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Abstract: - A study is carried out to investigate the sampling properties of the outlier test statistics of a 
procedure developed for detecting level change in BL(1,1,1,1) processes.  It is done with respect to  the sample 
size,  the type of outlier and  the size  of the coefficients of the  BL(1,1,1,1) process. The results show that, in 
general, the outlier detection procedure is capable of detecting level change, although the performance is 
affected if ω  is large.   
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1   Introduction 
Observations that deviate from the rest of the 
observations exist frequently in time series data.    
These observations are known by different names, 
such as, "outliers", "contaminants", "discordant 
observations" and "extreme values".  In 1983, 
Beckman and Cook [1] defined discordant 
observation as any observation that appears 
discrepant to the investigator, while a contaminant 
was defined as any observation that is not a 
realization of a target distribution.  On the other 
hand, an outlier is just a collective name referring to 
either a contaminant or a discordant observation.  
The results of studying outliers can be used, among 
others, as diagnostic tools to test the strength and 
weakness of a model, to accommodate outliers in 
order to make inferences about a parameter, to 
improve the model and to examine their influence on 
a model.  In general, studies on four types of 
outliers; additive outlier (AO), innovational outlier 
(IO), level change (LC) and temporary change (TC), 
had been mentioned in the literature.  In this paper, 
only the LC case will be considered. 

Outliers may happen in nonlinear time series 
data. In 2005, Mohamed [2] had looked into the 

occurrence of LC in time series data generated by 
BL(1,1,1,1) process and a test statistics had been 
derived.  In the subsequent sections, the sampling 
properties of this test statistics are investigated. 
 
 
2 Statistical Models for Computational 

Simulation  
2.1 Bilinear Models 
Biliner model was first documented by Granger and 
Andersen [3].  The general bilinear model, denoted 
by BL(p,q,r,s), is given by  
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ji ca , kb tewhere  and  are constant, and 's are 
assumed to follow normal distribution with mean 
zero and precision τ, τ > 0.  The first two 
components on the right-hand side of (1) are 
basically the ARMA model with parameters p and q.  
The second last component is nonlinear which helps 
to explain the nonlinearity characteristic of the data 
being modeled.  Thus, ARMA (p,q) is a special case 
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of the BL(p,q,r,s) when  The BL(1,1,1,1), 
can be deduced from equation (1) giving 
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2.2   Measure of Outlier Effect  
Let  and  be the contaminated observed 
values and contaminated residuals obtained when an 
outlier exists in the data.  In order to detect an 
outlier, the contaminated residuals are examined and 
given by 
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The formulation and symbols discussed here will 

be retained throughout the paper.  Mohamed [2] had 
derived the measure of outlier effect using the least 
squares method, denoted by ω̂ .  The formulation is 
given by 
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and δ  is the decaying factor. 
 
 
2.3   The Outlier Detection Procedure 
The mean and variance of the measures given by 
equations (5) can be obtained using the bootstrap 
method [4,5](Efron and Thibshirani [1986], Efron 
[1993]) as follows: 
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Hence, the test criteria used for detecting individual 
outlier is 
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In general, the time point where an outlier occurs 
is unknown.  Alternatively, the test statistics, tτ̂ , 
can be calculated at every time point t, t = 1, 2, ..., n.   
Hence, the determination of type of outlier is carried 
out using the following test criteria: 
 { }.ˆmaxˆ
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That is, the maximum values of the test statistics 
are examined in order to identify the a particular 
point t in BL(1,1,1,1) model where a LC occurs.  
The full steps are described below: 
(a)  Compute the least squares estimates of 

BL(1,1,1,1) model based on the original data.  
Hence, residuals of models can be obtained. 

(b)  Compute  for every t, t = 1, 2, ..., n using 
the residuals obtained in Stage one. 

tτ̂

(c)  Let { }.ˆmaxˆ
...,,1 tnt

τη
=

=  Given a pre-determined 

critical value C, if ,Cη tt >= τ then a LC 
occurs at time point t . 

Similar approach had been used by several 
authors such as Chen and Liu [6] on detecting 
outliers in the ARIMA model. 
 
 
3   Results and Discussion 
3.1  Sampling Behaviour of the Test Statistics 
The simulation study in this section is carried out in 
order to investigate the sampling properties of the 
maxima of the outlier test statistics.  It is associated 
with  the sample size, and the coefficients chosen for 
BL(1,1,1,1) 

Models 1 − 6, which is given in Table 1, are 
considered.  They represent a broad choice of 
coefficients of BL(1,1,1,1) models.  For instance, 
the coefficients of model 1 are all negative whereas 
the coefficients of model 2 are all positive.  On the 
other hand, the coefficients of models 3 − 5 are the 
same in magnitude but with different set of signs.  
Model 6 has mixed signs with large coefficient of 
AR term. 

