
Decision-Level Fusion for Vehicle Detection

ZEHANG SUN and GEORGE BEBIS
University of Nevada

Department of Computer Science
Reno, Nevada, USA

(zehang,bebis)@cse.unr.edu

NIKOLAOS BOURBAKIS
Wright State University

Department of Computer Science
Dayton, OH, USA

bourbaki@cs.wright.edu

Abstract: This paper deals with the problem of decision-level fusion for vehicle detection from gray-scale images.
Specifically, the outputs of some classifiers are simply ”distances”, that is, they represent ”distance measurements”
between a query pattern and a decision boundary. We argue that the distance component is very helpful for
decision fusion. Unfortunately, some of the most popular statistical decision fusion rules, such as the Sum rule and
Product rule, do not take advantage of the ”distance” property. Even worse, these rules make assumptions about
data independence and distribution models which do not hold in practice. Motivated by these observations, we
propose a simple decision-level fusion rule in the context of vehicle detection. Our fusion rule takes advantage
of ”distance” information and does not make any assumptions. We have applied this rule on a vehicle detection
problem, showing that it outperforms well known statistical fusion rules.
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1 Introduction

With the aim of reducing injury and accident sever-
ity, vision-guided vehicle detection is an active re-
search area among automotive manufacturers, suppli-
ers and universities. Various vehicle detection ap-
proaches have been reported in the computer vision
literature. For a recent review, please see [1]. An on-
board vision system is expected to help drivers mak-
ing some critical decisions, or even in some circum-
stances, take control of the vehicle, which might save
people’s lives. Given this expectation, most of the cur-
rent systems are not satisfactory due to the difficulties
of the problem itself. Several factors make on-road
vehicle detection very challenging including variabil-
ity in scale, location, orientation, and pose. Vehicles,
for example, come into view with different speeds and
may vary in shape, size, and color. Vehicle appearance
depends on its pose and is affected by nearby objects.
In-class variability, occlusion, and lighting conditions
also change the overall appearance of vehicles. Land-
scape along the road changes continuously while the
lighting conditions depend on the time of the day and
the weather.

Building a vehicle detection system consists of
two steps: First, training a classifier using of a train-
ing set of data to estimate the parameters of the chosen
model, and then a test set, patterns previously unseen
by the classifier, is used to determine the classifica-
tion performance. This ability to respond to novel
patterns meaningfully, i.e., generalize, is an impor-

tant aspect of a classifier. Given a finite and noisy
data set, different classifiers typically give different
generalizations. For instance, we have built two de-
tection systems: one using Gabor filter as feature ex-
traction method and SVM as classifiers (GaborSVM),
and the other Haar Wavelet decomposition together
with SVMs (HaarSVM). Although, they produce sim-
ilar accuracy on our test data, the sets of pattern mis-
classified are not completely overlap. This observa-
tion suggests that different classifiers, offer comple-
mentary information about the patterns to be classi-
fied, which could be used to improve the overall per-
formance of our vehicle detection system. This ac-
tive research topic is formally known as Decision Fu-
sion or Classifier Combination. Decision fusion ap-
proaches are particularly useful for difficult problems,
such as those that involve a large amount of noise, lim-
ited number of training data or unusually within class
varieties. As we discussed before, on-road vehicle de-
tection instantiates those difficulties.

Many approaches for fusing different classifiers
have been proposed in the literature. Xu et al. [2]
combined multiple classifiers using linear combina-
tion and applied this scheme on a handwriting recog-
nition problem. Cho et al. presented a fuzzy integral
based multiple neural network combining scheme in
[3], where not only the objective evidence provided
by various classifiers, but the system’s expectation of
the importance of that evidence were considered in
the fusion process. Rogova [4] investigated the com-
bining several Neural Network classifiers using the
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Dempster-Shafer theory of evidence. Kittler et al.
[5] developed a common theoretical framework for
classifier combination based on Bayesian theory and
demonstrated its effectiveness on M2VTS database
and a handwritten digit data set.

