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Abstract

Information fusion plays an important role in decision support support systems as this procedure can
provide a wealth of information by integrating data obtained from multiple sources. However, this data
fusion is a challenging problem owing to the uncertainty and reliability of the sources involved, as well as
the incompleteness of the data obtained. In this paper we propose a framework to aggregate information
from different sensors imaging the same view of the same object. After classification is performed to
give hard membership values to well defined pixels, a fuzzy membership is assigned to 'mixed’ pixels
using a reliability criteria of the sensor to a particular object class. Once this classification process
is complete, a fusion procedure is outlined utilizing concepts of compatibility, partial aggregation and
reinforcement. Thus, the fused data sets will contain contributions from individual sensors based on the
reliability of the individual sensors and the compatibility of the sensors compared to the most reliable
sensor for the particular object class, using an appropriate distance measure. When the reliability of
the sensors fall within acceptable distance measures, Ordered Weighting Average (OWA) operators and
fuzzy measures are used to decided weightage of the data from different sensors to be fused. When the
sensors are equally reliable, a reinforcement procedure is adopted, and finally, a partial aggregation is
performed.

Keywords: multisensor data fusion, fuzzy membership, OWA operator, partial aggregation, com-
patibility, reinforcement



1 Introduction

Fusion of information from several independent
sources owes its importance due to the fact that a
wealth of information is obtained by exploring the
salient features of these different sources, thus over-
coming the limitations of the individual sources.
However, fusion of information obtained from these
sources poses a challenging problem due the amount
of uncertainty and reliability of the sources as well
as the incompleteness of the data involved.

In particular, image data fusion is very useful in
displaying composite images of objects imaged by
different sensors, thus rendering the salient features
of each sensor in the composite image. Applica-
tions have been manifold, with one of the impor-
tant areas being in medical diagnosis and therapy
planning, where even surgical procedures can be
aided. The need for data fusion arises from the
fact that the sensors which image a particular ob-
ject rely on a particular physical property of the
object to obtain the image. This imposes several
restrictions on image quality rendered by a single
sensor as the constituents of a given object can vary
greatly in physical properties (e.g. soft and hard
tissues in a brain scan). Thus the limitations ob-
tained in the image obtained from one sensor can
be obtained by fusing it with the image obtained
from another sensor which is strong in imaging that
particular constituent, thereby increasing the global
information content of the composite image. Many
image properties such as brightness[1], boundaries,
regions, etc., are context dependent (CD) and so a
data fusion operator would have to use a CD op-
eration representing the degree of reliability of the
individual sources of information to be combined
as well as the global knowledge or measure on these
sources. This measure can be a conflict between
the sources, or a reliability between them or a mu-
tual compromise. Thus, two sources of fuzziness[2]
are introduced: fuzziness due to classification by a
given sensor and fuzziness due to the reliability of
the sensor. Consequently, region classification and
subsequent fusion from the different modalities is a
fuzzy event.

In this paper we propose a fusion scheme that
incorporates concepts of compatibility, Ordered
Weighting Average (OWA) operators, fuzzy mea-
sures and reinforcement. A fuzzy c-means method
is used to obtain hard memberships for well defined
pixels belonging to a particular object (e.g. tis-
sue in a medical image) class. 'Mixed’ pixels, i.e.
pixels that lie in a region of overlap exist for ob-
jects that have very close grey level values, and such
pixels are assigned fuzzy membership values. The
present approach consists of introducing triangular
fuzzy membership functions for each of the classes
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of data. By taking a triangular shaped membership
function which includes the overlap between neigh-
bouring regions we are considering a fuzzy member-
ship process[3]. This fuzzy membership process is
used here as a surrogate for a hard membership pro-
cess, which, within suitable limits in our domain D
approximates a hard membership process. Hence,
in regions where pixels lie within one triangle, the
membership can be considered to be hard, whereas
in regions of overlap, a fuzzy membership value is
assigned, based on the reliability of the sensor to
the overlapping object regions. Following classifi-
cation, a fusion process is performed. For each ob-
ject class, a compatibility function[4] is considered
which allows for the inclusion of consideration of
whether the classified region is reasonable to fuse
or too conflicting to combine, using a distance mea-
sure based on the reliability of the sources. For
sources which fall within the acceptable distance
limit, OWA operators[5 | derived from entropy max-
imization [6], are used as fusion functions to ascer-
tain the weightage of the data to be fused from the
classified images of the different object regions. For
sensors which are equally reliable for a particular
object class, a reinforcement procedure is adopted
in evaluating the weightage. Finally, a partial ag-
gregation of classified data from the different sen-
sors is performed, utilizing fuzzy measures wherever
appropriate. This is an improvement over an earlier
work using a fuzzy c-means (FCM) tissue classifica-
tion of transverse CT and MR images into five (Air,
CSF and ventricles, brain matter, fatty tissues and
skull) and four (all the same tissues excluding skull)
tissue classes, respectively and a subsequent fusion
of these two sets of images [7]. The improvements
are threefold. In the earlier work, membership func-
tions were considered as simple probabilities (hard).
Secondly, this work treats the global reliability of
the sensors more objectively, by attributing numer-
ical measures of belief. Thirdly, the treatment pre-
sented here is based on more rigorous mathematical
premises. The underlying theory, an example and
discussions and future work are included in the fol-
lowing sections.

