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Abstract: This paper presents a multispectral microscopy system for differential cytology. While conventional
practices rely on the analysis of grey scale or RGB color images, presented system uses thirty one spectral bands
for analysis. Algorithms designed to enable image segmentation, feature extraction, and classification are pre-
sented. Results are presented for the problem of discriminating among four cell types. In addition, classification
performance is compared to the case where multispectral information is not taken into consideration. Results show
that the developed system and the use of multispectral information along with morphometric information extracted
from spectral images can significantly improve the classification performance and aid in the process of cell differ-
entiation.
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1 Introduction
Automated cellular analysis and screening has rapidly
become a major area for drug discovery processes as
well as rapid diagnostics. Modern microscopy al-
lows very large amount of visual information to be
collected automatically. These systems make the vi-
sual inspection of the pictures totally obsolete, but
also imposes the requirement of an objective quantita-
tive measurements on cell experiments. Cell detection
and identification is a common request for biological
image analysis. Traditional approaches of cell iden-
tification have relied on the geometric parameters of
the cell such as the area, radius, and the circumfer-
ence [1].

In this paper, we present a multispectral mi-
croscopy system capable of acquiring spectral images
under transmitted illumination and analyzing the same
for cell differentiation. Spectral imaging allows for
the measurement of the wavelength spectrum (trans-
mitted or emitted) at every pixel of a two-dimensional
image. A spectral image is a three-dimensional ar-
ray of data, i.e. a cube of informationIx,y(λ) which
contains the discrete measured spectrum at each pixel
position(x, y) [2]. Several key steps have to be per-
formed to analyze spectral images, including cell seg-
mentation, feature extraction and classification.

The remainder of the paper is organized as fol-
lows: section 2 presents the imaging system used to
acquire spectral images. Section 3 presents the seg-
mentation approach used to delineate cells in the im-
ages. The extraction of morphometric and spectral

features from the segmented cells and their classifica-
tion is presented in section 4. Results of the developed
system for classification of four cell types, red blood
cells (RBC), white blood cells (WBC), squamous ep-
ithelial cells (SQP), and non-squamous epithelial cells
(NSQP), are presented and the performance compared
to that obtained without the use of spectral data. Fi-
nally, conclusions and a summary of our developed
system appear in section 5.

2 Multispectral Imaging System
The core element of any spectral imaging system is
the spectral dispersion component which separates
the light into its spectral components, and is cou-
pled to a two-dimensional (2D) optical detector such
as a CCD camera, or to an array of photomultiplier
tubes (PMT). In this paper, we use a grating based
spectral light source coupled to a standard optical
microscope allowing 2D image acquisition using a
high resolution CCD camera. Specifically, we use
a quarter-meter class, Czerny-Turner type monochro-
mator from PTI (http://www.pti-nj.com) that pro-
vides a tunable light emission spectrum at 10nm
resolution. We utilize a wavelength range from
400-700nm for this study. The monochromator is
connected to an Olympus (http://www.olympus.com)
BX51 upright optical microscope such that the light
output from the monochromator feeds in to the
transmitted light path of the microscope. This
allows for the use of conventional optical mi-
croscopy to acquire brightfield images at desired
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wavelengths (transmitted light). An Olympus UP-
lanApo 40X NA 0.9 was used for imaging. The Photo-
metrics (http://www.roperscientific.com) SenSysTM

CCD camera having 768 x 512 pixels (9x9µm) at 8-bit
digitization is used which provides for high resolution
low light image acquisition. The illumination from
the monochromator was adjusted by achieving Köhler
illumination for uniform excitation of the specimen.
The condenser, aperture diaphragm, and the field stop
were kept constant during measurements. Focusing
was performed at the central wavelength of 550nm to
minimize the chromatic aberration at all wavelengths.
The system was calibrated as per the method proposed
in [3].

3 Image Segmentation

As a precursor to feature extraction and the computa-
tion of spectral signatures for cells, segmentation of
cells is required. Automatic cell segmentation is one
of the most interesting segmentation problems due
both to the complex nature of the cell tissues and to
problems inherent to microscopy. Cytological spec-
tral images share the following characteristics:

• Poor contrast, i.e., cell gray levels may be close
to that of background;

• Many cluttered cells in a single view. A high
number of occluding cells make image segmen-
tation difficult;

• Low quality. Traditional staining techniques in-
troduce a lot of inhomogeneity into the images,
where not all of the parts of the same tissue or
cells are equally stained.

