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Abstract: In this paper we introduce the concept of cooperating system of semantic schemas. This structure is a
tuple({Si}n

i=1, E) (n ≥ 2) such thatS1,. . .,Sn are distinct regular semantic schemas andE is a distinguished com-
ponent. The formal computation inSi is a usual computation in a semantic schema and this kind of computation
was defined in [3]. From the structural point of viewE satisfies the rules of a semantic schema. An appropriate
computation forE is defined and this computation describes the cooperation betweenS1,. . .,Sn. We exemplify
these computations and several possible applications of this concept are discussed. Finally some open problems
are shortly described.
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1 Introduction

The concept of semantic schema was introduced in
([3]) as a structure extending the concept of semantic
network ([4]). A semantic schema is an abstract struc-
ture. In order to represent knowledge an appropriate
interpretation is used. Various applications of these
concepts were described: distributed representation in
logic programming with constraints ([3]), knowledge
management ([5]) and reasoning by analogy ([6]).

In this paper we define a partial order between the
elements of the last component of a semantic schema,
we consider the maximal elements with respect to this
relation and based on these concepts we introduce the
concept ofcooperating system. Such a system con-
tains several semantic schemas and one of them is a
distinguished entity because this schema controls the
cooperating between the other components of the sys-
tem. Finally an application is presented and some
open problems are relieved.

2 Semantic schemas

We consider a finite and nonempty setA0 and we de-
note byθ an operator symbol of arity 2. We denote
by A0 the Peanoθ-algebra generated byA0, there-
fore A0 =

⋃
n≥0 An whereAn is defined recursively

by Ak+1 = Ak ∪{ θ(u, v) | u, v ∈ Ak}, k ≥ 0 ([2],

[9]). If we take

B0 = A0, Bn+1 = An+1 \An (1)

thenA0 =
⋃

n≥0 Bn andBi ∩ Bj = ∅ for i 6= j. For
u ∈ A0 we writelength(u) = n if u ∈ Bn.

In what follows we recall the main results con-
cerning the concept ofθ-semantic schema introduced
in [3] and developed in [5], [6], [7] and [8]. We men-
tion in this section only those results that are used in
this paper.

A θ-semantic schema(shortly, θ-schema) is a
systemS = (X, A0, A, R), where

• X is a finite non-empty set of symbols and its
elements are namedobject symbols

• A0 is a finite non-empty set of elements named
label symbolsandA0 ⊆ A ⊆ A0, whereA0 is the
Peanoθ-algebra generated byA0

• R ⊆ X × A × X is a non-empty set which
fulfills the following conditions:

(x, θ(u, v), y) ∈ R =⇒ ∃z ∈ X :
(x, u, z) ∈ R, (z, v, y) ∈ R (2)

θ(u, v) ∈ A,
(x, u, z) ∈ R,
(z, v, y) ∈ R



 ⇒ (x, θ(u, v), y) ∈ R (3)

u ∈ A ⇐⇒ ∃(x, u, y) ∈ R (4)

We denoteR0 = R ∩ (X ×A0 ×X).
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Proposition 1 If θ(u, v) ∈ A thenu ∈ A andv ∈ A.

Proof. If θ(u, v) ∈ A then by (4) and (2) we deduce
that there are(x, u, y) ∈ R and(y, v, z) ∈ R. Using
again (4) we obtainu ∈ A andv ∈ A.

Let S = (X,A0, A,R) be aθ-schema. Ifh is a
symbol of arity 1 then we consider the set:

M =
{

h(x, a, y) | (x, a, y) ∈ R0

}

where we use the notationh(x, a, y) instead of
h((x, a, y)).

We consider a symbolσ of arity 2 and letH be
the Peanoσ-algebra generated byM .

We denote byZ the alphabet including the sym-
bol σ, the elements ofX, the elements ofA, the left
and right parentheses, the symbolh and comma. We
denote byZ∗ the set of all words overZ. We define
the following binary relation onZ∗:

Let bew1, w2 ∈ Z∗.
• If a ∈ A0 and (x, a, y) ∈ R then

w1(x, a, y)w2 ⇒ w1h(x, a, y)w2

• Let be (x, θ(u, v), y) ∈ R. If (x, u, z) ∈
R and (z, v, y) ∈ R then w1(x, θ(u, v), y)w2 ⇒
w1σ((x, u, z), (z, v, y))w2

We denote by⇒∗ the reflexive and transitive clo-
sure of the relation⇒.