2 Theory

As is evident from the remarks made in the intro-
duction, intelligent data fusion involves several con-
siderations which are defined in the following sub-
sections.

2.1 Compatibility

Following Yager[8], a relationship R: X2 — I = [0,1]
is called a compatibility relation if
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(i) ¥ x € X; R(x,x) = 1: a number fully compatible
with itself,
(i) V (x,y) € X?; R(x,y) = R(y,x) : commutativity,
(iii) if d is a distance on X; if d(x,z) > d(x,y) then
R(x7) < R(xy)
The negation of the compatibility, (1-R(x,y)) mea-
sures the degree of conflict of the data being fused.
The compatibility relationship is extremely prob-
lem dependent and a mechanism for including meta-
knowledge is incorporated in evaluating the dis-
tance measure.

2.2 OWA operators in formulating
fusion functions

Ordered Weighting Average (OWA) operators [5]
provide a useful class of fusion functions for repre-
senting preferences in the fusion process.
Definition An aggregation operator F: R " — R
is called an OWA operator of dimension n if it
has associated with it a weighting vector W =
[wy, w3, ..., w,]T such that

(i) w; € [0,1]

(i) Y7 w; =1 and

(iii) F(a1,az,...,a,) = Yy bjw; , where b; is the
largest element of the set A = (a1,2,...,a,) to be
fused and B = (b1, ba, . .., by) is the set after fusion.
Here, we choose the weights using a coefficient of op-
timism «. This coefficient of optimism has a high
value if a sensor assigned a higher index is more
reliable and vice versa. The weights of the OWA
operator is obtained as the solution of the mathe-
matical programming problem:

Maximize the entropy — Y., w;ln(w; for each ob-
ject class,

subject to

Ywjp X 1) =«

> w;=1and

w; > 0 for all j, where

) = sty

(e.g. in the example described below r; correponds

ro r(c): CT and r(m): MRI.) A similar method is
used for selecting weights for constructing a fuzzy
neuron has been suggested by Hagan[6].

2.2.1 Entropy Maximization

We consider region classification as a fuzzy event.
Since we have used fuzzy c-means for classification,
the membership of a pixel in a given class is consid-
ered as the maximum membership value for which
the entropy is maximum, as discussed below. For
a probability space (R™, F, P) in which F is the
o-field of Borel sets in R™ and P is the probabil-
ity measure over R" | a fuzzy event [8] in R" is
a fuzzy set A in R"™ whose membership function
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pa(pa : R"— > [0,1]) is Borel measurable. Ac-
cording to the maximum Entropy Principle, a fuzzy
event contains maximum information when its as-
sociated entropy is maximum.

Let us consider an image that has been segmented
into n regions ranging from ag to a,—1 . We can
represent the image by a triplet ( Q JF,P ) with
Q = ( ag, a1, ..., ap—1 ), P being the probability
measure indicating the fraction of pixels belonging
to a certain region and F is a ¢ field of fuzzy subsets
of Q. Region segmentation of a given image can be
represented of a given image can be regarded as
a fuzzy event in 2 as it can vary according to the
modality used depending on its physical limitations.