• The grayscale intensity of cells vary with chang-
ing excitation wavelength.

Figure 1 shows a subset of the spectral image (400nm,
500nm, 600nm, and 700nm) of a Papanicolaou stained
cytological specimen where in the characteristic prob-
lems are clearly evident.

Figure 1: Four channels of a spectral image of a
stained cytological smear.

We employ a three-phase approach to segment-
ing cells in multispectral cytological images. This
method is similar to the approach proposed in [4]
which uses a two-phase approach for segment cells
in immunostained images. We use blind deconvolu-
tion approach to identify a lower dimensional space
that can be used to represent the spectral image for
the purpose of segmentation. An unsupervised clus-
tering approach coupled with cluster merging based
on a fitness function is used in the second phase
to obtain a first approximation of the cells location.
A joint segmentation-classification approach incorpo-
rating ellipse as a shape model is used in the third
phase to detect the final cell contour. Specifically, the
first phase formulation is based on the use of princi-
pal components analysis followed by representative-
based clustering coupled with cluster merging us-
ing proximity graphs in the second phase. Third
phase formulation is based on the Level Set approach
proposed by Osher and Sethian [5] coupled with a
feature-based classification model and the elliptical
shape prior.

3.1 Principal Component Analysis
The principal component analysis or Karhunen-Loeve
transform is a mathematical way of determining the
linear transformation of a sample of points in N-
dimensional space which exhibits the properties of the
sample most clearly along the coordinate axes. Along
the new axes the sample variances are extremes (max-
ima and minima), and uncorrelated. In addition to be-
ing able to determine the linear relationship between
transformed dimensions of the data, using a cutoff on
the spread along each axis, a sample may be reduced
in its dimensionality [6].

In our case, we transform the spectral image,
which has 31 values for each pixel, into a 3 dimen-
sional value. We chose the first three principal com-
ponents to represent the lower dimensional space and
map them to an RGB image for visualization. The
transformed image of the spectral image of figure 1 is
shown in figure 2.

3.2 Clustering and Cell Localization
The objective of the second phase analysis is to find
a set of locations corresponding to the cells of inter-
est based on the PCA transformed image. We utilize
the K-Means clustering algorithm that hierarchically
splits the representative color space containing colors
from the cells and background regions. One of the
limitations of unsupervised approaches like K-Means
is the inability to predict the true number of clusters
as well as the lack of arbitrary cluster shape repre-
sentation. We address this problem based on post-
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Figure 2: PCA transformed image of the cytological
smear using the first three principal components of the
spectral image.

processing of the realized clusters, leading to a merge
criteria to realize the final localization of cells.

We utilize a post-processing technique that is sim-
ilar to agglomerative hierarchical clustering in that
we iteratively merge two candidates. However, it
differs from a hierarchical clustering algorithm in
that it merges neighboring clusters that enhance a
given fitness function the most, and not necessarily
merge clusters that are closest to each other. A fit-
ness function is used that utilizes the principles of
cohesion and separation [7]. The fitness function
is Q(x) = Separation(x)δ/Cohesion(x)(2−δ)

where,Separation(x) is defined as the ratio of
total inter-cluster distances across all clusters to the
inter-cluster distance of the cluster of interest, and
Cohesion(x) is the ratio of the total intra-cluster
distances across all clusters to the intra-cluster dis-
tance of the cluster of interest. The distances are mea-
sured as the L2-norm between a point in the cluster
and the cluster center. In general, separation mea-
sures how well-separated a cluster is from other clus-
ters while cohesion measures the tightness of a cluster.
Hence,δ weighs the importance of distinct clusters to
cluster compactness. The final clustering results in the
optimal separation of cells and background. All pixels
labeled as cells are separated into a new image and a
blob coloring operation performed to count the total
number of regions. Each region is than isolated as a
new image for the next stage in segmentation.

