
Setting of moving object location with optimized tree structure
OGNIAN NAKOV, DESSISLAVA PETROVA

Faculty of Computer Systems and Control
Technical university of Sofia

8 Kl. Ohridski Blv., Sofia
BULGARIA

nakov@tu-sofia.bg, d_petrova@tu-sofia.bg

Abstract: Object tracking is an important part of the common problem for the autonomous motion planning.
The main theme of this paper is to propose a data aggregation model for object tracking. Object tracking
typically involves two basic operations: update and query. In general, updates of an object’s location are
initiated when object moves from one point to another. A query in invoked each time when there is need to
find the location of the interested object. Location updates and queries may be done in various ways. We
propose a new tree structure for in-network object tracking. The location update part of our solution can be
viewed as an extension of [2]. In particular, we take the physical topology of the network into consideration.
We will reduce the update cost. Several principles, namely, deviation-avoidance and highest-weight-first ones
are pointed out to construct an object tracking tree to reduce the communication cost of location update. Our
proposed solution tries to divide the network area into squire-like zones, and recursively combine these zones
into a tree.

Keywords: object tracking, data aggregation, data source network, tree structure.

1 Introduction
Object tracking is an important part of the common
problem for the autonomous motion planning.
Existing research efforts on object tracking can be
categorized in two ways. In the first category, the
problem of accurately estimating the location of an
object is addressed [1], [3]. In the second category,
in-network data processing and data aggregation
for object tracking are discussed [2], [4]. The main
theme of this paper is to propose a data aggregation
model for object tracking. Object tracking typically
involves two basic operations: update and query. In
general, updates of an object’s location are initiated
when object moves from one point to another. A
query is invoked each time when there is need to
find the location of the interested object. Location
updates and queries may be done in various ways.
A naive way for delivering a query is to flood the
whole network. The data source whose covering
range contains the queried object will reply to the
query. Clearly, this approach is inefficient because
a considerable amount of energy will be consumed
when the network scale is large or when the query
rate is high. Alternatively, if all location
information is stored at a specific data source (e.g.
sink), no flooding is needed. But, whenever a
movement is detected, update message have to be
sent. One drawback is that when objects move
frequently, abundant update messages will be

generated. The cost is not justified when the query
rate is low. Clearly, these are tradeoffs.
In [2], a Drain-And-Balance (DAB) tree structure is
proposed to address this issue. This is an object
tracking approach where query messages are not
required to be flooded and update messages are not
always transmitted to the sink. However [2] has
two drawbacks. First, a DAB tree is a logical tree
not reflecting the physical structure of the data
network hence, an edge may consist of multiple
communication hops and a high communication
cost may be incurred. Second, the construction of
the DAB tree does not take query cost into
consideration. Therefore, the result may be efficient
in some cases.
To relieve the aforementioned problems, we
propose a new tree structure for in-network object
tracking. The location update part of our solution
can be viewed as an extension of [2]. In particular,
we take the physical topology of the network into
consideration. We will reduce the update cost.
Several principles, namely, deviation-avoidance
and highest-weight-first ones are pointed out to
construct an object tracking tree to reduce the
communication cost of location update. Our
proposed solution tries to divide the network area
into squire-like zones, and recursively combine
these zones into a tree. In our previous research we
have proposed another solution, which is described
in the next section. The new solution is compared
with a naive scheme, DAB scheme and our

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 67

mailto:nakov@tu-sofia.bg
mailto:d_petrova@tu-sofia.bg

previous solution – Singleton Subtree Algorithm
(SSA).

2 Problem formulation
We consider a network of data sources deployed in
a field for the purpose of object tracking. Data
sources locations are already known at a special
node, called sink, which serves as the gateway of
the network to outside world. We adopt a simple
nearest-node model, which only requires the data
source that receives a message from the object to
report the sink. Therefore, the data network’s field
can be partitioned can be partitioned into a graph,
as depicted in Fig.1.