A membership function is used to denote the de-
gree of an element in the sample space belonging to
a fuzzy set.

In the majority of data fusion systems, informa-
tion is either of of numerical or symbolic nature
obtained from images or sensors can be represented
as measures of belief in an event. These degrees of
belief generally have values in a real closed interval
live ([0,1],[1,-1], ...) and can be modeled in different
mathematical models. Thus for instance, they can
represent probabilities in data fusion methods based
on probabilities and Bayesian theory, membership
degrees to a fuzzy set in fuzzy set theory or even
mass, belief or plausibility functions in Dempster-
Shafer’s evidence theory. A classification of data
fusion operators into three classes have been made
[10] based on their dependence on the nature of in-
formation and behavior, of which, the third class,
namely context dependent (CD) operators is rele-
vant for the purposes of the present discussion. This
class is composed of operators which depend on the
representation of information obtained from differ-
ent sensors as well as global knowledge or measure
on the sources to be fused like conflict between the
sources or reliability of sources. Since the adaptive
features of these operators enable them to combine
information related to one class in one way and in-
formation related to another class in another way,
they are particularly useful for classification.

Thus information fusion utilizing fuzzy set theory
can be performed in two essential steps. In the first
step we identify a membership function in a certain
region of the image using the procedure outlined
in [7] for both the sensors. These regions, which
constitute a fuzzy set, are characterized by certain
gray level values. The membership function pregion
(ar) indicates the degree of belonging to a certain
region. Thus, for an image classified into certain
regions, the region segmented image can be written
using fuzzy set notation as [11]

region = p(aog)/ao+u(ar)/ar+...4+p(an—1)/an—1

here the subscript region for p is omitted and +
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means union. Thus, for the classified image mem-
berships are given by

> o, ar)ay,
( The probability for this fuzzy event A can be cal-
culated using Lebesgue-Stieltjes integral
P(A) = [pn pa(x)dP
with a summation replacing integration for the dis-
crete case.)

The entropy for the occurence of a fuzzy event A
can be defined as [12]

H(A)= -P(A)log(P(A)) - (1-P(A))log(1-P(A))

2.3 Reinforcement and MICA oper-
ators

If all sensors ’agree’ on a particular object class
and are equally reliable then the concept of rein-
forcement becomes useful and the output member-
ship degrgree can be reinforced. Monotonic Identity
Commutative Aggregators (MICA) operators offer
a means of reinforcement.

Definition: A bag A of a set X is a collection of
elements in which ordering doesn’t matter and du-
plication is allowed.

If two bags A and B have the same cardinality and
if the elements of A and of B can be ordered in such
a way that Vi,a; > b;, then A > B.

A & B is a bag consisting of all elements in A and
B.

In the following B¥X indicates the set of all bags
associated with the set X and I indicates the unit
interval.

Definition: A bag mapping M: BT — I is called a
MICA operator if it has the following properties:
(i) Monoticity: If A > B then M(A) > M(B)
(ii)Identity Element: For every A € B! there ex-
ists an element g, called the identity of A under M,
such that M(A) = M(A® < g >) .

(iii) Commutativity: M(A) is independent of the
indexing of the elements in A.

Although the general properties of MICA operators
have been listed above, our premises for reinforce-
ment is based on the fact that reinforcement is ap-
plied only when the sensors are equally reliable, so
that R(x,y) = 0 if z # y,and so the effect of MICA
operator is simple aggregation, which means that
pointwise aggregation is made and fusion can be
anything. So for simplicity we can use the max-
imum value. subsectionPartial Aggregation Using
considerations detailed above, a partial aggrega-
tion[13] of data is made using comaptibility criteria
and including weighted data sets from different sen-
sors with the help of OWA operators based on re-
liability of the sensors and reinforcement when the
sensors are equally reliable.
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Table 1: Reliabilities of sensors