3.3 Variational Segmentation Model

The Mumford-Shah model [8] has been regarded
as a general model within variational segmentation
methods. According to Mumford-Shah′s conjecture,
the image segmentation is a variational problem of
finding an optimal piecewise-smooth approximation
f(x, y) of the given scalar imageI(x, y) and a set
of boundariesC, such that the approximationf(x, y)
varies smoothly within the connected components of
the subsets excluding the boundariesΩ\C. Chan

and Vese proposed piecewise constant active con-
tour model [9] based on Mumford-Shah segmentation
model [8], given by

∂φ(x, y)

∂t
= δǫ(φ(x, y))[νκ(φ(x, y)) (1)

−(I(x, y) − µ1)
2 + (I(x, y) − µ2)

2],

where δǫ(.) denotes the regularized form of Dirac
delta function, and{µ1, µ2} denotes the mean of the
image intensityI measured at the inside and the out-
side of the contours. Mumford and Shah proposed to
solve the variational segmentation problem by mini-
mizing the following global energy function:

E(f,C) ≡

∫

Ω
|I(x, y) − f(x, y)|2dxdy (2)

+µ

∫

Ω\C
|∇f(x, y)|2dxdy + ν|C|

The variational boundariesC have the role of approx-
imating the edges ofI(x, y) by smoothingf(x, y)
only onΩ\C. The minimization of the global energy
function approximates the imageI(x, y) with f(x, y),
smoothesf(x, y), and reduces the length of bound-
aries|C|. The global energy function given in equa-
tion 2 for all regions can be generalized by:

E(f,C) ≡
∑

i

∫

Ωi

ei(x, y)dxdy (3)

+µ

∫

Ωi\C
|∇fi(x, y)|2dxdy + ν|C|,

where the objective functionei(x, y) determines the
condition of region-based segmentation for each sub-
setΩi for the piecewise-constant contours shown in
equation 1.

Our goal here is to extend the energy functional 3
in order to force the level set to segment only the re-
gions of interest, namely the cells constrained by spe-
cific image features and a known parametric shape.
This is done in general by modifying the objective
function ei(x, y) and adding a termEshape to the
global energy function that measures how well the
level set represents the cell. The modified global en-
ergy functional is given by:

E(f,C,Θ) ≡
∑

i

α

∫

Ωi

ei(x, y)dxdy + (4)

β

∫

Ωi

Eshape + µ

∫

Ωi\C
|∇fi(x, y)|2dxdy,

Within this formulation, the smoothness constraint is
automatically ensured and therefore not needed from
the original Mumford-Shah model.
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Let the (vector-valued) image intensityI be a
multidimensional random variable given byI ∈ ℜB

whereB denotes the dimension of the image intensity
I, which is also equivalent to the number of features
extracted from the imageI(x, y). We propose an ob-
jective function to measure how much an image pixel
is likely to be an element of a subset using a proba-
bility density function (PDF) estimated from training
samples. The objective function is given by

ei(x, y) ≡ − log(pi(I(x, y)+P (Ωi)),∀(x, y) ∈ Ω,∀i,
(5)

wherepi(I) : ℜB → ℜ denotes the multivariate con-
ditional PDF of a vector-valued image intensityI on
the condition that the image pixelI(x, y) is an element
of the subsetΩi, andP (Ωi) denotes the a priori proba-
bility of the subsetΩi. Based on the objective function
of equation 5, minimizing the the first term of energy
E in function 4 is equivalent to maximizing the log a
posteriori probability given bypi(I(x, y))+P (Ωi) for
each subsetΩi. The computation of posterior prob-
ability is based in the use of Bayesian classification
scheme as detailed in [10].

The second termEshape is based on knowing that
most human cells have elliptical shaped boundaries.
To impose sucha priori knowledge, we use the im-
plicit form of the ellipse equation to describe the cell
boundary given as:

[(x − x0) cos θ + (y − y0) sin θ]2

a2
+ (6)

[(x − x0) sin θ + (y − y0) cos θ]2

b2
= 1

The segmentation according to an ellipse then is
equivalent to the recovery of five parameters, where
the space to be optimized is given byΘ =
[a, b, θ, x0, y0] where(x0, y0) denotes the center of the
ellipse, θ denotes the orientation of the ellipse, and
a, b denote the major and minor axis of the ellipse,
respectively.

