
Hazard analysis in CLC via time dependant logic variables 
 

NICOLAE GALUPA 
Faculty of Automatic Control and Computer Engineering 

Technical University of Iasi 
Blvd. Dimitrie Mangeron, nr. 53 A, IASI, 700050

Romania 
nky@cs.tuiasi.ro, nickgalupa@yahoo.com

 
Abstract: -The present paper considers the problem of hazard in combinatorial logic structures. We shall 
define an improvement for the time constants method, improvement that will consider, among other 
features, the specific function implemented by the gates used (we are mostly interested by the inverting 
characteristic). In this endeavor we shall define a new type of operator and a new type of variable, both 
of them applicable when propagating the switching times for a specific circuit. The time constants 
method is a very laborious one (considers all the possibilities disregarding the specific function 
implemented by a circuit). We shall prove that only a strictly limited number of situations should be 
considered –in conjunction with the function that is being implemented by the circuit analyzed. In order 
to achieve this goal we shall express the logic function with respect to a new logic variable that is time 
dependent. Operations with this new variable prove to have some very interesting properties (shown in 
the paper) that will allow us to restrain the window of possibilities for hazardous functioning to a very 
narrow one. 
 
Keywords: - Combinational logic circuits, hazard, primary input vector, secondary input vector, time 
dependant logic variables. 
 
1.Foreword 
Our endeavor is to improve the time constants 
method for hazard analysis (J.Beister [4]), 
method based on the consideration of pure delay 
circuit model (McGhee [5]) and the replication of 
gates having fan out larger than one (McCluskey 
[6]) in order to define all the distinct input 
towards output signal paths. As known this 
approach implies the propagation of the delays on 
each distinct path from the output towards the 
input, in order to determine the delay array that 
defines the secondary input vector that is 
afterwards applied on the inputs of an ideal 
combinatorial circuit (instantaneous). Analysis of 
the output response of the ideal circuit to the 
sequence of secondary input vectors determined 
by a change of the primary input vector will 
eventually show us the presence of hazardous 
functioning of the circuit. 
 
 
2. Definitions 
 
2.1. Real gates & Ideal gates:  
We shall maintain the equivalence between a real 
gate and an ideal gate + delay, as defined by the 
pure delay model. However because the 
propagation times for a gate are not identical for 

both transitions possible (“0”↑”1”and “1”↓”0”) 
we shall consider the propagation time as a 
fraction that includes the times for each of the 
two transitions possible (tLH/tHL). Propagation of 
this fraction through a gate with an inverting 
characteristic implies the change of the nominator 
with the denominator (Galupa[2]). 
 
2.2. Inverting variable & operator:  
Propagating the delay from the output towards 
the input of a gate implies the interchange of the 
nominator with the denominator of the fraction 
expressing the delay times in case of an active 
inverting characteristic. In order to analyze the 
propagation time along a path implemented by a 
complex chain of gates we define variables INV 
and NINV and an operator marked by “⊗” for 
instance. When INV is applied by means of 
operator ⊗ to a fraction a/b it will induce the 
interchange of a with b while applying NINV by 
means of ⊗ will leave the fraction unchanged.             
 

(a/b)⊗INV=b/a ; a/b⊗NINV=a/b 
 
2.3.Time dependant logic variables: 
The output of a logic gate will maintain its value, 
from the moment that the input changes, for a 
period equal to the specific propagation time for 
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that gate. Evidently this situation is disturbing if 
we expect the output to change towards its 
complementary value as a result of changing the 
input vector. In order to express this situation and 
considering that the evolution of the output 
should be described with respect to time we 
define a logic variable τ that evolves in time as 
follows: 
 
τx=τ(tx-t)=  1 for t<tx

  0 for t>tx

 
Also we define another logic variable δ defined 
as follows – Let there be ta, tb two distinct 
moments of time that respect the inequality ta<tb. 
Than δ(ta,tb)=1 for any moment of time that 
respects the inequality  ta<t<tb and it has the value 
0 otherwise. 
 