The mapping generatedby S is the mapping
GS : R −→ 2H defined as follows:

• GS(x, a, y) = {h(x, a, y)} for a ∈ A0

• GS(x, θ(u, v), y) = {w ∈ H |
(x, θ(u, v), y) ⇒∗ w}

We denoteF(S) =
⋃

(x,u,y)∈R GS(x, u, y).
An interpretation ([8]) of S is a systemI =

(Ob, ob, {Algu}u∈A), where
• Ob is a finite set of elements named theobjects

of I
• ob : X → Ob is a bijective function
• {Algu}u∈A is a set of algorithms such that each

algorithm has two input parameters and an output pa-
rameter.
Consider an interpretationI = (Ob, ob, {Algu}u∈A)
of S. The output space Y of I is the setY =⋃

u∈A Yu, where
Ya = {Alga(ob(x), ob(y))|(x, a, y) ∈ R0}

if a ∈ A0 and otherwise
Yθ(u,v) = {Algθ(u,v)(o1, o2)|o1 ∈ Yu, o2 ∈ Yv}

We define recursively thevaluation mapping

V alI : F(S) −→ Y

as follows:
• V alI(h(x, a, y)) = Alga(ob(x), ob(y))
• V alI(σ(α, β)) = Algθ(u,v)(V alI(α), V alI(β))

if σ(α, β) is derived from an element of the form
(x, θ(u, v), y) ∈ R (in fact this element is uniquely
determined, [7]).

3 Maximal graph of a semantic
schema

A labeled graphis a tupleG = (S, L0, T0, f0), where
• S is a finite set, an element ofS is anodeof G;
• L0 is a set of elements namedlabels;
• T0 is a set of binary relations onS;
• f0 : L0 −→ T0 is a surjective mapping.

Such a structure admits a graphical representation.
Each element ofS is represented by a rectangle spec-
ifying the corresponding node. We draw an arc from
n1 ∈ S to n2 ∈ S and this arc is labeled bye ∈ L0

if (n1, n2) ∈ f0(e). If we proceed in this manner for
each element of

⋃
e∈L0

f0(e) then we obtain a graph-
ical representation of the whole structure.

In this paper we use theunion of two labeled
graphs. In order to define this operation we con-
sider the labeled graphsG1 = (S,L0, T0, f0) and
G2 = (Q,M0,K0, g0), whereT0 ⊆ 2S×S andK0 ⊆
2Q×Q. The union ofG1 andG2 is the labeled graph
G1 ∪G2 = (S ∪Q,L0 ∪M0,W0, h0), where

h0(α) =





f0(α) if α ∈ L0 \M0

g0(α) if α ∈ M0 \ L0

f0(α) ∪ g0(α) if α ∈ L0 ∩M0

Obviously we haveW0 = h0(L0 ∪M0).
For a θ-semantic schemaS = (X,A0, A, R)

we can build the labeled graphGS = (X, A, T, f),
named thelabeled graph associatedto S, where

• f(α) = {(x, y) ∈ X ×X | (x, α, y) ∈ R}
• T = {f(α) | α ∈ A}

We introduce now a partial relation on the component
R of S.

Definition 2 For two elements(y1, u1, y2) ∈ R and
(x1, v1, x2) ∈ R we write(y1, u1, y2) ≺ (x1, v1, x2)
if one of the following conditions is verified:

• v1 = θ(u1, u2), y1 = x1, (y2, u2, x2) ∈ R

• v1 = θ(u2, u1), y2 = x2, (x1, u2, y1) ∈ R

The transitive closure of≺ is denoted by≺+. This
means thatα ≺+ β if there areα1, . . . , αn ∈ R such
that α = α1, αn = β andαi ≺ αi+1 for everyi ∈
{1, . . . , n− 1}.

Remark 3 Supposeα = (y1, u, y2) and β =
(x1, v, x2). If α ≺ β then length(u) < length(v).
Consequently, ifα ≺+ β then length(u) <
length(v).