For each model, three cases of sample size are 
examined, n = 60, 100 and 200.  The random errors, 

are assumed to follow standard normal 
distribution.  For each model and each sample size, 
500 series are generated.  The test statistics for LC 
are calculated separately based on equations (10).  
The focus is to examine the sampling behaviour of 

s,'te
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= .  In particular, the percentiles of the 
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test statistics at the 1%, 5% and 10% levels are 
estimated when no outlier is present in the series.  
There are three plots given in Figure 1 displaying 
percentiles for each of 6 models and 3 sample sizes. 

 
Table 1.  List of models  

Model Full model 
1 ttttt eeYeY +−− −−−− 1111 303030 ...  
2 ttttt eeYeY +++ −−−− 1111 20202 ..  
3 ttttt eeYeY +−+ −−−− 1111 20101 ..  
4 ttttt eeYeY +++ −−−− 1111 201010 ...  
5 ttttt eeYeY ++− −−−− 1111 20101 ..  
6 ttttt eeYeY +−+ −−−− 1111 201050 ...  
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Figure 1  Plot of critical values of LC 

 
The estimates for models 1 − 2 show a trend of 

an increasing function in sample size, n.  However, 

the trend is not clear for models 3 − 5.  The 
estimated percentiles for model 6 are smaller than 
that of the other models and not affected by sample 
size.  Model 6 is different from the other models in 
its coefficients values.  It has a large coefficient 
value of AR term (a = −0.5) if compared to other 
models.  The estimated 5% percentiles for LC range 
from 1.36 to 4.21.  In general, the increase of 
estimates is moderate with the exception of model 6.  
Based on the results, critical values of 2.5 to 4.0 
seem to be appropriate for a series with length of 60 
to 200.  In practice, more than one critical value is 
recommended for the analysis. 
 
 
3.2 Performance of the Outlier Detection 

Procedure 
Interest here is to investigate the performance of the 
outlier detection, referred as outlier detection 
procedure herewith, through simulation work.  The 
test criteria are applied to cases characterized by a 
combination of the following factors: 
a) One underlying  BL(1,1,1,1) models but    with 

different combinations of coefficients as given in 
Table 1. 

b) A single LC at t = 40 in samples of size 100. 
c) Three different values of outlier effect, ω = 6, 8, 

10. 
d) Five different levels of critical values are chosen:  

2, 2.5, 3, 3.5, 4. 
Series are generated to contain a LC.  The 

standard deviation of the noise process for each 
model is set to be unity. For a given model, 500 
series of length 100 are generated using the rnorm 
procedure in S-Plus. The relative frequency or 
proportion of correct detection is reported.  The 
correct detection is defined as a correct 
identification of both type and location of an outlier.  
For example, when a LC is included at time        t = 
40, outlier detection procedure is applied on the 
series to see whether a LC is correctly detected. 

The results are shown in Table 2 (in the last page 
of this paper). It is observed that the proportion of 
correctly detecting LC is high if critical values of 2 
or 2.5 are used.  However, the proportions do not 
follow any general pattern of increasing or 
decreasing in ω .  In several cases, the test criterion 
performs better when ω ω = 6 than when  = 8 or 
10; for instance, model 1 and 6. The estimation of 
BL(1,1,1,1) model is affected by LC especially 
when largerω  is used.  This subsequently affects 
the performance of the outlier detection procedure.  
It is also observed that η̂  tend to take smaller values 
than 4; for instance, for model 3 with 6=ω , 60%  
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Table 2.  Proportion of correctly  detecting LC using the outlier detection procedure 
Critical values Model  ( )ω

2 2.5 3 3.5 4 
Model 1   ( )6=ω 0.99 0.98 0.96 0.93 0.87 

Model 1  ( )8=ω 1.00 0.97 0.95 0.90 0.83 

Model 1  ( )10=ω 1.00 0.99 0.95 0.88 0.78 

Model 2  ( )6=ω 0.98 0.69 0.39 0.20 0.11 

Model 2  ( )8=ω 0.98 0.63 0.33 0.20 0.10 

Model 2  ( )10=ω 0.97 0.58 0.32 0.19 0.09 

Model 3  ( )6=ω 1.00 0.80 0.60 0.42 0.24 

Model 3  ( )8=ω 0.99 0.84 0.64 0.41 0.29 

Model 3  ( )10=ω 1.00 0.74 0.50 0.29 0.16 

Model 4  ( )6=ω 1.00 0.99 0.93 0.80 0.55 

Model 4  ( )8=ω 1.00 0.94 0.78 0.60 0.43 

Model 4 ( )  1.00 0.91 0.77 0.55 0.35 10=ω
Model 5  ( )6=ω 0.99 0.95 0.84 0.71 0.51 

Model 5  ( )8=ω 1.00 0.94 0.80 0.60 0.44 

Model 5  ( )10=ω 1.00 0.86 0.76 0.52 0.37 

Model 6  ( )6=ω 1.00 0.98 0.95 0.91 0.85 

Model 6  ( )8=ω 0.99 0.97 0.94 0.87 0.74 

Model 6  ( )10=ω 1.00 0.95 0.90 0.80 0.63 
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