pm

m + 1
+ s(

p

m + 1
− h),

then we have

g(s, s + 1)− g(s− 1, s) =
c(s + 1)
m + 1

− (h− p

m + 1
).

And we have 0 ≤ s + 1 ≤ m.
Hence we can find s∗ which satisfies following:

• when s ≤ s∗,

g(s, s + 1)− g(s− 1, s) ≤ 0;

• when s > s∗,

g(s, s + 1)− g(s− 1, s) > 0.

Combining the above we have that either s+1 = 0 or
s + 1 = m will make g(s, s + 1) achieve its biggest
value. Let compare s + 1 = 0 and s + 1 = m:

When s + 1 = 0, g(−1, 0) = 0;
When s + 1 = m, g(m − 1,m) = cm(m−1)

2(m+1) −
pm

m+1 + m( p
m+1 − h) = m(c− h) > 0

That is to say, g(m−1, m) make g(s, s+1) attain
its biggest value. ut

Because of theorem 3, 4 and lemma 5, we can get
following result:

Theorem 6 Under the assumptions made in this sec-
tion, we can find s∗, such that for all ∀0 ≤ s + 1 ≤
S ≤ m the following is true:

g(s, S) ≤ g(s∗,m).

4 Conclusion
All the results in the above analysis are valid for any
inventory system with a fixed penalty cost that is in-
curred whenever there is a shortage. In this paper the
discussion is done in terms of applying an (s, S) pol-
icy into a hotel booking problem. The contributions
of this research are: it is the first model to analyze the
(s, S) with fixed penalty cost for lost demand; second
the paper describes a new hotel booking model; third,
the case of unform demands is solved explicitly.
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