 
3.Properties 
 
3.1. Properties of INV, NINV and ⊗ 
 
 
 
 
 
 
 
 
 
 
 
3.2. Properties of variable τ 
 
We shall present the properties for τ in a 
particular case first and we shall generalize 
afterwards. Let there be t1,t2,t3 – moments of time 
– that respect the inequality t1<t2<t3. Operation 
with variable τ will have the following results. 
Please note that we have considered the 
conjunctive and the disjunctive form to express a 
logical term. 
In order to generalize the properties of τ we shall 
define the weight of a term (either product or 
sum) as being the vector w=(w1,w2,…,wn-1,wn) 
where wk∈(0,1). A term is defined by its weight 
in the following way – if wk=0 then the k-
position component of the term is inverted. 
Otherwise if wk=1 that component is present in 
its direct form. For example in a four component 
term if w=0101 then the term is 4321 aaaa ••• . 

Let there be n distinct moments of time satisfying 
the inequality: t1<t2<t3<…<tn-2<tn-1<tn.The values 
for the n-rank terms are: 

w= 
000…000 

( ) ( ) ( ) ( )tttttttt nn −=−••−•− ττττ ...21  
( ) ( ) ( ) ( )tttttttt n −=−++−+− 121 ... ττττ  

w= 
000…001 

( ) ( ) ( ) ( nnn tttttttt ,... 121 −=−••−•− δτττ )  
( ) ( ) ( ) 1...21 =−++−+− tttttt nτττ  

…  
w= 
001…111 

( ) ( ) ( ) ( ) ( ) 32321 ,... tttttttttt n δττττ =−••−•−•−

( ) ( ) ( ) ( ) 1...321 =−++−+−+− tttttttt nττττ  
…  
w= 
001…110 

( ) ( ) ( ) ( ) 0...321 =−••−•−•− tttttttt nττττ  
( ) ( ) ( ) ( ) 1...321 =−++−+−+− tttttttt nττττ  

w= 
011…111 

( ) ( ) ( ) ( )2121 ,... tttttttt n δτττ =−••−•−  
( ) ( ) ( ) 1...21 =−++−+− tttttt nτττ  

w= 
100…000 

( ) ( ) ( ) 0...21 =−••−•− tttttt nτττ  
( ) ( ) ( ) ( )2121 ,... tttttttt n δτττ =−++−+−  

w= 
100…001 

( ) ( ) ( ) 0...21 =−••−•− tttttt nτττ  
( ) ( ) ( ) 1...21 =−++−+− tttttt nτττ  

…  
w= 
111…100 

( ) ( ) ( ) 0...21 =−••−•− tttttt nτττ  
( ) ( ) ( ) ( )1221 ,... −−=−+−+− nnn tttttttt δτττ  

…  
w= 
111…100 

( ) ( ) ( ) 0...21 =−•−•− tttttt nτττ  
( ) ( ) ( ) ( )1221 ,... −−=−++−+− nnn tttttttt δτττ  

w= 
100…001 

( ) ( ) ( ) 0...21 =−••−•− tttttt nτττ  
( ) ( ) ( ) 1...21 =−++−+− tttttt nτττ  

…  
w= 
111…100 

( ) ( ) ( ) 0...21 =−••−•− tttttt nτττ  
( ) ( ) ( ) ( )1221 ,... −−=−++−+− nnn tttttttt δτττ  

…  
w= 
111…100 

( ) ( ) ( ) 0...21 =−••−•− tttttt nτττ  
( ) ( ) ( ) ( )1

INV⊗INV=NINV 
NINV

b
a

b
aINV

a
bINVINV

b
a

⊗==⊗=⊗⎟
⎠
⎞

⎜
⎝
⎛ ⊗

 

NINV⊗NINV=NINV 

b
aNINV

b
aNINVNINV

b
a

=⊗=⊗⎟
⎠
⎞

⎜
⎝
⎛ ⊗

 

INV⊗NINV=NINV⊗INV=INV 
INV

b
a

a
bNINV

a
bNINVINV

b
a

⊗==⊗=⊗⎟
⎠
⎞

⎜
⎝
⎛ ⊗

INV
b
aINVNINV

b
a

⊗=⊗⎟
⎠
⎞

⎜
⎝
⎛ ⊗

 