Class CT MRI
Air 3 4
BM 2 5

V-CSF 2 5
Fat 2 4
Skull 5 2

Table 2: Probabilities and Memberships for CT

region air BM VCSF Fat Skull
P(r) .13 44 .03 .03 .38
u(r) .06 .88 .03 .04 .06

3 Example: Fusion of data ob-
tained from two sensors

We illustrate the above remarks by using an ide-
alized example based on real data taken from a
transverse supraorbital region of the human brain
imaged by two sensors CT and MRI. The original
images have been classified into a number of tis-
sue classes using a fuzzy c-means algorithm that
has been described in detail elsewhere [7]. Figure
1 represents the classified, transverse CT and MR
images of the same supraorbital region of the hu-
man brain [7] and Figure 2 represents their cor-
responding histograms with the fuzzy membership
classes depicted as dashed triangles. It is found that
the CT images have five major classes correspond-
ing to air, Cerebro Spinal Fluid (CSF) and Ventri-
cles (V or V-CSF), Brain Matter (BM), Fatty tissue
(Fat) and skull, whereas the skull class is omitted
for MRI, thereby the four other classes. The reli-
abilities on a scale of 1-5 are given below, with 1
being poor and 5 being excellent. These reliabil-
ity measures are based on statistics of usage of the
particular modality for the given tissue class.

The distance limit between any two sources is
taken to be 3 on a scale of 1-5, that is: Compatibil-
ity measure is
R(xy) =0if [z —y] ) 3
R(xy) = 1- 4jo — yllif [lo — y]l < 3
The ratio of the areas of the non-overlapping re-
gions of the triangles to the total area occupied by
the image of the object is taken to be the member-
ship value in the given class while the probabilities
are estimated from the frequencies in the histogram.
With these considerations, the quantities used for
the calculation of the marginal entropies are listed
in Table I and II.

The fuzzy membership classes assigned to the
mixed pixel data are given below for the two sen-
sors, calculated from the ratio of overlapping area to
total area using Figure 2 and weighted with reliabil-
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Table 3: Probabilities and Memberships for MRI

region air BM V-CSF Fat
Pr .09 80 .11 .03
w(r) .02 .80 11 .03

Table 4: Class(es) assigned for mixed pixels in CT

Classes Fuzzy Membership
Air-BM .002(BM)+.003(Air)
BM-VCSF  .005(BM)+.005(V’)
VCSF-Fat  .002(BM)+.002(Fat)
Skull no overlap

ity (The fractions indicate corrections to probability
values in Tables 2 and 3).

where V’ denotes V-CSF. The marginal entropies
for the whole images are H(CT)=0.4199*In(0.4199)
and H(MR)=0.6342*In(0.6342).

When both sensors are comparable for a particu-
lar tissue class, a pointwise aggregation is performed
and the net values are reinforced to obtain a maxi-
mum membership value of unity. A composite im-
age is depicted in Figure 3.

The composite image is obtained after registra-
tion using a simple pixel correlation scheme and
fusion using partial aggregation involving compati-
bility between the two sensors for each tissue class
as well as OWA operator weighting

4 Discussions and future work

In the idealized example considered, the fused im-
age will predominantly display the MR image as
the soft tissues are imaged prominently by MR. The
skull from the CT sensor is also shown. According
to our weight functions, MRI is more sensitive to
soft tissues like brain matter, ventricles and CSF
and fatty tissue while CT is the preferred modality
for hard tissues like skull. This work presents an
attempt to fuse classified data sets by emphasizing
the salient features of each imaging sensor.

Future work will therefore focus on using different
types of images and fine tuning of sensors that have
comparable capability in imaging similar regions of
objects so that more accurate estimates of OWA
operators can be made. Also, experiments can be
extended to situations were information from three

Table 5: Class(es) assigned for mixed pixels in MRI

Classes Fuzzy Membership
Air-BM  .004(BM)+.002(Air)
BM-VCSF  .005(BM)+.005(V?)
VCSF-Fat  .003(V’) 4.001(Fat)
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Table 6: Weighting and Optimism Coefficients
Class r(c) r(m) «

Air .04 .03 .25
BM .16 .85 .25
Vv’ .15 .86 .25
Fat 12 .89 .25

Skull .88 A1 .75

or more sensors need to be fused. More rigorous
quantificaion of measures of belief of different sen-
sors are also the need of the hour.
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6 Figure Captions

Fig. 1 (a) and (b): CT and MR classified images
of brain.

Fig. 2 (a) and (b): CT and MR histograms with
membership functions indicated.

Fig. 3: Fused image .