A
B

C

D
E

F

G

H

J

I K

18 35

12 10
33

53

7

20

20
39

19

1

13

38 28

7 21

14

15
16

23

23

39
H

Fig.1. The graph G corresponding to the data

source network

We propose a data aggregation model for object
tracking. We assume that whenever an object
arrives at or departs from the range (polygon) of a
data source, a detection event will be reported. Two
data sources are called neighbours if their ranges
share a common boundary on the graph; otherwise,
they are nonneighbours. Multiple objects may be
tracked concurrently in the network, and we
assume that from statistics, it is possible to collect
the event rate between each pair of neighbouring
data sources to represent the frequency of object
traveling from one point to another. For example,
in Fig.1, the arrival and departures rates between
data sources are shown on the edges of the graph.
In addition, the communication range of data
sources is assumed to be large enough so that
neighbouring data sources can communicate with
each other directly. Thus, the network topology can
be regarded as undirected weight graph G=(VG, EG)
with VG representing data sources and EG
representing links between neighbouring data

sources. The weight of each link GEba ∈),(,
denoted by wG(a, b), is the sum of event rates from
a to b and b to a. This is because both arrival and
departure events will be reported in our scheme.
In light of the storage in data sources, the network
is able to be viewed as a distributed database. We
exploit the possibility of conducting in-network
data aggregation for object tracking. Similar to the
approach in [2], a logical weighted tree T will be
constructed from G. For example, Fig.2 shows an
object tracking tree T constructed from the network
G in Fig.1. Movement event of objects are reported
based on the following rules. Each node a in T will
maintain a detected list DLa(L0, L1,…, Lk) such that
L0 is the set of objects currently inside the coverage
of data source a itself, and Li, i=1,…, k, is the set of
objects currently inside the coverage of any data
source who is in the subtree rooted at the ith child
of data source a, where k is the number of children
of a.

B

C

E
D

H

J

G

I

F

A
O3

O2

O1

DLC(NIL)
DLB(NIL, [O2], NIL, NIL)

DLA([O3], [O1], NIL, NIL, [O2])

DLF(NIL, [O1])

DLI(NIL, [O1])
DLJ(NIL, [O1])

DLD(NIL)

DLG(NIL)

DLE(NIL)

DLH([O2])

DLK([O1])

1

1

1
1

2

1

1

2

11

K

Fig.2. An object tracking tree

When an object O moves from the range of a to
that of b, a department event dep(O, a, b) and an
arrival event arv(O, b, a) will be reported by a and
b, respectively, alone the tree T. On receiving such
an event, a data source x takes following actions:

1) If the event is dep(O, a, b), x will remove
O from the proper Li in DLx such that data source a
belongs to the ith subtree of x in T. If x=a, O will
be removed from L0 in DLx. Then x checks whether
data source b belongs to the subtree rooted at x in T
or not. If not, the event dep(O, a, b) is forwarded to
the parent node of node of x in T.

2) If the event is arv(O, b, a), x will add O
to the proper Li in DLx such that data source b
belongs to the ith subtree of x in T. If x=b, O will
be added to L0 in DLx. Then x checks whether data

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 68

source a belongs to the subtree rooted at x in T or
not. If not, the event arv(O, b, a) is forwarded to
the parent node x in T.
The above data aggregation model guarantees that,
disregarding transmission delays, the data structure
DLi always maintains the objects under the
coverage of any descendant of data source i in T.
Therefore, searching the location of an object can
be done efficiently in T; a query is only required to
be forwarded to a proper subtree and no flooding is
needed. For example, Fig.2 shows the forwarding
path of a query for Car1 in T.
Our goal in this case is to construct an object
tracking tree T=(VT, ET) that incurs the lowest
communication cost given a network G=(VG, EG)
and the corresponding event rates, where VT=VG
and ET consist of |VT| - 1 edges with the sink as the
root. Intuitively, T is a logical tree constructed from
G, in which each edge is one of the
shortest paths connecting data sources u and v in G.
Therefore, the weight of each edge (u, v) in T,
denoted by w

Tvu ∈),(

T(u, v), is modeled by the minimum
hop count between u and v in G. The cost function
can be formulated as , where
U(T) denotes the update cost and Q(T) is the query
cost.

)()()(TQTUTC +=

In our previous work [5] we have developed
algorithm (SSA), which reduces the update cost.
Initially, that algorithm treats each node as a
singleton subtree. Then more links are included to
connect these subtrees together. In the end, all
subtrees are connected into one tree T.

3 Algorithm Design
This section presents our new algorithm, based on
the concept divide-and-conquer – Divide and
Conquer Tree Algorithm (DCTA). We devise the
DCTA to further reduce the update cost.
The DCTA is based on the following locality
concept. Assume that u is v’s parent in T. For any
edge such that and

, arrival/departure events between
x and y will cause a message to be transmitted on
(p(v),v), thus increasing the value of

. Therefore, the

perimeter that bounds the area of data source in
each Subtree(v) will impact the update cost U(T). A
longer perimeter would imply more events crossing
the boundary. In geometry, it is clear that a circle
has the shortest perimeter to cover the same area as
compared with other shapes. Circle like shapes,
however, are difficult to be used in an iterative tree

construction. As a result, DCTA will be developed
based on squire-like zones.