Segmentation based on explicit incorporation of
cell classification and its shape representation is now
equivalent to deforming an ellipse according toΘ so
it is attracted to the desired image classification. The
global energy function of the level set contour model
and the associated Euler-Lagrange equation obtained
by minimizing the global energy functionE with re-
spect toφ = φ1, . . . , φj , . . . , φJ can be given by

∂φj(x, y)

∂t
= δǫ(φ(x, y))[−µ − (7)

α(
m−1
∑

i=0

Pi,cell(I(x, y)) −
m−1
∑

i=o

Pi,bckg(I(x, y))) −

β(
m−1
∑

i=0

(1 −
√

(A/a)2 + (B/b)2))]

where, A = (xi − x0) cos θ + (yi − y0) sin θ and
B = −(xi − x0) sin θ + (yi − y0) cos θ. The solu-
tion to the Euler-Lagrange is implemented using gra-
dient descent where the parameters for the ellipse,
Θ, are solved at each iteration of the level set evo-
lution [11, 4].

Figure 3 shows three representative localized re-
gions and the corresponding cell segmentation ob-
tained based on segmentation approach. A total of 40

Figure 3: Segmentation of three cells within the cor-
responding localized regions. The top row shows the
localized regions and the contour initialization. The
bottom row shows the final contour for each of the re-
gions.

spectral images were segmented to evaluate the ap-
proach. This resulted in cell segmentation accuracy
rate of 92.1% with a missed segmentation rate of 4.3%
and a false segmentation rate of 2.7%. The segmenta-
tion errors encountered were primarily due to the fail-
ure of the localization stage in identifying the correct
region of interest.

4 Feature Extraction and Classifiers
To evaluate the utility of spectral imaging, we per-
formed classification studies for automated identi-
fication of the different cell types, specifically for
the automated differentiation between red blood cells
(RBC), white blood cells (WBC), squamous epithe-
lial cells (SQP), and non-squamous epithelial cells
(NSQP). A total of 51 clinical samples were imaged.
The number of samples and the number of cells pro-
cessed for each cell type are listed below in table 1.
Each spectral image set was PCA transformed and
cells segmented. A binary mask was generated for
each segmented cell to extract the corresponding area
from each of the 31 spectral images. Gray level im-
age intensities were used to determine the portion of
light transmitted by each cell across the exciting spec-
tra. The radiation transmitted by the cell was mea-
sured as the integrated intensity of the cell divided by
the area of the cell. The intensity of the incident light
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Type RBC WBC SQP NSQP

Samples 7 16 13 15
Cells 154 151 72 49

Table 1: Number of samples and cells processed.

was estimated by measuring the average intensity of
the background (i.e. the surrounding media around
the cell). The background area was chosen as an ex-
tension around the cell area, three pixels away and five
pixels thick. The transmission factor wasT = It/Ii

, whereIt is the intensity of the light transmitted by
the cell andIi is the intensity of incident light. Using
the Beer-Lambert law [12], the absorption parameter
is calculated byAbs = log(1/T ). This computation
was performed for each of the 31 wavelengths, result-
ing in 31 spectral measures for each cell (spectral pro-
file). In addition, 71 morphological features were also
computed. These features ranged from standard de-
scriptors such as area, size, perimeter, to textural and
fractal features [13]. These measure are computed us-
ing only the 550 nm wavelength image. A total of 102
features were computed for each cell, comprised of 31
absorption parameter factor values, and 71 morpho-
logical features, including image; size, mean, standard
deviation, contrast, and cell; width, height, perime-
ter, area, shape factor1, shape factor2, mean, standard
deviation, contrast, fractal dimension1, fractal dimen-
sion2, average entropy, entropy homogeneity, rough-
ness, low entropy emphasis, high entropy emphasis,
low graylevel entropy emphasis, high graylevel en-
tropy emphasis, concavity and 48 statistical geometric
features.

