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Abstract: Object tracking is an important part of the common problem for the autonomous motion planning. 
The main theme of this paper is to propose a data aggregation model for object tracking. Object tracking 
typically involves two basic operations: update and query. In general, updates of an object’s location are 
initiated when object moves from one point to another. A query in invoked each time when there is need to 
find the location of the interested object. Location updates and queries may be done in various ways. We 
propose a new tree structure for in-network object tracking. The location update part of our solution can be 
viewed as an extension of [2]. In particular, we take the physical topology of the network into consideration. 
We will reduce the update cost. Several principles, namely, deviation-avoidance and highest-weight-first ones 
are pointed out to construct an object tracking tree to reduce the communication cost of location update. Our 
proposed solution tries to divide the network area into squire-like zones, and recursively combine these zones 
into a tree. 
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1 Introduction 
Object tracking is an important part of the common 
problem for the autonomous motion planning. 
Existing research efforts on object tracking can be 
categorized in two ways. In the first category, the 
problem of accurately estimating the location of an 
object is addressed [1], [3]. In the second category, 
in-network data processing and data aggregation 
for object tracking are discussed [2], [4]. The main 
theme of this paper is to propose a data aggregation 
model for object tracking. Object tracking typically 
involves two basic operations: update and query. In 
general, updates of an object’s location are initiated 
when object moves from one point to another. A 
query is invoked each time when there is need to 
find the location of the interested object. Location 
updates and queries may be done in various ways. 
A naive way for delivering a query is to flood the 
whole network. The data source whose covering 
range contains the queried object will reply to the 
query. Clearly, this approach is inefficient because 
a considerable amount of energy will be consumed 
when the network scale is large or when the query 
rate is high. Alternatively, if all location 
information is stored at a specific data source (e.g. 
sink), no flooding is needed. But, whenever a 
movement is detected, update message have to be 
sent. One drawback is that when objects move 
frequently, abundant update messages will be 

generated. The cost is not justified when the query 
rate is low. Clearly, these are tradeoffs. 
In [2], a Drain-And-Balance (DAB) tree structure is 
proposed to address this issue. This is an object 
tracking approach where query messages are not 
required to be flooded and update messages are not 
always transmitted to the sink. However [2] has 
two drawbacks. First, a DAB tree is a logical tree 
not reflecting the physical structure of the data 
network hence, an edge may consist of multiple 
communication hops and a high communication 
cost may be incurred. Second, the construction of 
the DAB tree does not take query cost into 
consideration. Therefore, the result may be efficient 
in some cases. 
To relieve the aforementioned problems, we 
propose a new tree structure for in-network object 
tracking. The location update part of our solution 
can be viewed as an extension of [2]. In particular, 
we take the physical topology of the network into 
consideration. We will reduce the update cost. 
Several principles, namely, deviation-avoidance 
and highest-weight-first ones are pointed out to 
construct an object tracking tree to reduce the 
communication cost of location update. Our 
proposed solution tries to divide the network area 
into squire-like zones, and recursively combine 
these zones into a tree. In our previous research we 
have proposed another solution, which is described 
in the next section. The new solution is compared 
with a naive scheme, DAB scheme and our 
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previous solution – Singleton Subtree Algorithm 
(SSA). 
 
2 Problem formulation 
We consider a network of data sources deployed in 
a field for the purpose of object tracking. Data 
sources locations are already known at a special 
node, called sink, which serves as the gateway of 
the network to outside world. We adopt a simple 
nearest-node model, which only requires the data 
source that receives a message from the object to 
report the sink. Therefore, the data network’s field 
can be partitioned can be partitioned into a graph, 
as depicted in Fig.1. 
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Fig.1. The graph G corresponding to the data 

source network 
 
We propose a data aggregation model for object 
tracking. We assume that whenever an object 
arrives at or departs from the range (polygon) of a 
data source, a detection event will be reported. Two 
data sources are called neighbours if their ranges 
share a common boundary on the graph; otherwise, 
they are nonneighbours. Multiple objects may be 
tracked concurrently in the network, and we 
assume that from statistics, it is possible to collect 
the event rate between each pair of neighbouring 
data sources to represent the frequency of object 
traveling from one point to another. For example, 
in Fig.1, the arrival and departures rates between 
data sources are shown on the edges of the graph. 
In addition, the communication range of data 
sources is assumed to be large enough so that 
neighbouring data sources can communicate with 
each other directly. Thus, the network topology can 
be regarded as undirected weight graph G=(VG, EG) 
with VG representing data sources and EG 
representing links between neighbouring data 