GEyx ∈),()(vSubtreex∈
)(vSubtreey∉

∑
∉∧∈∧∈)()(),(

),(
vSubtreeyvSubtreexEyx

G
G

yxw

The algorithm builds T in an iterative manner based
on two parameters, α and δ, where α is power of 2
and δ is a positive integer. To begin with, DCTA
first uses (α–1) horizontal lines to divide the
network area into α strips. For each horizontal line
between two strips, we are allowed to further move
it up and down within a distance no more than δ
units. This gives 2δ + 1 possible locations of each
horizontal line. For each location of the horizontal
line, we can calculate the total event rate that
objects may move across the line. Then we pick the
line with the lowest total event rate as its final
location. After all horizontal lines are determined,
we then further partition the network area into α2
regions by using (α–1) vertical lines. Following the
adjustment as above, each vertical line is also
allowed to move left and fight within a distance no
more than δ units and the one with the lowest total
event rate is selected as its final location.
After the above steps are completed, the network
area is divided into α2 squire-like zones. First, we
run SSA in each zone. This will result in one or
multiple subtrees in each zone. Next, we will merge
subtrees in the above α2 zones recursively as
follows: First, we combine these zones together

into
22
αα

× larger zones, such that each larger

zone contains 2 x 2 neighbouring zones. Then, we
merge subtrees in these 2 x 2 zones by sorting all
interzone edges according to their event rates into a
list L and feeding L to the SSA. Second, we further
combine the above larger zones together into

44
αα

× even larger zones, such that each even

larger zone contains 2 x 2 neighbouring larger
zones. This process is repeated until one single tree
is obtained.

4 Simulation results and conclusions
We have simulated a network field of size
256x256. Unless otherwise stated, 4 096 data
sources are deployed in the network. Two
deployment models are considered. In the first one,
data sources are regularly deployed as a 64x64 grid
like network. In the second model, data sources are
randomly deployed. In both models the sink may be
located near the center of the data network or one
corner of the data network.
Events rates are generated based on a model similar
to the city mobility model in [2]. Assuming the
network field as a squire of size r x r, the model
divides the field into 2 x 2 subsquires called level-1

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 69

subregions. Each level-1 subregion is further
divided into 2 x 2 subsquires called level-2
subregions. This process is repeated recursively.
Given an object located in any position in the field,
it has a probability p1 to leave its current level-
1subregion, and a probability p1-1 to stay. In the
former case, the object will move either
horizontally or vertically with a distance r/2. In the
latter case, the object has a probability p2 to leave
its current level-2 subregion, and a probability p2-1
to stay. Again, in the former case, the object will
move either horizontally or vertically with a
distance r/22, and in the latter case it may cross
level-3 subregions. The process repeats recursively.
The possibility pi is determined by an exponential
probability , where C is a positive
constant and d is the total number of levels. In fact,
the above behavior only formulates how objects
move in the network field.

12 −⋅−=
dC

i ep

We compare our scheme with a naive scheme, the
DAB scheme [2] and our previous SSA. In the
naive scheme, any update is sent to the sink. In this
case query cost is always zero, so it is preferable
when the query rates are relatively high. For the
DAB scheme, all points are considered leaf nodes.
When two subtrees are merged into one, the root of
the subtree which is closer to the sink will become
the root of the merged tree.
First, we observe the advantages of using in-
network processing to reduce update cost. Fig.3
shows the result under different values of C for
regular and random data source deployment. As
can be seen, a larger C implies a higher moving
locality, thus leading to a lower update cost. The
naive scheme has the highest update cost, which is
reasonable. By exploiting the concept of deviation
avoidance and taking the physical topology into
account, SSA and DCTA further outperform DAB.