221 ,... −−=−++−+− nnn tttttttt δτττ  
w= 
111…101 

( ) ( ) ( ) 0...21 =−••−•− tttttt nτττ  
( ) ( ) ( ) 1...21 =−++−+− tttttt nτττ  

w= 
111…110 

( ) ( ) ( ) 0...21 =−••−•− tttttt nτττ  
( ) ( ) ( ) ( )nnn tttttttt ,... 121 −=−++−+− δτττ  

w= 
111…111 

( ) ( ) ( ) ( )tttttttt n −=−••−•− 121 ... ττττ  
( ) ( ) ( ) ( )tttttttt nn −=−++−+− ττττ ...21  

From the above table we notice that only the 
border moments of time are coherent when 
operating with τ. That means that after reducing 
the terms only τ(t1-t) and τ(tn-t) will eventually 
appear in future calculus and that happens only in 
case of weight w=111…111 or w=000…000. 
Otherwise only singular intervals of time will be 
pinpointed when operating with τ by aid of 
variable δ. Those intervals are of the form (tk-1,tk) 
and will appear only if the weight of that term is 
ordered. By that we understand that 
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w1=w2=…=wk-1=1 and wk=wk+1=…=wn=0 or the 
opposite. All other terms are either 1 for the 
disjunctive form or 0 for the conjunctive form. 
We can already notice that considering analysis 
of hazard by means of time constants method the 
ability to use τ and δ variables will minimize the 
number of situations to be considered and will 
pinpoint clearly the opportunities where hazard 
may appear (variable δ).  
 
 
 4. Method description 
 
The improved time constants method (Galupa 
[2],[3]) has proved to be more efficient in 
pinpointing the presence of hazards in CLC. 
However it is a laborious method and we strongly 
suggest implementing it as CAD module. 
Otherwise we suggest using the INV, NINV and 
⊗ for analisys when calculating the propagation 
times. That will considerably diminish the 
amount of work requested. 
 
4.1. Using INV, NINV and ⊗ 
The best way to present INV, NINV and ⊗ is by 
aid of an example Let’s consider the circuit 
presented in fig.1. 

  
 

 
Fig.1. 

As we have seen before after replicating the gates 
with fan out greater than 1 we are able to define 
the secondary input vector and the individual 
input_towards_output path for each component 
of the secondary input vector. Theoretically now 
we should propagate the operator’s specific 
propagation times from the output towards the 
input, defining in this manner the path’s 
propagation time. Of course we must not forget 
about the inverting characteristic influence. 
Instead of doing it as presented above we can 
simply express the path’s specific time as an 
ordered equation. For a better understanding 
we’ll calculate the path’s specific delays for the 
circuit analyzed above in fig.1. 
 
ta1=(tnand(5)⊗INV+tnand(4))⊗INV 
 
In order to reduce this equation we’ll use the 
properties presented above for INV, NINV and 
⊗. 
 
ta1=tnand⊗INV⊗INV+tnand⊗INV=tnand⊗NINV+tnand

⊗INV 
 
Following the same procedure we’ll find: 
 
tb1=tb2=tc1=tc2=tnand⊗NINV+tnand⊗INV+tor⊗NINV 
td1=tnand⊗INV+tnand⊗NINV 
ta2=td2=tnand⊗INV+tor⊗NINV 
 
As you can see this methodology implies much 
less effort for calculating the propagation times. 
Tracing the value of the output will be done the 
same way as in the previously presented method. 
 
 
5. The use of time dependent 
variables 
 
Let us consider a switching function y=f(x1,x2, 
…,xl). According to the time constants method 
after determining all the distinct input – output 
signal paths and after propagating the delays 
from the output towards the input we define the 
delay array generating the secondary input 
vector. Let us consider that (a1, a2,…,an) is the 
secondary input vector and (t1,t2,…,tn) is the time 
vector associated with it. That means that if we 
set the time axis origin to the moment when the 
primary input vector changes its value than the 
secondary input variable ak (derived from one 
primary input variable that changes) will change 
its value after tk. We assume that the secondary 
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input vector has been organized in such a manner 
that the moments of time associated with its 
components are ordered in arising form. So the 
inequality t1<t2<…<tn-1<tn is true. 
A change in the primary input vector will imply a 
sequence of secondary input vectors, sequence 
determined by the delay array. The sequence of 
secondary input vectors are applied at the inputs 
of an ideal logic circuit (instantaneous). The ideal 
circuit will respond instantaneously (following 
the same sequencing in time) with a sequence of 
output values. Tracing in time that response will 
provide for us  information whether we have or 
not hazardous functioning.  In order to do this we 
shall express the logic circuit output with respect 
to time. Let us consider the secondary input 
variable ax that switches after tx from the initial 
moment. The following relation is obvious: 
 

ax(t)=axfinal⊕τ(tx-t) 
 
where axfinal, as the notation expresses, is the final 
value towards which ax evolves. That means that 
ax(t) will be equal to the complement of axfinal for 
any moment of time t<tx and equal to axfinal for 
any moment afterwards. In this case the function 
will be expressed with respect to time as follows: 
 

y(t)=f(a1(t),a2(t),…,an(t))=f(a0⊕τ(t0-t),a1⊕τ(t1-
t),…,an⊕τ(tn-t)) 

 
where the vector (a1,a2,…,an) is the final, 
stabilized secondary input vector. As we know 
ultimately this function can be expressed in a 
conjunctive or a disjunctive form. For a specific 
function only a limited and well-determined 
number of terms will be present.  
For presentation purposes we shall first consider 
a particular case and afterwards we shall 
generalize. Let there be the secondary input 
vector (a1,a2,a3). We shall assume that these 
secondary variables are derived from one primary 
input variable marked a. In order to analyze the 
function we shall express it as follows: 

+++= )()()()()()()()()()( 321010321001321000 tatatatatatatatataty ααα

++++ )()()()()()()()()( 321101321100321011 tatatatatatatatata ααα

)()()()()()( 321111321110 tatatatatata αα ++  or 
•++++++= +++ ])()()()][()()(][)()()([)( 321010321001321000 tatatatatatatatataty ααα
•++++++• +++ )]()()(][)()()()][()()([ 321101321100321011 tatatatatatatatata ααα

)]()()(][)()()([ 321111321110 tatatatatata ++++• ++ αα  
where aw∈(0,1) and expresses the presence or not 
of the term having weight w in the final 
expression of the function. Let us consider the 

first form of expression for y(t) and analyze it. 
For the second form operations are similar. 
( ) ( ) ( ) ( ) ( ) ( ) ( )+−⊕−⊕−⊕+−⊕−⊕−⊕= ttattattattattattaty 321001321000 τττατττα

( ) ( ) ( ) ( ) ( ) ( ) +−⊕−⊕−⊕+−⊕−⊕−⊕+ ttattattattattatta 321011321010 τττατττα
( ) ( ) ( ) ( ) ( ) ( )+−⊕−⊕−⊕+−⊕−⊕−⊕+ ttattattattattatta 321101321100 τττατττα

( ) ( ) ( ) ( ) ( ) ( )ttattattattattatta −⊕−⊕−⊕+−⊕−⊕−⊕+ 321111321110 τττατττα
where a is the final, stabilized value for the 
variable that changes during the process. Now we 
shall operate each term and reduce it according to 
the properties presented for τ above. w=000 the 
term is: 

( ) ( ) ( ) ( ) ( ) ( )( ) ( )( )=−⊗−⊗−+−=−⊕−⊕−⊕ ttattattattattattatta 3211321 ][ τττττττ
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )=−⊗−+−−+−⊗−+−−= ttattattattattattattatta 32213221 ][][ ττττττττ

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) =−+−−−+−+−−−= ][][ 33213321 ttattattttattattatttta ττττττττ

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ttattattttttattttatta −+−=−−−+−−−= 31321321 ] ττττττττ
w=001 the term is: 

( ) ( ) ( ) ( ) ( ) ( )( ) ( )( )=−⊗−⊗−+−=−⊕−⊕−⊕ ttattattattattattatta 3211321 ][ τττττττ
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) =−⊗−+−−+−⊗−+−−= ttattattattattattattatta 32213221 ][][ ττττττττ

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) =−+−−−+−+−−−= ][][ 33213321 ttattattttattattatttta ττττττττ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3232321321 ,,0] ttattaattttttattttatta δδττττττ =+•=−−−+−−−=

 
Using the same calculus methodology we find 
that: 
w=000 ( ) ( ) ( ) ( ) ( )ttattattattatta −+−=−⊕−⊕−⊕ 31321 τττττ

w=001 ( ) ( ) ( ) ( ) =+•=−⊕−⊕−⊕ 32321 ,0 ttaattattatta δτττ ( )32,ttaδ  
w=010 ( ) ( ) ( ) =•+•=−⊕−⊕−⊕ 00321 aattattatta τττ 0 
w=011 ( ) ( ) ( ) ( ) =+•=−⊕−⊕−⊕ 21321 ,0 ttaattattatta δτττ ( )21,ttaδ  
w=100 ( ) ( ) ( ) ( ) =•+•=−⊕−⊕−⊕ 02,1321 attattattatta δτττ ( )2,1 ttaδ  
w=101 ( ) ( ) ( ) =•+•=−⊕−⊕−⊕ 00321 aattattatta τττ 0 
w=110 ( ) ( ) ( ) ( ) =•+•=−⊕−⊕−⊕ 0, 32321 attattattatta δτττ ( )32,ttaδ  
w=111 ( ) ( ) ( ) ( ) ( )ttattattattatta −+−=−⊕−⊕−⊕ 13321 τττττ

That means that we can express the function as 
follows: 
( ) ( ) ( )[ ] ( ) ( )+++−+−= 210113200131000 ,, ttattattattaty δαδαττα

( ) ( ) ( ) ( )[ ]ttattattatta −+−+++ 131113211021100 ,, τταδαδα  
Now we can see that coherent for the function 
expression are only the border terms (w=000 and 
w=111) and the terms that define the singular and 
distinct time intervals determined by the delay 
array – in this case having three distinct times 
t1,t2,t3 we have two such intervals (t1,t2) and 
(t2,t3). As mentioned when presenting τ properties 
those terms have the weight ordered as a result of 
physical commutation possibilities for the 
secondary input variables. Now we have the 
ability to trace the output of the circuit and that is 
presented in the table bellow. 
 
 
 
 

Proceedings of the 11th WSEAS International Conference on CIRCUITS, Agios Nikolaos, Crete Island, Greece, July 23-25, 2007               247



 tinit t1 t2 t3 tfinal → 
α111=1⇒y(t)= a  0 0 a Time axis 

α011=1⇒y(t)= 0 a  0 0   

α001=1⇒y(t)= 0 0 a  0   

α110=1⇒y(t)= 0 0 a 0   

α100=1⇒y(t)= 0 a 0 0   
α000=1⇒y(t)= a 0 0 a    

Now we can see that the border terms (w=111 
and w=000) will never generate hazard by 
themselves indifferent of the final value for 
variable a.  However terms with weight w=011 
and w=001 will generate a static 0 hazard in case 
the final value for a is 0 (transition for a 
“1”↓”0”). So their presence by themselves in the 
final expression of the function (α011=1 or α001=1 
only) will be an indication of hazardous 
functioning. Also the complement of the previous 
statement will have the same effect. That means 
that terms with weight w=110 and w=100 will 
produce a static 0 hazard in case o transition 
“0”↑”1” for a. In this particular case we can also 
see the way to mask those hazards – simply by 
finding a way to introduce the border terms in the 
expression (if algebraically possible). 
ATTENTION - We started from the hypothesis 
that terms containing all the secondary variables 
are present in the function expression. Evidently 
this is not always the situation when analyzing a 
real circuit. However the presence of a term that 
lacks one or more components from the 
secondary input vector should first of all be 
analyzed to see if the weight of that term is 
ordered. If this is not the case no further inquiries 
regarding this term should be made because it 
will be eliminated when operating with τ. In case 
its weight is ordered we remind that an 
incomplete term may be obtained via an 
operation (AND or OR depending on the form of 
expression for the function) from the complete 
terms containing the lacking secondary variable 
in its direct and complementary form. So these 
terms (incomplete but with ordered weight) 
should be considered for further analysis as they 
may contain hazards even if masked ones. 
Generally if the secondary vector (a1,a2,…,an) is 
derived from a primary input variable a and has 
the associated switching time vector ordered in a 
rising form we shall be able to express the 
function as follows: 
( ) ( ) ( )[ ] ( ) ( )+++−+−= 32111...00121111...0111000...000 ,, ttattattattaty n δαδαττα

( ) ( ) ( ) ( )[ ]ttattattatta nnnnn −+−++++ −−− 1111...1111001...00012011...000 ,,... τταδαδα
and the output trace will be: 

tinit t
1 

t2 t3 …tn-1 tn

α111…111=1⇒y(t)= a  0 0  0 a 
α011…111=1⇒y(t)= 0 a  0  0 0 
……………………………………….. 
α001…111=1⇒y(t)= 0 0 a   0 0 
α000…001=1⇒y(t)= 0 0 0  a  0 
……………………………………….. 
α111…110=1⇒y(t)= 0 0 0  a  
α110…000=1⇒y(t)= 0 0 a  0 0 
α100…000=1⇒y(t)= 0 a 0  0 0 
α000…000=1⇒y(t)= a 0 0  0 a  
Now we ca express a condition for the presence 
of hazard: 
 

The singular presence of a term with the 
weight ordered is a sufficient condition for 

the presence of static hazard. 
 

Further more combinations of such terms in the 
function expression may lead to dynamic hazard. 
However what is mostly important is that we 
have drastically reduced the possibilities to be 
searched for hazard and simply viewing the 
presence of specific terms is sufficient for us to 
conclude whether we have or not hazard present. 
More in particular cases we can easily see the 
terms that need to be added in order to mask that 
hazard.  
 
Example: Let there be the circuit presented in 
fig.2. 

 
Fig.2 

The function implemented by this circuit is: 
 

( ) ( )( )( )cdadbadbabadcbafy ++++++== ,,,  
 
By replicating the gates we determine the distinct 
input-output  signal paths and we define the 
secondary input vector. The result is presented in 
fig.3. 
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Fig.3 

The function expressed with respect to the 
secondary input vector is: 
 

( )( )( ) 234132213121 cdadbadbacbay ++++++=  
 
In order to determine the input delay array we 
propagate the specific delay of each gate from the 
output towards the input we shall neglect the 
delays specific for the connections between gates 
as they are negligible. However we must never 
forget that this assumption is not correct in case  
of VLSI implementations. The methodology 
works in this case but we must consider the 
specific delays induced by the internal wiring and 
by the connections between the operators used. 
Those delays will be added to the logic operator’s 
specific delay and will be propagated towards the 
inputs as presented before. 
 
ta1=(((tAND⊗NINV+tAND)⊗NINV+tAND)⊗NINV+ 
tNOR)⊗INV 
ta1=tb2=3tAND⊗INV+tNOR⊗INV 
ta2=tb3=2tAND⊗INV+tOR⊗INV+tNOR⊗INV 
ta3=td2=2tAND⊗NINV+2tOR⊗NINV 
ta4=td3=3tAND⊗NINV+tOR⊗NINV 
tb1=2tAND⊗NINV+tOR⊗NINV 
tc1=tc2=3tAND⊗NINV 
 td1=2tAND⊗NINV+tOR⊗NINV 
 
Now we can see that variable c will not generate 
hazard because both paths crossed by this 
variable have identical delays. Also variable d 
will not generate hazard because all paths crossed 

are direct so this variable will not translate at the 
output the direct and the complementary value in 
the same time. That leaves us variable a and b to 
analyze. Let us assume that the propagation times 
specific for each path have already been 
organized in a rising form. When calculating the 
reduced functions dependent of variable a (by 
replacing d,c,b with fixed values) we find that if 
dcb=010 then the function is 

43214321 ),,,( aaaaaaaaf = . That shows that in case of 
transition a “1”↓”0” and dcb=010 we have a 
static 0 hazard present.  
By calculating the reduced functions dependant 
of variable b we find that if dca=010 the reduced 
function is 321321 ),,( bbbbbbf = . So we have static 0 
hazard in case of transition b “0”↑”1” and 
dca=010. 
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