sources. The weight of each link GEba ∈),( , 
denoted by wG(a, b), is the sum of event rates from 
a to b and b to a. This is because both arrival and 
departure events will be reported in our scheme. 
In light of the storage in data sources, the network 
is able to be viewed as a distributed database. We 
exploit the possibility of conducting in-network 
data aggregation for object tracking. Similar to the 
approach in [2], a logical weighted tree T will be 
constructed from G. For example, Fig.2 shows an 
object tracking tree T constructed from the network 
G in Fig.1. Movement event of objects are reported 
based on the following rules. Each node a in T will 
maintain a detected list DLa(L0, L1,…, Lk) such that 
L0 is the set of objects currently inside the coverage 
of data source a itself, and Li, i=1,…, k, is the set of 
objects currently inside the coverage of any data 
source who is in the subtree rooted at the ith child 
of data source a, where k is the number of children 
of a. 
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Fig.2. An object tracking tree 

 
When an object O moves from the range of a to 
that of b, a department event dep(O, a, b) and an 
arrival event arv(O, b, a) will be reported by a and 
b, respectively, alone the tree T. On receiving such 
an event, a data source x takes following actions: 

1) If the event is dep(O, a, b), x will remove 
O from the proper Li in DLx such that data source a 
belongs to the ith subtree of x in T. If x=a, O will 
be removed from L0 in DLx. Then x checks whether 
data source b belongs to the subtree rooted at x in T 
or not. If not, the event dep(O, a, b) is forwarded to 
the parent node of node of x in T. 

2) If the event is arv(O, b, a), x will add O 
to the proper Li in DLx such that data source b 
belongs to the ith subtree of x in T. If x=b, O will 
be added to L0 in DLx. Then x checks whether data 
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source a belongs to the subtree rooted at x in T or 
not. If not, the event arv(O, b, a) is forwarded to 
the parent node x in T. 
The above data aggregation model guarantees that, 
disregarding transmission delays, the data structure 
DLi always maintains the objects under the 
coverage of any descendant of data source i in T. 
Therefore, searching the location of an object can 
be done efficiently in T; a query is only required to 
be forwarded to a proper subtree and no flooding is 
needed. For example, Fig.2 shows the forwarding 
path of a query for Car1 in T. 
Our goal in this case is to construct an object 
tracking tree T=(VT, ET) that incurs the lowest 
communication cost given a network G=(VG, EG) 
and the corresponding event rates, where VT=VG 
and ET consist of |VT| - 1 edges with the sink as the 
root. Intuitively, T is a logical tree constructed from 
G, in which each edge  is one of the 
shortest paths connecting data sources u and v in G. 
Therefore, the weight of each edge (u, v) in T, 
denoted by w

Tvu ∈),(

T(u, v), is modeled by the minimum 
hop count between u and v in G. The cost function 
can be formulated as , where 
U(T) denotes the update cost and Q(T) is the query 
cost. 

)()()( TQTUTC +=

In our previous work [5] we have developed 
algorithm (SSA), which reduces the update cost. 
Initially, that algorithm treats each node as a 
singleton subtree. Then more links are included to 
connect these subtrees together. In the end, all 
subtrees are connected into one tree T. 
 
3 Algorithm Design 
This section presents our new algorithm, based on 
the concept divide-and-conquer – Divide and 
Conquer Tree Algorithm (DCTA). We devise the 
DCTA to further reduce the update cost. 
The DCTA is based on the following locality 
concept. Assume that u is v’s parent in T. For any 
edge  such that  and 

, arrival/departure events between 
x and y will cause a message to be transmitted on 
(p(v),v), thus increasing the value of 

. Therefore, the 

perimeter that bounds the area of data source in 
each Subtree(v) will impact the update cost U(T). A 
longer perimeter would imply more events crossing 
the boundary. In geometry, it is clear that a circle 
has the shortest perimeter to cover the same area as 
compared with other shapes. Circle like shapes, 
however, are difficult to be used in an iterative tree 

construction. As a result, DCTA will be developed 
based on squire-like zones. 
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The algorithm builds T in an iterative manner based 
on two parameters, α and δ, where α is power of 2 
and δ is a positive integer. To begin with, DCTA 
first uses (α–1) horizontal lines to divide the 
network area into α strips. For each horizontal line 
between two strips, we are allowed to further move 
it up and down within a distance no more than δ 
units. This gives 2δ + 1 possible locations of each 
horizontal line. For each location of the horizontal 
line, we can calculate the total event rate that 
objects may move across the line. Then we pick the 
line with the lowest total event rate as its final 
location. After all horizontal lines are determined, 
we then further partition the network area into α2 
regions by using (α–1) vertical lines. Following the 
adjustment as above, each vertical line is also 
allowed to move left and fight within a distance no 
more than δ units and the one with the lowest total 
event rate is selected as its final location. 
After the above steps are completed, the network 
area is divided into α2 squire-like zones. First, we 
run SSA in each zone. This will result in one or 
multiple subtrees in each zone. Next, we will merge 
subtrees in the above α2 zones recursively as 
follows: First, we combine these zones together 

into 
22
αα

×  larger zones, such that each larger 

zone contains 2 x 2 neighbouring zones. Then, we 
merge subtrees in these 2 x 2 zones by sorting all 
interzone edges according to their event rates into a 
list L and feeding L to the SSA. Second, we further 
combine the above larger zones together into 

44
αα

×  even larger zones, such that each even 

larger zone contains 2 x 2 neighbouring larger 
zones. This process is repeated until one single tree 
is obtained. 
 