In this paper, a decision fusion based vehicle de-
tection method is proposed and tested on our vehicle
detection data sets. The proposed method outperforms
the popular probabilistic rules[5]. The reasons that
the proposed simple fusion rule is better than proba-
bilistic rules are: First, our fusion rule takes advan-
tage of the physical meaning of the classifier outputs,
which are some kind of distance measures. While the
probabilistic rules discard those physical meaning im-
plicitly when they manage to fit a distribution on the
classifier outputs. Second, in order to avoid the in-
tractable high order density function, people usually
assume that the class-conditional densities are inde-
pendent and follow Gaussian distribution. These two
assumptions do not usually hold. We have statisti-
cally demonstrated that neither of these two assump-
tions hold in our vehicle detection application, though
the histograms of the classifiers’ outputs do look like
normal distribution. In contrast, our fusion method
doesn’t depend on any assumptions, where it gains its
strength.

2 Vehicle Detection Systems

We have developed two vehicle detection systems -
one using Gabor filter as feature extraction method
and SVM as classifiers (GaborSVM), see Section 2.3,
and the other Haar Wavelet decomposition together
with SVMs (HaarSVM), which is described in Sec-
tion 2.2. A brief introduction of SVMs is provided in
Section 2.1. Both of the two systems learn the charac-
teristics of the vehicle and non-vehicle classes from a
set of training images, and are evaluated on the same
set of test images. The description of our data sets can
be found in Section 2.4.

2.1 SVMs

SVMs are primarily two-class classifiers that have
been shown to be an attractive and more system-
atic approach to learning linear or non-linear decision
boundaries [6] [7]. Given a set of points, which be-
long to either of two classes, SVM finds the hyper-
plane leaving the largest possible fraction of points of
the same class on the same side, while maximizing
the distance of either class from the hyperplane. This
is equivalent to performing structural risk minimiza-
tion to achieve good generalization [6] [7]. In most
applications, the SVM outputs are thresholded (i.e.,

”-1” or ”+1”). In this paper, we do not do any thresh-
olding; instead, we use the actual outputs, which are
essentially ”distances” in a high-dimensional space.

2.2 HaarSVM
Wavelets capture visually plausible features of the
shape and interior structure of objects. Wavelet fea-
tures at different scales capture different levels of de-
tail. Coarse scale features encode large regions while
fine scale features describe smaller, local regions. All
these features together disclose the structure of an ob-
ject in different resolutions.

In this system, we use Haar wavelet decomposi-
tion. The wavelet decomposition coefficients are used
as our feature directly. Each of the subimages is scaled
to 32x32 and then a 5 level Haar wavelet decomposi-
tion is performed on it, which yields 1024 coefficients.
We do not keep the coefficients in the HH subband of
the fist level since it encodes mostly noise. The final
feature set contains 768 coefficients.

2.3 GaborSVM

Gabor filters provide a mechanism for obtaining some
degree of invariance to intensity due to global illu-
mination, selectivity in scale, as well as selectivity
in orientation. Essentially, they are orientation and
scale tunable edge and line detectors. Vehicles do
contain strong edges and lines at different orientation
and scales, thus, these features are very powerful for
vehicle detection. The general functional g(x, y) of
the two-dimensional Gabor filter family can be rep-
resented as a Gaussian function modulated by an ori-
ented complex sinusoidal. Gabor filters act as local
bandpass filters. In our system, we use the Gabor fil-
ter design strategy described in [8]. Given an input
image I(x, y), Gabor feature extraction is performed
by convolving I(x, y) with a Gabor filter bank. We
use Gabor features based on moments, extracted from
9 overlapped subwindows of the input image.

2.4 Dataset
The images used in our experiments were collected
in Dearborn, Michigan during two different sessions,
one in the Summer of 2001 and one in the Fall of
2001, using a low-light camera. To ensure a good va-
riety of data in each session, the images were caught
during different times, different days, and on five dif-
ferent highways. The training set contains subim-
ages of rear vehicle views and non-vehicles which
were extracted manually from the Fall 2001 data set.
A total of 1051 vehicle subimages and 1051 non-
vehicle subimages were extracted by several students
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in our lab. Although specific instructions were given
to the students, there is some variability in the way
the subimages were extracted. For example, certain
subimages cover the whole vehicle, others cover the
vehicle partially, and others contain the vehicle and
some background (see Figure 1). We have not at-
tempted to align the data in our case since alignment
requires detecting certain features on the vehicle accu-
rately. Moreover, we believe that some variability in
the extraction of the subimages can actually improve
performance. Light correction and histogram equal-
ization were utilized to preprocess the images.

To evaluate the performance of the proposed ap-
proach, the average error (ER), false positives (FPs),
and false negatives (FNs), were recorded using a
three-fold cross-validation procedure. For testing, we
used a fixed set of 231 vehicle and non-vehicle subim-
ages which were extracted from the Summer 2001
data set.

Figure 1: Subimages for training.

3 Probabilistic Fusion
For a general m−class pattern classification problem,
the ultimate goal is to assign a query pattern, z, to
one of the m possible classes (ω1, · · · , ωm) with
minimum risk. If we put m−class pattern classifi-
cation problem in the N -classifier decision fusion
context, the final decision, which class the pattern
z belongs to, is based upon the compromise among
the N classifiers. Let us assume that xi, the output
of applying ith classifier on pattern z, is a scalar
for simplicity. The outputs of applying ith classifier
on patterns from class ωk can be modelled by a
probability density function p(xi|ωk), and its prior
probability P (ωk). For any pattern, the outputs of
applying the N classifiers form the output vector
X = [x1, x2, · · · , xN ]. According to Bayesian theory,
given classifier output vector X, the query pattern z
should be assigned to class ωj provided the a posteri-
ori probability of that interpretation is maximum [5],
i.e.,

assign z −→ ωj if

P (ωj |X) = max
k

(P (ωk|X) (1)

In order to assign a pattern to a class by utilizing
Eq.1, we need to know the high-order measurement

statistics described in terms of joint probability den-
sity function p(x1, · · · , xN |ωk),which is intractable in
practice. Rewriting the posterior probability using
Bayes’ theorem, we have

P (ωk|x1, · · · , xN ) =
p(x1, · · · , xN |ωk)P (ωk)

p(x1, · · · , xN )
(2)

where p(x1, · · · , xN ) is the unconditional measure-
ment joint probability density and can be described
as:

p(x1, · · · , xN ) =
m∑

j=1

p(x1, · · · , xN |ωk)P (ωj) (3)

Assuming that the outputs of the classifiers are con-
ditionally statistically independent, we can write the
joint distribution as

p(x1, · · · , xN |ωk) =
N∏

i=1

p(xi|ωk) (4)

Thus the fusion rule can be expressed as:

assign z −→ ωj if

P (ωj)
N∏

i=1

p(xi|ωj) = max
k

P (ωk)
N∏

i=1

p(xi|ωk) (5)

By assuming equal prior, we end up with:

assign z −→ ωj if

N∏
i=1

p(xi|ωj) = max
k

N∏
i=1

p(xi|ωk) (6)

In terms of the a posteriori probabilities, Eq.6 is
equivalent to:

assign z −→ ωj if

N∏
i=1

P (ωj |xi) = max
k

N∏
i=1

P (ωk|xi) (7)

Under the assumption that the posterior probabil-
ities computed by the respective classifiers will not
deviate dramatically from the prior probabilities, the
most commonly used Sum rule is derived in[5] as:

assign z −→ ωj if
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N∑
i=1

p(xi|ωj) = max
k

N∑
i=1

p(xi|ωk) (8)

In terms of the a posteriori probabilities, we
obtain the decision rules:

assign z −→ ωj if

N∑
i=1

P (ωj |xi) = max
k

N∑
i=1

P (ωk|xi) (9)

Since we know p(xi|ωk), k = 1 . . . N , Bayes’
rule can be used to compute the posterior probability
via:

P (ωk|xi) =
p(xi|ωk)∑N

k=1 p(xi|ωk)
(10)

Eq.6-9 have been used extensively in decision fu-
sion area.

4 Why Probabilistic Decision Fusion
Rules Fail in Vehicle Detection

4.1 Classifier Outputs
By using Eq. 6- Eq. 8, we implicitly discard the actual
physical meaning of the classifier outputs. The output
of some classifier are essentially a ”distance” measure
between a query pattern and the decision boundary.
Density function is only a relative frequency measure,
and p(x|ωk) indicates the ”chance” that we are go-
ing to get the particular output value x given a query
pattern z is from class ωk. Traditionally, we con-
sider this ”chance” as the degree of confidence if we
assign that z to ωk. This is correct from the view
point of pure statistics, not from the physical mean-
ing of classifier outputs. Here is an example. In
our vehicle detection context, we have two classes,
vehicle class - ω1 and non-vehicle class - ω2. And
the classifier GaborSV M (see Section 2.3 for de-
tails) models the boundary between this two classes
in high dimensional space. Fig. 2.a shows the his-
togram of the classifier’s outputs, for simplicity, peo-
ple tend to model the outputs for the two classes as
two Gaussian distributions: N(1.7019, 0.5427) and
N(−2.1048, 0.6567)(Fig. 2).b. We’ll show that the
normality assumption doesn’t hold in Section 4.2,
even though Fig.2.a do look like Gaussian distribu-
tion.

We have four distinct query patterns, see Fig. 3.a-
d, and outputs we get using GaborSV M are xa =
3.1929, xb = 0.1956, xc = 3.0018 and xd = 0.3965.

As we mentioned, they are essentially the ”distance”
measures between the query patterns and the decision
boundary. The outputs of the classifier indicate that
Fig. 3(a) and Fig. 3(c) are far away from the deci-
sion boundary, while Fig. 3(b) and Fig. 3(c) pretty
close to the boundary. That xa is greater than xb in-
dicates that we can assign pattern Fig.3(a) to class ω1

with much higher confidence than pattern Fig. 3(a).
The visualization conforms these. However, p(xa|ω1)
and p(xb|ω1) are fairly similar to each other, so are
the p(xc|ω1) and p(xd|ω1) . It’s obvious that, by us-
ing Eq. 8 or Eq. 6, we end up with very close mea-
surements. The posterior probabilities, computed us-
ing Eq. 10, are not as distinguishable as we expected,
though slightly better than the density values. They
are: P (xa|ω1) = 1, P (xb|ω1) = 0.8849,P (xc|ω1) =
1, and P (xd|ω1) = 0.9640. These fairly similar
values imply that Eq. 6-9 don’t appreciate physical
meaning (”distance”) of the classifier output.
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Figure 2: (a) Histogram of classifier outputs of
GaborSVM; (b) Fitted density functions

(a) (b) (c) (d)

Figure 3: Patterns with similar p(x|ω) values: (a)
x = 3.1929 and p(x|ω) = 0.0036, (b) x = 0.1965
and p(x|ω) = 0.0033, (c) x = 3.0018 and p(x|ω) =
0.0096, (d) x = 0.3965 and p(x|ω) = 0.0093

4.2 Do those assumptions hold?
In order to derive the decision rules Eq.6-9, people
make two assumptions: First, the class-conditional
densities p(x|ωk), k = 1, 2 are Gaussian, and class-
conditional distributions are independent. Conditional
independence assumption is unrealistic in many situ-
ations, though, because of the intractable higher order
joint density fusions, people accept this assumption
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routinely in practice. From statistical point of view,
the cross-correlation fusion (CCF) [12] is a tool used
to measure dependence. We plug our data in and end
up with ρ = 0.376, which is statistically significant
and indicates that our data are dependent. Therefore,
assuming that the class-conditional density function
are independent is not proper.

QQ_Haar_Vel.bmp

(a)

QQ_Haar_Non.bmp

(b)

QQ_Gabor_Vel.bmp

(c)

QQ_Gabor_Non.bmp

(d)

Figure 4: Q-Q plot of: (a) Outputs of HaarSVM on
vehicle data, (b) Outputs of HaarSVM on nonvehicle
data, (c) Outputs of GaborSVM on vehicle data, (d)
Outputs of GaborSVM on nonvehicle data.

From the visualization of the histograms illus-
trated in Fig.2, people might be convinced the nor-
mality of the data. However, it is risky to assume a
normal distribution, when the real distribution is not.
There are a number of methods that can be used to
check the deviations of the data from the normal dis-
tribution. The most useful tool for assessing normality
is a quantile quantile or QQ plot [12]. It is a scatter-
plot with the quantiles of the scores on the horizon-
tal axis and the expected normal scores on the verti-
cal axis. A plot of these scores against the expected
normal scores should reveal a straight line. Curvature
of the points indicates departures of normality. Fig.4
shows that none of the four data follows Gaussian dis-
tribution, because each of them has a quite flat part
on the QQ plot, i.e. each of them has a certain range
where too many data fail in.

Hypothesis tests H0-data is normal, are also car-
ried out for all those four data sets. As we expected,
all the four H0 are rejected at the level of significance
0.01. QQ plots Fig.4 and Hypothesis tests disclose
strong evidences that none of the data follows Gaus-
sian distribution. We can see neither of the two as-

sumptions(independence and normality) holds for our
problem handy. This is one of the reason why proba-
bilistic rules don’t provide good performance.

5 Decision Fusion
The above observation suggests that ”distance” might
be a good base for decision fusion. In this report, both
of the two methods (GaborSVM and HaarSVM) use
SVMs as classifier, which provides normalized dis-
tance measure. We propose using the following deci-
sion rule:

sign(x1 + x2) =

{
1 vehicle
−1 nonvehicle

(11)

where x1 and x2 are outputs by applying
GaborSVM and HaarSVM on a same query pattern,
sign is the signum function. Base on Eq.11, the de-
tection results will depend on the output of two detec-
tion system whichever has the bigger absolute output
value. This is reasonable because a bigger absolute
output value implies higher confidence level, since the
outputs are from SVM.

6 Experimental Results
We have performed a number of experiments and
comparisons to demonstrate the performance of the
proposed approach. First, GaborSVM and HaarSVM
methods are evaluated using the test data individu-
ally. Fig.5.a shows the error rates, as well as the
FP/FN rates. As we mentioned in Section 2.4, all
the results reported in this report are the average
rates using the three-fold cross-validation procedure.
Overall the error rate of the GaborSVM is 5.19%,
which is better than 8.52% obtained using HaarSVM
method. However, HaarSVM has lower FN (1.47%)
than GaborSVM does (3.61%). Therefore, there are
patterns where HaarSVM does the correct classifica-
tion, while GaborSVM doesn’t, even though the over-
all performance of GaborSVM is better than that of
HaarSVM. And this is also the justification of apply-
ing fusion methods.

Our literature review in Section1 shows that the
Product rule Eq.6-7 and Sum rule Eq.8-9 have been
used quite extensively for decision fusion. For com-
parison purposes, we have evaluated the performances
of the Sum and Product rule in the context of vehicle
detection. Let’s refer the Sum rule using the density
function directly Eq.8 to as method NS, and Sum rule
using the posterior probability Eq.9 as method PS,
the Product rule using the density function directly
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Eq.6 as NP and the Product rule using the poste-
rior probability Eq.7 as PP . The average error rates,
as well as FP/FN, are illustrated in Fig.5.b. We can
see the performances of these four probabilistic rules
are fairly close to each other: error rates from NS
is 4.61%, and error rates from all other three rules
(NP , PP , and PS) are 4.76%. Compared to the
GaborSVM and HaarSVM, we can see the probabilis-
tic fusion methods only improve the performance a
little bit, give the GaborSVM’s error rate is 5.19%.

The performance of the proposed method is
shown in the Fig.5.b. The average error rate is 3.17%,
which is about two percent better than the GaborSVM
method.

(a) (b)

Figure 5: (a) Gabor filter bank with 3 scales and 5
orientations; (b) Gabor filter bank with 4 scales and 6
orientations

7 Conclusions and Future Work
We have considered the applying decision fusion ap-
proaches on the vehicle detection problem. In partic-
ular, we investigated popular Sum and Product rules,
and we found that the physical meaning of the classi-
fier outputs, which are ”distance measurement”, were
discarded implicitly by using these rules. We believe
that ”distance measurement” are very helpful in the
decision fusion context, because it reflects the confi-
dence level. We also demonstrate that that two ba-
sic assumptions of the probabilistic fusion rules don’t
hold for our vehicle detection problem. Motivated by
these observations, we define a simple fusion rule,
which takes advantage of the ”distance” property of
the classifier outputs and doesn’t depend on any as-
sumptions. Our experimental results demonstrate that
our simple fusion methods give better performance in
the context of vehicle detection than the commonly
used Sum or Product rule.
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