Proposition 4 The relation≺+ is a strict partial or-
der. In other words, for everyα, β, γ ∈ R the follow-
ing properties are satisfied:
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α 6≺+ α
α ≺+ β ⇒ β 6≺+ α
α ≺+ β, β ≺+ γ ⇒ α ≺+ γ

Proof. The first two conditions are verified by Remark
3. The last condition is verified by the transitivity of
the relation≺+. ut
Definition 5 An elementα ∈ R is a maximal ele-
ment if α 6≺+ β for all β ∈ R. We denote byRmax

the set of all maximal elements ofR.

Consider an arbitrary setM ⊆ X1× . . .×Xn and
i ∈ {1, . . . , n}. By priM we denote the following set:

{y ∈ Xi | ∃(x1, . . . , xi−1, y, xi+1, . . . , xn) ∈ M}
Definition 6 If S = (X, A0, A, R) is a θ-semantic
schema then the labeled graphGmax

S = (Y, L, T, h)
is themaximal graph associated toS if the following
conditions are verified:

• Y = pr1R
max ∪ pr3R

max

• L = pr2R
max

• h(α) = {(x, y) | (x, α, y) ∈ Rmax} for α ∈ L
• T = {h(α) | α ∈ L}

4 Cooperating systems based on
maximal graphs

Based on several semantic schemas we define in this
section acooperating system, we discuss the intuitive
aspects of this representation and we relieve several
remarks concerning the components of this structure.

Definition 7 A cooperating system of semantic
schemasis a pair ({Si}n

i=1, E), where
• Si = (Xi, A0i, Ai, Ri) is a θi-semantic schema for
i ∈ {1, . . . , n};
•E = (X, L0, L,R) is aθ-semantic schema such that

i) X andL0 are the nodes and respectively the la-
bels of the graph

⋃n
i=1 Gmax

Si

ii) R satisfies the condition

(x, θ(u, v), y) ∈ R, (x, u, z) ∈ Rmax
i ,

(z, v, y) ∈ Rmax
j ⇒ i 6= j (5)

At this point we emphasize an aspect concern-
ing the formal computations performed in a semantic
schema. Let us denote byS = (X, A0, A, R) an arbi-
traryθ-semantic schema andR0 = R∩(X×A0×X).
If R0 = R thenA = A0 and in this case no deduc-
tion is modeled byS. Such a schema can be used only
to store the facts of a knowledge piece and to retrieve
this information. In view of this remark one might say
that a semantic schemaS = (X, A0, A, R) satisfying

the propertyA = A0 (or equivalently,R = R0) is a
trivial semantic schema.

The concept introduced in Definition 7 can be
analyzed from various points of view. As a particular
case we can consider a cooperating system containing
only trivial semantic schemas. Obviously such a
system becomes aθ-semantic schema. In order to
specify this case we consider the trivial schemas
defined as follows:
• S1 = ({x, y, z1}, {a, b}, {a, b}, {(x, a, y), (y, b, z1)})
• S2 = ({x, y, z2}, {a, b}, {a, b}, {(x, a, y), (y, b, z2)})
Only two cooperating systems can be obtained by
means of these schemas:

1. The trivial system given by E =
({x, y, z1, z2}, {a, b}, {a, b}, R0), whereR0 =
{(x, a, y), (y, b, z1), (y, b, z2)}.

2. The non trivial cooperating system given by
E = ({x, y, z1, z2}, {a, b}, {a, b, θ(a, b)}, R),
whereR0 = {(x, a, y), (y, b, z1), (y, b, z2)} and
R = R0∪{(x, θ(a, b), z1), (x, θ(a, b), z2)}. The
structureE is obviously aθ-schema.

Remark 8 If Si = (Xi, A0i, Ai, Ri) and E =
(X,L0, L, R) thenX ⊆ ⋃n

i=1 Xi andL0 ⊆
⋃n

i=1 Ai.
Really, ifGmax

Si
= (Yi, Li, Ti, hi) then by Definition

6 we haveYi = pr1R
max
i ∪ pr3R

max
i ⊆ Xi and

Li = pr2R
max
i ⊆ Ai for everyi ∈ {1, . . . , n}.

Proposition 9 If C = ({Si}n
i=1, E) is a cooperating

system then eithern ≥ 2 or C is a trivial schema.

Proof. We can writeL =
⋃

k≥0(L∩Bk), whereBk is
defined as in (1). Ifn = 1 then (5) can not be applied,
thereforeL ∩ B1 = ∅. Using Proposition 1 we can
verify by induction onk thatL ∩ Bk = ∅. It follows
thatL = L ∩B0 = L0 andC is a trivial schema. ut

In connection with Definition 7 we relieve the fol-
lowing aspects:

1. A cooperation system is based on severaldis-
tinct semantic schemas because each schemaSi

is built by means of a symbolθi andθi 6= θj for
i 6= j.

