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Abstract: - The aim of this paper is to design a single input PI fuzzy controller for a nonlinear and time-varying plant – 
the biogas production rate in the anaerobic digestion of organic waste in waste water treatment. The main contributions 
are the design of the SI FC, the study of the closed loop control system performance and the estimation of the 
advantages of the SI FC system in comparison to other systems with advanced fuzzy controllers. The single input fuzzy 
controller (SI FC) reduces the complexity in the design and the tuning of fuzzy controllers and ensures stability and 
high performance of the closed loop system. The investigation is based on Matlab, Simulink and Fuzzy Logic Toolbox. 
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1   Introduction 
The model-free fuzzy logic approach has been recently 
gaining popularity as an efficient and appealing solution 
to the control problem of complex nonlinear and time-
varying plants under uncertainties [1-3]. Despite its well-
developed theoretical framework the industrial 
applications are still limited to few areas. The reason is 
the practical completion and tuning of the fuzzy logic 
controller (FLC). Though the FLC design seams at first 
sight rather simple and straightforward there exist a lot 
of uncertainties, concerning the real world plant, to be 
tackled often by empirical tuning of quite a number of 
parameters – scaling coefficients, rules, membership 
functions, etc. First, to escape the confusion in the 
definition of the universes of discourse for the fuzzy sets 
that describe the terms of the linguistic variables, 
normalization and renormalization coefficients are added 
to allow tuning, which in most cases is carried out 
heuristically. Second, to facilitate the correct mapping of 
the available expert knowledge, expressed in words, onto 
the rule base PI fuzzy controllers are  mainly developed, 
for which there are clear prescriptions on how to derive 
the rule base easily though not uniquely. The inclusion 
of the derivative of error as a controller’s input, 
however, arouses new tuning problems in order to 
prevent noise interference and to ensure good system 
performance. Supervisory autotuning is suggested in the 
two-level fuzzy control algorithms, which is, however, 
accompanied by an increase of the controller complexity 
[4].  
   To cope with the two basic problems - “the curse of 
dimensionality” with the increase of linguistic variables 
and terms and the tuning of the rule base and the 

membership functions, fuzzy logic is complemented 
with artificial neural networks (ANN), which enhances 
the FLC adaptability, simplifying at the same time its 
structure [5,6]. An ANN, trained to fit the designed FLC 
control surface and to generalize well, can be easily 
embedded in controllers [6]. Also a Sugeno 
backpropagation ANN can be trained on rich in 
frequency and amplitude collection of input-output data 
[7] that reflect all possible disturbances, nonlinearities, 
model uncertainties, etc. to yield a Sugeno fuzzy 
controller with tuned membership functions and reduced 
number of rules rules. The curse of dimensionality is 
avoided, the tuning is automatic, but the real-world noisy 
data often leads to bad training or generalization thus 
deteriorating the system performance.  
   Various efforts have been made to derive a unique rule 
base out of stability and performance requirements, 
which are, however, restricted either to a particular plant, 
or need a plant model [1, 3, 7, 8].  
   So far neither solution to the complexity problems, 
related to redundancy of parameters to be tuned – scaling 
coefficients, derivative coefficients, rules, membership 
functions, etc. nor practical prescriptions for unique 
design of FLC have been found.  
   Therefore the suggested in [9] single input PI-like 
fuzzy controller (SI FC) is appealing for the unique 
construction and the reduction by times of the rule base 
that ensures both closed loop system stability for easily 
checked restrictions on the plant and control curve 
nonlinearity and also a simplified tuning because of the 
reduced number of tuning parameters. 
   The aim of the present paper is to design a single input 
PI fuzzy controller for a nonlinear and time-varying 
plant - the anaerobic digestion (AD) of organic waste in 
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wastewater treatment processes, and to compare the 
system performance with the results, obtained from 
alternative fuzzy approaches for the control of the same 
plant using Simulink and Fuzzy Logic Toolbox of 
Matlab [10].  
 
 
2   Problem Formulation 
The standard PI-like fuzzy controller has inherited its 
structure from the incremental classic PI controller - its 
inputs are the system error e and the change-of-error 
(derivative)  and the output is the rate of the control 
action Δu. The rules are in the form:  

e

Rk: IF e is LEi AND  is LDEe j THEN Δu is LUl , 

where i=1÷M, j=1÷N, LEi, LDEj and LUl denote the 
corresponding linguistic values for e,  and Δu in the ke th 
rule. The total number of rules is М×N. The rules are 
located in the 2-D space and can be represented as a 
fuzzy associative matrix FAM in Table 1. , where the 
norm or zero term has a subscript “0”, the subscripts “-
1” and “1” denote asymmetric terms, i.e., if LU-2 is NG 
(negative great) then LU2 is PG (positive great). 
    
 

   Δu     Table 1. FAM of standard PI fuzzy controller 

     е   
e  

LE-2 LE-1 LE0 LE1 LE-2 

LDE-2 LU0 Δu12=LU-1 LU-1 LU-2 LU-2 
LDE-1 Δu21=LU1 LU0 LU-1 LU-1 LU-2 
LDE0 LU1 LU1 LU0 LU-1 LU-1 
LDE1 LU2 LU1 LU1 LU0 LU-1 
LDE2 LU2 LU2 LU1 LU1 LU0 

 

   The standard FAMs exhibit skew symmetric properties 
- Δu21=-Δu12. The sign of Δu depends on the location of 
the point (e, e ) above or below the diagonal line, 
determined by the terms “Zero” LU0. The magnitude of 
Δu is a function of the distance from the point to this 
line. For infinite number of terms (discretization levels) 
the FAM becomes continuous as shown in Fig.1. with 
diagonal switching line . 0.:sl =λ+ ee
   A generalized single input (SI) to the controller, called 
signed distance, can be introduced: 
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   The output of the single input fuzzy controller (SI FC) 
is uniquely determined from u=-ds and has rules such as: 

Rk: IF ds is LDSk THEN Δu is LUl, 

where LDSk is the linguistic value of the signed distance 
ds in the kth rule. The number of the rules is reduced five 

e 

0.:sl =λ+ ee

NG 

PG

NS 

Z 

PS

e  

d1 

NG –Negative Great, NS –Negative Small 
Z–Zero, PG–Positive Great, PS–Positive Small

P(e1, 1e ) 

 
Fig.1. FAM with infinite number of discretization levels 

times and the rules are located in the 1-D space. The new 
FAM is shown in Table 2.  
 

          Table 2 FAM of a single input PI fuzzy controller

ds LDS-2 LDS-1 LDS0 LDS1 LDS-2 
u LU2 LU1 LU0 LU-1 LU-2 

 

   The SI FC reduces the number of the tuning 
parameters to only derivative, normalization and 
denormalization coefficients. It has a control curve 
u=Ψ(ds) instead of a control surface and ensures system 
stability for sector bounded control and bounded plant 
nonlinearity [9].  
   This new approach to the design of fuzzy controllers is 
applied to the anaerobic digestion of organic waste in 
waters [4, 7]. 
   The anaerobic digestion (methane fermentation) of 
organic waste is the last stage of water depollution 
technology, in which organic matter (animal litters, plant 
sludge, industrial and domestic waste) is mineralized by 
microorgamisms in the absence of oxygen to safely 
disposable in the environment substances. The anaerobic 
digestion treats higher organic load, produces less sludge 
and leads to energy recovery through the biogas 
produced. It is a multistage process that involves 
microorganisms of several diverse groups and can be 
viewed upon as a three-phase conversion of organic 
waste into biogas – hydrolysis, acidogenesis and 
methanogenesis. The process takes place under 
prescribed temperature and pH since the acidogenic 
bacteria are sensitive to temperature changes while the 
methanogenic bacteria cannot tolerate pH fluctuations. 
Microorganisms’ development undergoes four phases – 
lag phase (adaptation), exponential growth, stationary 
and dying phase. The models used are nonlinear both in 
terms of parameters and variables and time-varying, 
making the classical control theory inapplicable. The 
parameters cannot be precisely determined because of 
the specific features of the microorganisms, the low 
reproducibility of the experiments, the limited number of 
time-consuming and expensive measurements and 
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complex laboratory analyses, the noisy experimental 
data, the great number of model parameters, etc. 
   The only continuously measurable and controlled plant 
output is the specific biogas production rate Q, l/l.d, 

, Q(0)=0.94. The plant inputs are the dilution 

rate as control variable D,  ( , D(0)=0.04) 
and the influent organic concentration as disturbance 

, g/l, ( ). For the sake of simulations a 
fifth order Barth-Hill nonlinear model with specific 
growth rates of the acidogenic and the methanogenic 
bacteria in the form of Monod is used. 

][Qy =
1d− ]3.0,0[∈D

oiS ]70,30[∈oiS

 
 
3 Design of Single Input Fuzzy Controller 
The fuzzy sets for ds=e+ e  and Δu of the SI FC are 
normalized in the range [-1,1] and shown in Fig.2. 
 

Fig.2. Membership functions for SI FC input and output  

   The rules are: 
R1: IF ds is NG THEN ΔD is NG, 
R2: IF ds is NS THEN ΔD is NS, 
R3: IF ds is Z   THEN ΔD is Z, 
R4: IF ds is PS THEN ΔD is PS, 
R5: IF ds is PG THEN ΔD is PG, 

   The calculated control curve is shown in Fig.3 and is 
sector bounded. 
   The designed SI FC configuration is depicted in Fig.4. 
It consists of a fuzzy, a pre- and a post- processing units. 
The change-of-error de is obtained at the output of a 
differentiator with tuning gain kd and timeconstant Td.  

   
Fig.3. Control curve of SI FC  

   Other tuning parameters are the normalization Kds and 
denormalization KΔD scaling coefficients for the input 
and the output of the fuzzy unit. Integrating actuator 
with timeconstant Ta controls the position of the valve 
for the pure water to insure the desired dilution rate D. 

 μds
1

NG     NS  Z    PS PG 

-1        0        1  ds 

        
 
μΔD 

1 0 1 ΔD

1
NG     NS     Z    PS     PG

 

 
 
4   Closed Loop System Performance 
In order to study the closed loop system performance 
simulations are carried out using Simulink. Seven 
different control algorithms are applied: 
- classical PI, tuned using empirical formulae for 
overshoot of 0% for linearised in the operating point 
plant model to work with Kp=0.019, Ti=1.723; 
- fuzzy two-level with standard Mamdani main 
controller [4]; 
- fuzzy Sugeno [7]; 
- fuzzy Sugeno with Sugeno plant predictor (S&pr) [7]; 
- fuzzy two-level with SI FC as main fuzzy controller; 
- SI FC;  
- SI FC with Sugeno plant predictor. 
   The algorithms are applied for the control an 
approximate Simulink plant model to keep the biogas 
production rate at a desired reference Dr at step reference 
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Fig.4. Single input PI fuzzy controller 
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Time, d 

Qr=0.94-1.17 
Soi=50 Soi=70

Qr=1.17-0.94 
Soi=70 Soi=50

Qr=0.94-1.17 
Soi=50 

 
Fig.5. Step responses of closed loop systems with different controllers 

 

Table 3. Plan of experiments and performance indices 
Plan of simulation 

experiments 
Performance measures

Maximal 
deviation 

Settling 
time ts , d

t, d ΔQr Soi

SI FC S&pr SI FC S&pr
0 0.94-1.17 50 0 0.023 7 12 
20  70 0.13 0.15 6 6 
40 1.17-0.94 70 0 0 8 8 
60  50 0.06 0.07 6 10 
80 0.94-1.17 50 0 0.023 7 12 

 
changes and disturbances in the initial organic load 
treated Soi. The plan of the experiments is shown in 
Table 3, where also are given the estimated from the step 
responses performance indices of the system with SI FC 
as the best and with Sugeno with predictor (S&pr) as the 
second best. 
    The step responses are shown in Fig.5. The output 
variables of the systems with the different controllers are 
denoted as follows: 
- Qpi - for classical PI controller; 
- Q2 - for two-level fuzzy controller; 
- Q – for Sugeno controller; 
- Qpr – for Sugeno controller and plant predictor. 
   In dash lines are shown the denoted with the 
superscript “s” step responses of the systems with SI FC 
based controller. 
   The comparison of the performance indices shows that 
the SI FC is not only simple in structure and tuning but 

 
 
 
 
 
 
 
 
 
 
 

e 

e

  
Fig.6. Phase plane SI FC system trajectories 

also ensures best system performance without autotuning 
and plant predictor. The two-level FC system to retunes 
its scaling coefficients for the error and the change-of-
error at the end of the first step response. That is why the 
system performance of this first step response is worse 
that the last step response, which is provoked by the 
same step change in Dr. All Sugeno based controllers 
and plant predictors though simple and leading to high 
system performance are very sensitive to noisy real-
world data used for training and in generalization.  
   The system stability can be qualitatively estimated 
using the phase plane method [7, 8]. The phase trajectory 
of the SI FC system, shown in Fig.6, keeps closer to the 
phase plane origin compared to the S&pr system. This is 
a confirmation for fast and overdamped step responses, 
high dynamic accuracy in tracing of the reference and in 
rejection of the disturbances.  
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5   Analysis and Conclusion 
The main contributions presented in this paper are 
summarized as follows. 
   A single input PI fuzzy controller is designed using 
Fuzzy Logic Toolbox of Matlab. 
   It is applied for the control of a nonlinear and time-
varying plant – the biogas production rate in anaerobic 
degradation of organic waste in wastewater treatment 
and the step responses are studied via simulation in 
Matlab and Simulink environment. 
   The designed SI FC is embedded as a main controller 
also in various control configurations – in a two level 
scheme with supervisory autotuning and in a scheme 
with Sugeno plant predictor.  
   The performances of the closed loop systems using 
standard and SI fuzzy controllers are compared.  
   A stability analysis is carried out by studying via 
simulation the phase trajectories of the SI FC system. 
   The SI FC is simple in structure and easy to design and 
tune. It has uniquely determined rule base, reduced 
number of tuning parameters and ensures stability and 
good performance indices – fast and overdamped step 
responses at different operating points of the nonlinear 
plant, high robustness to noise and disturbances. 
 
   Future research is foreseen in testing of discrete SI FC 
in conditions more close to industrial environment for 
the control of pilot plant using Matlab real time 
facilities. 
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