In order to design optimal classifiers, a first anal-
ysis was performed to select a smaller subset of mor-
phological and spectral features. We performed fea-
ture selection for the spectral and morphological mea-
sures separately. This was based on an exhaustive
search of all combinations of the features, with the cri-
teria of selection based on maximizing the correlation
of the chosen features to the cell classes. This resulted
in a smaller set of features comprising 2 spectral mea-
sures and 38 morphological features. The spectral
features chosen included the normalized transmission
factor for 400nm and 700nm, while the morphologi-
cal features selected included image; size, mean, stan-
dard deviation, contrast, and particle; width, perime-
ter, area, shape factor1, shape factor2, mean, contrast,
fractal dimension1, fractal dimension2, average en-
tropy, entropy homogeneity, high graylevel entropy
emphasis, concavity and 20 statistical geometric fea-
tures. Thus a total of 40 features, of the original 102,
were used.

Features Classifier
NBC BN MLP

MORPH (38) 68.8% 66.5% 61.2%
SPEC+MORPH (40) 79.9% 81.1% 85.2%

Table 2: Classification accuracy for three classifiers
without bagging.

Features Classifier
NBC BN MLP

MORPH (38) 70.2% 78.7% 73.8%
SPEC+MORPH (40) 85.2% 81.5% 88.0%

Table 3: Classification accuracy for three classifiers
with bagging.

To evaluate the merit of the extracted features,
we used six different classification methods. They
were based on a Naı̈ve Bayes classifier (NBC), a
Bayesian Network (BN), and a Multilayer Perceptron
(MLP) neural network [14]. We also tested a meta-
classification approach based on bagging [15]. Bag-
ging, a common approach used to improve the perfor-
mance of a classifier, uses multiple classifiers that vote
to generate a final decision. We created a bagging-
based classifier for each of the classifiers. We fur-
ther wanted to compare the benefit of using the spec-
tral features versus morphological features. We ran
the classifiers using only morphological features, and
then using a combined set of spectral and morpholog-
ical features. All performance analysis was based on
the leave-one-out cross validation approach. The best
classification performance resulted from using MLP
with bagging. An overall increase of 15% in classi-
fication accuracy is seen with the use of the combi-
nation of spectral (SPEC) and morphological features
(MORPH). Tables 2 and 3 show the correct classifi-
cation rates for the three classifiers, with and without
bagging, respectively.

We chose the Bagging MLP, as it was the clas-
sifier with the best classification rate. In addition, to
understand the behavior of the classifier, we computed
the sensitivity and positive predictive value (PPV) for
each of the individual classes. The sensitivity is com-
puted as the percentage of the cells that actually be-
long to one category that are assigned to that cate-
gory. Positive predictive value is computed as the
percentage of the cells that are assigned to one cat-
egory that actually belong to that category. Tables 4
and 5 show the sensitivity and PPV for the Bagging
MLP, compared across classification based on mor-
phological features and on the combined spectral and
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Type RBC WBC SQP NSQP

MORPH 88.3 88.1 93.5 53.8
SPEC & MORPH 87.7 88.1 93.5 61.5

Table 4: Sensitivity (%) of the Bagging MLP Classi-
fier.

Type RBC WBC SQP NSQP

MORPH 97.3 97.2 99.0 98.8
SPEC & MORPH 97.7 97.7 98.8 99.2

Table 5: Positive Predictive Value (%) of the Bagging
MLP Classifier.

morphological features. As seen, the spectral features
generally improve classification of cell subtypes, with
increased sensitivity, and reduced false positive rates.
These results prove the feasibility of using spectral
data for improved automated cell differentiation.

5 Summary and Conclusions
We have presented a multispectral microscopy sys-
tem and shown its benefit to the problem of cell dif-
ferentiation. Algorithms for automated cell segmen-
tation, spectral and morphological feature extraction,
and the design and evaluation of classifiers are dis-
cussed. While conventional practices in microscopy
rely on the analysis of grey scale or RGB color im-
ages, presented system uses thirty one spectral bands
for analysis. Results of the developed system are pre-
sented and classification performance is compared to
the case where multispectral information is not taken
into consideration. Results show that the developed
system and the use of multispectral information along
with morphometric information extracted from spec-
tral images can significantly improve the classification
performance and can aid in the process of identifying
and differentiating various cell types present in a cy-
tological sample.
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