2. By Remark 8 we observe thatL is a subset of
the Peanoθ-algebra generated by a finite set that
contains some elements taken from the Peanoθi-
algebras of the schemasS1, . . ., Sn.

Remark 10 The condition (5) was introduced be-
cause a cooperating system({Si}n

i=1, E) is not able
to extend the deduction of some componentSi. As a
matter of fact the task ofE is to model the collabora-
tion of its components.
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5 Formal computations in a
cooperating system

We consider a cooperating systemC = ({Si}n
i=1, E),

where E = (X,L0, L, R). In order to describe
the computation inC we consider the symbols
σ, σ1, . . . , σn of arity 2. Two kinds of computations
can be described inC:
• A regular formal computation for theθi-schema
Si. This computation was described in Section 2 for
the general case of a semantic schema, with the re-
mark that forSi the symbolσi instead ofσ is used.
• A proper formal computation for theθ-schemaE.

The derivation inE is given in the next definition.

Definition 11 Suppose(x, θ(u, v), y) ∈ R. If
(x, u, z) ∈ R and(z, v, y) ∈ R then

w1(x, θ(u, v), y)w2 ` w1σ((x, u, z), (z, v, y))

for every wordsw1, w2. We denote bỳ ∗ the reflex-
ive and transitive closure of̀. We denote byHE the
Peanoσ-algebra generated byR0 = R ∩ (X × L0 ×
X). We define

F(E) = {w ∈ HE | ∃(x, u, y) ∈ R : (x, u, y) `∗ w}

Remark 12 BecauseHE is generated byR0 and`∗
is a reflexive relation we haveF(E) ⊇ R0. This in-
clusion is used further to define the valuation mapping
of a cooperating system.

In order to exemplify this computation and other con-
cepts which follow in this section we consider the se-
mantic schemasS1 andS2 represented respectively in
Figure 1 and Figure 2. We remark that(x2, b, x3) is a
maximal element both inS1 andS2. In other words
we haveRmax

1 ∩Rmax
2 6= ∅.

Remark 13 The general case,Rmax
i ∩ Rmax

j 6= ∅
for somei 6= j, implies some feature of the valuation
mapping given in Definition 16.

The graphGmax
1 ∪ Gmax

2 is represented in Figure 3.
From this figure we deduce that the following entities
are used to specifyE:

• X = {x1, x2, x3, x4, y1}
• L0 = {b, θ1(a, a), θ1(b, a), θ2(a, b), θ2(b, b),

θ2(b, a), θ2(a, θ2(a, b))}
• R0 = {(x1, θ1(a, a), x2), (x1, θ2(a, b), x2),

(x2, θ2(b, a), y1), (x2, b, x3), (x3, θ1(b, a), y1),
(x3, θ2(b, b), x4), (y1, θ2(a, θ2(a, b)), x4)}

In order to finish the definition ofE we take
R \R0 = {(x1, θ(θ1(a, a), b), x3),

(x1, θ(θ(θ1(a, a), b), θ1(b, a)), y1),

x1 z1 x2 x3 z2 y1- - - - -? ?a a b b a

θ1(a, a) θ1(b, a)

Figure 1: SchemaS1

x1 z3 x2 z4 y1 z5 z6 x4

x3 z7

- - - - - - -? ? ??a b b a a a b

θ2(a, b) θ2(b, a) θ2(a, b)

θ2(a, θ2(a, b))

- -
66

b b b

θ2(b, b)

Figure 2: SchemaS2

(x1, θ(θ2(a, b), b), x3),
(x1, θ(θ(θ2(a, b), b), θ1(b, a)), y1),
(x1, θ(θ(θ2(a, b), b), θ2(b, b)), x4)}

and therefore
L\L0 = {θ(θ1(a, a), b), θ(θ(θ1(a, a), b), θ1(b, a)),

θ(θ2(a, b), b), θ(θ(θ2(a, b), b), θ1(b, a)),
θ(θ(θ2(a, b), b), θ2(b, b))}

We observe the condition (5) is satisfied byR. As
an example of derivation inC we have the following
sequence:

(x1, θ(θ(θ1(a, a), b), θ1(b, a)), y1) `
σ((x1, θ(θ1(a, a), b), x3), (x3, θ1(b, a), y1)) `

σ(σ((x1, θ1(a, a), x2), (x2, b, x3)), (x3, θ1(b, a), y1))

By a similar computation we obtain also

(x1, θ(θ(θ2(a, b), b), θ1(b, a)), y1) `
σ((x1, θ(θ2(a, b), b), x3), (x3, θ1(b, a), y1)) `

σ(σ((x1, θ2(a, b), x2), (x2, b, x3)), (x3, θ1(b, a), y1))

In order to define the valuation mapping of a coop-
erating systemC = ({Si}n

i=1, E) we denoteSi =
(Xi, A0i, Ai, Ri) and consider an interpretationJi =
(Obi, obi, {Algi

u}u∈Ai) of Si, i ∈ {1, . . . , n}. We
suppose that forx, y ∈ Xi ∩ Xj we havex = y if
and only ifobi(x) = obj(y).

x1 x2 y1 x4

x3

- - -?

-

6 6

θ2(a, b)

θ1(a, a)

θ2(b, a) θ2(a, θ2(a, b))

θ1(b, a)

θ2(b, b)

b

Figure 3:Gmax
1 ∪Gmax

2
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Definition 14 An interpretation of the cooperating
systemC is a systemI = (Ob, ob, {Algu}u∈A) such
that Ob =

⋃n
i=1 obi(X ∩ Xi), ob(x) = obi(x) if

x ∈ X ∩ Xi, ob : X −→ Ob and Algu is an algo-
rithm accepting two input arguments and one output
argument.

Proposition 15 The mappingob : X −→ Ob is well
defined and is bijective.

Proof. If x ∈ X ∩ Xi ∩ Xj for i 6= j thenob(x) =
obi(x) and ob(x) = obj(x) by the definition ofob.
But obi(x) = obj(x), thereforeob is well defined. If
y ∈ Ob then by Definition 14 there isi such thaty ∈
obi(X ∩ Xi). Thus there isx ∈ X ∩ Xi such that
y = obi(x). Butob(x) = obi(x), thereforey = ob(x).

In what follows we consider the following decom-
position ofR: R = D0 ∪D1 ∪D2, whereD0 = R0,
D1 = {(x, θ(u, v), y) ∈ R | u, v ∈ D0} and
D1 = R \ (D0 ∪D1). We obtain a corresponding de-
composition forF(E): F(E) = R0∪F1(E)∪F2(E),
whereF1(E) = {w ∈ F(E) | ∃(x, u, y) ∈ D1 :
(x, u, y) `∗ w} and F2(E) = {w ∈ F(E) |
∃(x, u, y) ∈ D2 : (x, u, y) `∗ w}.

Definition 16 Thevaluation mapping of the cooper-
ating systemC is the functionV alI : F(E) −→ 2Y ,
whereY is the output space of the semantic schema
E, defined as follows:

• If (x, a, y) ∈ D0 ∩
(⋃n

j=1 R0j

)
then

V alI(x, a, y) =
⋃n

i=1{Algi
a(obi(x), obi(y))}

• V alI(x, θi(u, v), y) = {V alIi(σi(w1, w2)) |
σi(w1, w2) ∈ F(Si), (x, θi(u, v), y) ⇒∗

i σi(w1, w2)}
• Let be σ(α, β) ∈ F1(E). There is

(x, θ(u, v), y) ∈ D1 such that (x, θ(u, v), y) `∗
σ(α, β). We take

V alI(σ(α, β)) =
⋃

o1 ∈ V alIi
(α),

o2 ∈ V alIj
(β),

i 6= j

{Algθ(u,v)(o1, o2)} (6)

• Let beσ(α, β) ∈ F2(E). There is(x, θ(u, v), y) ∈
D2 such that(x, θ(u, v), y) `∗ σ(α, β). We take

V alI(σ(α, β)) =
⋃

o1 ∈ V alI(α),
o2 ∈ V alI(β),

{Algθ(u,v)(o1, o2)}

Remark 17 The conditioni 6= j in (6) is connected
by Remark 13.

6 An application

It is well known the interest of the great companies to
design and implement propercontact centers. Among
the tasks of this entity we find the applications that in-
clude the workforce management, quality monitoring
and various applications allowing connectivity and
collaboration with voice communications to provide a
much richer customer experience ([1]). Various chap-
ters of artificial intelligence can be implied to accom-
plish these tasks (natural language processing, voice
recognition, speech technology, knowledge represen-
tation). According to [10] a company can usecus-
tomer service representativesor equivalentlycenter
agents. They are people that respond to calls, chats
or emails from customers and can be replaced byvir-
tual agentswhose tasks can be modeled by semantic
schemas. Obviously in this case the speech technol-
ogy can be used and eveninterfaces by voicecan be
successfully applied. The designers of contact centers
can use the cooperating systems based on semantic
schemas as a method of knowledge representation. In
the remainder of this section we give a short descrip-
tion of this application. We treat the manner in which
a customer service representative can be modeled as a
cooperating system.

The components of a cooperating system per-
forming the tasks of a customer service representative
can be thought as follows:

1. The componentE receives a phrase in a natural
language from the customer. This can be a sen-
tence given by voice and in this case the speech
recognition methods are used byE to obtain the
associated textT . The phrase can be taken also
from an email sent by a customer and in this case
the componentE disposes directly of the corre-
sponding textT .

2. The textT is parsed byE to extract the seman-
tics. A set of specific entitiesT1, . . ., Tk are ob-
tained. EachTi requests a partial answer.

3. For eachi ∈ {1, . . . , k} the componentE selects
some schemaSji to prepare an answerAnsi cor-
responding toTi. The entityAnsi is sent toE by
the componentSji .

4. By an appropriate combination of the entities
Ans1, . . ., Ansk an answerAns is prepared by
E and this answer is sent to customer. If the cus-
tomer used the voice to send the message then the
text-to-speech technology is used byE to send
its answer back to customer. Otherwise the en-
tity Ans is sent by e-mail.
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In order to exemplify the computation we consider
the case whenE is represented in Figure 3, there-
fore E can useS1 andS2 from Figure 1 and Figure
2 respectively. Suppose that the interpretationI of E
and the interpretationI1 of S1 specify thatob(x3) =
ob1(x3) = Peter, ob(y1) = ob1(y1) = Helen and
ob1(z2) = Mary.
We denote by p(x,y)=”x is the son of y”, q(x,y)=”x is
the sister of y” and r(x,y)=”x is the nephew of y” are
sentential forms. This means that if x and y are substi-
tuted by proper names then these entities become sen-
tences in a natural language. Suppose that the inter-
pretationI1 for S1 includes the following algorithms:

Algorithm Alg1
b (o1, o2) {returnp(o1, o2)};

Algorithm Alg1
a(o1, o2) {returnq(o1, o2)};

Algorithm Alg1
θ1(b,a)(o1, o2) {if o1 = p(t1, t2),

o2 = q(t2, t3) then returnr(t1, t3)};
SupposeE receives the message”I want to know if
Peter is the nephew of Helen”. Parsing this sentence
the componentE obtains the entity(Peter,Helen).
From its schema and using the interpretationI the
componentE discovers thatS1 is able to find an
answer corresponding to the entity(Peter,Helen).
We emphasize the fact thatE can identify a connec-
tion betweenPeter andHelen but it does not know
the information attached to this connection. Using
its interpretation, the schemaS1 finds the conclusion
r(Peter,Helen) and this sentence is sent toE. Thus
E responds by the message ”Yes, Peter is the nephew
of Helen”. Finally we remark thatE can respond by
a negative sentence without any consultation of the
componentsSi. For example, ifE receives the sen-
tence ”I want to know if Peter is the nephew of John”
then the response ofE is ”No” because there is no
path in the corresponding schema fromx3 to some
node interpreted asJohn.

7 Conclusions and future work

In this paper we introduced a kind of cooperation be-
tween semantic schemas. I introduced the concept of
cooperating system. This is an aggregation of sev-
eral semantic schemas. The cooperation is guided by
some of them and we defined the specific mechanism
performing this task. A brief description of a possi-
ble application is given in Section 6. Another appli-
cation is connected by the multi-agent systems. Such
systems can be modeled by a cooperation system if
some conditions are satisfied. Among these condi-
tions we enumerate the following: the actions of each
agent are represented by means of a semantic schema;
each agent accomplishes several tasks such that each
of them can be described by an entity of its maximal
graph. This is a task of a future work.
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