4 Simulation results and conclusions 
We have simulated a network field of size 
256x256. Unless otherwise stated, 4 096 data 
sources are deployed in the network. Two 
deployment models are considered. In the first one, 
data sources are regularly deployed as a 64x64 grid 
like network. In the second model, data sources are 
randomly deployed. In both models the sink may be 
located near the center of the data network or one 
corner of the data network. 
Events rates are generated based on a model similar 
to the city mobility model in [2]. Assuming the 
network field as a squire of size r x r, the model 
divides the field into 2 x 2 subsquires called level-1 
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subregions. Each level-1 subregion is further 
divided into 2 x 2 subsquires called level-2 
subregions. This process is repeated recursively. 
Given an object located in any position in the field, 
it has a probability p1 to leave its current level-
1subregion, and a probability p1-1 to stay. In the 
former case, the object will move either 
horizontally or vertically with a distance r/2. In the 
latter case, the object has a probability p2 to leave 
its current level-2 subregion, and a probability p2-1 
to stay. Again, in the former case, the object will 
move either horizontally or vertically with a 
distance r/22, and in the latter case it may cross 
level-3 subregions. The process repeats recursively. 
The possibility pi is determined by an exponential 
probability , where C is a positive 
constant and d is the total number of levels. In fact, 
the above behavior only formulates how objects 
move in the network field. 

12 −⋅−=
dC

i ep

We compare our scheme with a naive scheme, the 
DAB scheme [2] and our previous SSA. In the 
naive scheme, any update is sent to the sink. In this 
case query cost is always zero, so it is preferable 
when the query rates are relatively high. For the 
DAB scheme, all points are considered leaf nodes. 
When two subtrees are merged into one, the root of 
the subtree which is closer to the sink will become 
the root of the merged tree. 
First, we observe the advantages of using in-
network processing to reduce update cost. Fig.3 
shows the result under different values of C for 
regular and random data source deployment. As 
can be seen, a larger C implies a higher moving 
locality, thus leading to a lower update cost. The 
naive scheme has the highest update cost, which is 
reasonable. By exploiting the concept of deviation 
avoidance and taking the physical topology into 
account, SSA and DCTA further outperform DAB. 
 

0,00E+00

1,00E+03

2,00E+03

3,00E+03

4,00E+03

5,00E+03

6,00E+03

7,00E+03

8,00E+03

C=0,1 C=0,5 C=1,0 C=1,5 C=2,0

U
pd

at
e 

co
st

naiv e

DAB

SSA

DCTA 

  
a) Regular deployment, sink at the corner  
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b) Regular deployment, sink at the center 
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c) Random deployment, sink at the corner  
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d) Random deployment, sink at the center 

 
Fig.3. Comparison of update cost 

 
Next, we investigate the effect of deployment 
models. By comparing, the graphs in Fig.3, we see 
that DCTA outperforms SSA under regular 
deployment, but the advantage is almost negligible 
under random deployment. This is because 
maintaining the shapes of subtrees in DCTA is 
difficult. 
Finally, to get further insight into performance of 
DCTA, we vary α and δ, and show the result in 
Fig.4, where 4096 and 2 500-node networks are 
simulated. Note that when α=1 and δ=0, DCTA is 
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equivalent to SSA. For regular deployment, DCTA 
performs well when α is than 4. However, for 
random deployment, the DCTA does not perform 
well because maintaining the shapes of subtrees is 
difficult. Furthermore, it can be seen that when 
δ=0, DCTA has better performance. This means 
that a squire-like zone is better than a rectangular-
like zone. 
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a) Regular deployment, C=0.1, 4096 nodes 
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b) Random deployment, C=0.1, 4096 nodes 
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a) Regular deployment, C=0.1, 2500 nodes  
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b) Random deployment, C=0.1, 2500 nodes 

 
Fig.4. Comparison of update cost under different α 

and δ 
Future work 
In the future we have plans to design new 
algorithm, which will reduce total cost of the 
network comunication. It will be based on SSA and 
DCTA. 
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