0,00E+00

1,00E+03

2,00E+03

3,00E+03

4,00E+03

5,00E+03

6,00E+03

7,00E+03

8,00E+03

C=0,1 C=0,5 C=1,0 C=1,5 C=2,0

U
pd

at
e

co
st

naiv e

DAB

SSA

DCTA

a) Regular deployment, sink at the corner

0,00E+00

5,00E+02

1,00E+03

1,50E+03

2,00E+03

2,50E+03

3,00E+03

3,50E+03

4,00E+03

C=0,1 C=0,5 C=1,0 C=1,5 C=2,0

U
pd

at
e

co
st

naiv e

DAB

SSA

DCTA

b) Regular deployment, sink at the center

0,00E+00

1,00E+03

2,00E+03

3,00E+03

4,00E+03

5,00E+03

6,00E+03

C=0,1 C=0,5 C=1,0 C=1,5 C=2,0

U
pd

at
e

co
st

naiv e

DAB

SSA

DCTA

c) Random deployment, sink at the corner

0,00E+00

5,00E+02

1,00E+03

1,50E+03

2,00E+03

2,50E+03

3,00E+03

C=0,1 C=0,5 C=1,0 C=1,5 C=2,0

U
pd

at
e

co
st

naiv e

DAB

SSA

DCTA

d) Random deployment, sink at the center

Fig.3. Comparison of update cost

Next, we investigate the effect of deployment
models. By comparing, the graphs in Fig.3, we see
that DCTA outperforms SSA under regular
deployment, but the advantage is almost negligible
under random deployment. This is because
maintaining the shapes of subtrees in DCTA is
difficult.
Finally, to get further insight into performance of
DCTA, we vary α and δ, and show the result in
Fig.4, where 4096 and 2 500-node networks are
simulated. Note that when α=1 and δ=0, DCTA is

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 70

equivalent to SSA. For regular deployment, DCTA
performs well when α is than 4. However, for
random deployment, the DCTA does not perform
well because maintaining the shapes of subtrees is
difficult. Furthermore, it can be seen that when
δ=0, DCTA has better performance. This means
that a squire-like zone is better than a rectangular-
like zone.

3,00E+02

3,50E+02

4,00E+02

4,50E+02

5,00E+02

5,50E+02

6,00E+02

(32,0)
(16,0)

(8,1)
(4,2)

(4,
0)

(2,
0)

U
pd

at
e

co
st

a) Regular deployment, C=0.1, 4096 nodes

3,50E+02
3,60E+02
3,70E+02
3,80E+02
3,90E+02
4,00E+02
4,10E+02
4,20E+02
4,30E+02
4,40E+02
4,50E+02

(32
,0)

(16
,0)

(8,
1)

(4,
2)

(4,0)
(2,0)

U
pd

at
e

co
st

b) Random deployment, C=0.1, 4096 nodes

2,50E+02

2,70E+02

2,90E+02

3,10E+02

3,30E+02

3,50E+02

3,70E+02

3,90E+02

(32
,0)

(16
,0)

(8,
1)

(4,
2)

(4,0)
(2,0)

U
pd

at
e

co
st

a) Regular deployment, C=0.1, 2500 nodes

2,60E+02

2,65E+02

2,70E+02

2,75E+02

2,80E+02

2,85E+02

2,90E+02

(32,0)
(16,0)

(8,1)
(4,2)

(4,0)
(2,0)

U
pd

at
e

co
st

b) Random deployment, C=0.1, 2500 nodes

Fig.4. Comparison of update cost under different α

and δ
Future work
In the future we have plans to design new
algorithm, which will reduce total cost of the
network comunication. It will be based on SSA and
DCTA.

References:
[1] Aslam J., Z. Butler, F. Constantin, V. Crespi,

G. Cybenko, D. Rus. Tracking a Moving
Object with Binary Sensors. Proc. ACM
SenSys Conf., November, 2003.

[2] Kung H., D. Vlah. Efficient Location
Tracking Using Sensor Networks. Proc.
IEEE Wireless Communication and
Networking, 2003.

[3] Mechitov K., S. Sundresh, Y. Kwon,
Cooperative Tracking with R-2003-2379.
University of Illinois at Urbana-Champaign,
2003.

[4] Zhang W., G. Cao. DCTC: Dynamic Convoy
Tree-Based Collaboration for Target
Tracking in Sensor Networks. IEEE Trans.
Wireless Communication. vol. 3, no. 5, pp.
1689-1701, September, 2004.

[5] Nakov O., D. Petrova. Optimization
strategies for moving object tracking. In
Year-book of “Telematika” College, Stara
Zagora, 2007.

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 71

	Setting of moving object location with optimized tree structure
	
	
	1 Introduction
	2 Problem formulation
	3 Algorithm Design
	4 Simulation results and conclusions
	Future work
	References:

