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Abstract: - In this paper, the sixteen plants theory (SPT) is applied to a hydrogenerator system model, which 
incorporates parametric uncertainty, in order to design a robustly stabilizing PI controller, which enhances the 
stability characteristics of the plant over a variety of ope-rating points.  
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1   Introduction 
Simple linear models are often used in order to ana-
lyze and design power control systems. Such models 
are generally obtained through linearization and 
simplifica-tion of the highly nonlinear and complex 
models des-cribing the true behavior of the power 
system. Therefore, uncertainties naturally arise in 
the reduced models. In addition to the simplification 
aspects, model uncertainty may also arise from the 
behavior of the power plant itself which changes 
with time. Thus, the facing of model uncertainties is 
a common task in power control systems. The 
designer must ultimately insure stability and perfor-
mance of the actual closed-loop system and the 
designed controller must be robust to the model 
uncertainty.  
During the last decade several techniques have been 
developed to deal with model uncertainty and robust 
control [1]-[7]. One of the most powerful methods 
for robustness analysis and control is the so-called 
Sixteen Plant Theory (SPT) [6], [7], which is based 
on the well know Kharitonov’s theorem [5].  
In the present work, the aforementioned robust 
design procedure is used in order to design a 
specific first order compensator (in fact, a PI 
controller), which robustly stabilizes a 
hydrogenerator system, for the purpose of enhancing 
its dynamic stability characteristics over a wide 
range of operating conditions of the plant. The 
particular hydrogenerator studied here, is a 117 
MVA hydrogenerator unit of the Greek Electric 

Utility Power System, which is installed in Sfikia, 
near Veria, Emathia, Greece and which supplies 
power through a step-up transformer and a 
transmission line to an infinite grid. The proposed 
robust control design relies on an uncertain linear 
transfer function model of the hydrogenerator, 
obtained by linearizing its nonlinear Park’s 
equations [8], about several operating points. 
Simulation study clearly shows that the designed 
robust PI controller retains a satisfactory closed-loop 
response in cases of load distur-bances as well as set 
point changes. 
 
 
2   Review of SPT theory 
SPT deals with plant transfer functions with para-
metric uncertainty structure of the form  
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where, the bounds a  are specified a 
priori. The uncertain plant (1) is controlled using a 
general first-order controller having the rational 
transfer function  
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As it has been shown in [6], the stability of the 
closed-loop system is guaranteed if and only if the 
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controller (2) stabilizes the following sixteen 
Kharitonov plants, hence the naming sixteen plant 
theory  

 H s
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The eight Kharitonov polynomials associated with 
the uncertain plant are  
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The closed-loop characteristic polynomial 
associated with  
the plant  is given by  H si j, ( )

 p s c c s A s d d s B sc i j i j, , ( ) ( ) ( ) ( ) ( )= + + +0 1 0 1  (4) 
To determine if a controller with fixed structure and 
parameters robustly stabilizes a plant with known 
para-metric uncertainty, all sixteen characteristic 
polynomials of the form (4), corresponding to the 
sixteen Kharitonov plants (3) have to be set up and 
checked for stability (using, for example, the Routh 
test or the Bode criterion). If all sixteen plants are 
stable, then, we conclude that the controller robustly 
stabilizes the uncertain plant. 

 
 
3   Hydrogenerator System Model 
The hydrogenerator system studied, is an 117 MVA 
hydrogenerator unit of the Greek Electric Utility 
Power System, which is installed in Sfikia, 
Himathia, Greece and which supplies power through 
a step-up transformer and a transmission line to an 
infinite grid. A linear model of the hydrogenerator 
can be obtained by linearizing its nonlinear Park’s 
equations [8], [9] about various opera-ting points. 
By mathematically eliminating the damper circuit 
currents  and i  and the field current i  from the 
standard Park’s equations one obtains, after some 
algebraic manipulations, the following modified 
practical form of these equations in state variable 
form 
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where, δ  is the torque angle, ω  and ω  are the ma-
chine and synchronous speed, respectively, H is an 
inertia constant, T  is the generator-shaft 
mechanical torque,  and  are the magnetizing 
reactances in d- and q-axis,  and  are the 
damper circuit self-reactances in d- and q-axis, x  is 
the field winding self-reactance,  is the field flux 
linkage, 

0

m

xad xaq

x D x Q

f

Ψf

ΨD  and ΨQ  are the damper circuit flux 
linkages in d- and q-axis,  and  are the stator 
currents in d- and q-axis circuits,  and  are the 
machine synchronous reactances in d- and q-axis, 

 is the field resistance,  is the exciter output 
voltage,  and  are the damper circuit 
resistances in d- and q-axis,  is the exciter time 
constant,  is the exciter gain,  is the machine 
terminal voltage,  is the pha-se stator resistance, 

 and  are the stator voltages in d- and q-axis 
and  is the voltage reference.  

i d i q
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The principal data of the three phase hydrogenerator 
system under control is given in Table 1. Note that, 
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in Table 1, all unspecified data is in p.u. on machine 
ratings, the time constants and the inertia constant of 
the generator and the prime-mover are in secs, while 
the synchronous speed is in rad/sec. Note also that 
the linkage reactances in d- and q-axis are given by 

=0.095 p.u. and =0.076 p.u.. The resistance 
and the reactance of the external system, consisting 
of the step-up transformer and the double-circuit 
transmission line are given by  and 

. 

x ld x lq

Re = 0 015.  p. u.
Xe = 0 40.  p.u.
 

MVA = 117 R D  = 0.014 
kV = 15.75 R Q  = 0.008 
RPM = 125 R a  = 0.002 
xd  = 0.935 H  = 3 
xq  = 0.574 Ke  = 50 
xad  = 0.827 τ e  = 0.05 
xaq  = 0.475 ω 0  = 314.1593 
xf  = 0.221 i q  = 0.6652 
xD  = 0.992 i d  = 0.7467 
x Q  = 0.551 v q  = 0.9242 

R f  = 0.0006 v d  = 0.3819 

Table 1. Principal hydrogenerator system data.  
 
 

 vt  
p.u. 

Pt  
p.u. 

Qt  
p.u. 

δnom 

rad 
ωnom 

rad/sec 
O.P. I 1.0 0.9 0.436 0.8024 100π 
O.P. II 1.0 1.1 0.5 0.9604 100π 
O.P. III 1.0 0.5 0.58 0.4592 100π 
O.P. IV 1.0 0.4 -0.68 0.4914 100π 

 
 Ψf,nom 

p.u. 
ΨD,nom 
p.u. 

ΨQ,nom 
p.u. 

Εfd,nom 
p.u. 

O.P. I 1.44005 1.0062 -0.3160 1.6123 
O.P. II 1.4737 1.0001 -0.3645 1.7720 
O.P. III 1.4802 1.0508 -0.1740 1.6069 
O.P. IV 1.0107 0.8842 -0.2911 0.4734 

Table 2. Some operating points of the hydrogenerator system  
 

Defining the following vectors 

[ ]x = Δδ Δω ΔΨ ΔΨ ΔΨ Δf D Q fd
T

E , u = ΔVref  
and after linearization of the nonlinear equations 
(5a)-(5f), with respect to a nominal operating point 
of the system, we obtain a linear state space model 
for the hy-drogenerator. Note that,  defines 
incremental changes of the variables, involved in the 
description, around the particular operating point 
chosen for the linearization procedure. Some of the 
operating points considered in this study are given in 
Table 2, wherein  and Q  de-note the active and 
the reactive generator power.  

Δ

Pt t

By considering the torque angle  as the output of 
the system, a linear transfer function model of the 
hydrogene-rator is given by  

δ
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where 
[ ] [ ]a a a0 0 0 16403015287 808056 6756∈ = − −− + . .  

[ ] [ ]a a a1 1 1 245697 5166 122573 4966∈ = − −− + . .  

[ ] [ ]a a a2 2 2 45416972 2270 5455∈ = − −− + . .  

[ ] [ ]b b b0 0 0 764282 2624 1039049 8310∈ =− + . .  

[ ] [ ]b b b1 1 1 361280 3908 3911013798∈ =− + . .  

[ ] [ ]b b b2 2 2 63842 2612 773358423∈ =− + . .  

[ ] [ ]b b b3 3 3 8787 1623 10123 0723∈ =− + . .  

[ ] [ ]b b b4 4 4 839 9738 872 7566∈ =− + . . ,  b5 48 0680= .

 
As it can be easily checked, linearization about 
opera-tional point II, leads to an unstable linear 
open-loop model of the hydrogenerator. Thus robust 
stabilization is a primary objective in controlling 
such a power system.  
 
 
4   Simulation Study 
In this section, the SPT theory is applied to the 
hydro-generator system presented in the previous 
section, in order to design a robustly stabilizing PI 
controller of the form  
 G s K K sc P I( ) /= +  
 

  

PK

STABILITY 

IK

INSTABILITY

Figure 1. Set of robust PI stabilizers 
 
In this case, the closed-loop characteristic polyno-
mials corresponding to a Kharitonov plant is  G sij ( )
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  p s K K s A s sB sc i j I P i j, , ( ) ( ) ( ) ( )= + +

where, in our case,  the eight Kharitonov plants are 
given in the Appendix. Forming the Routh tables for 
the six-teen Kharitonov plants, we enforce positivity 
for each of the first columns. This leads to 
inequalities involving  and . After certain 
manipulations on these Routh inequalities, we  
obtain their satisfaction set in the range 

KP KI

  0 28 0 46 0. .< < <K P   ,   - 0.88 < KI

which is depicted in Figure 1. For implementation 
purpo-ses, one can use any  combination in 
this set, to generate a stabilizing controller. For 
example, a specific robust PI stabilizing controller is  

( , )K KP I

 C s
s

( ) . .
= −0 35 0 2  
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Figure 2. Open-Loop system response for O.P. II, to a set point step 

change 
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 Figure 3. Closed-Loop system response for O.P. II, to a set point step 
change 

 
Simulation results regarding the application of the 
above specific controller to the hydrogenerator 
system are given in Figures 2-4. In particular, in 
Figures 2 and 3, the open-loop and the closed-loop 

system response for operational point II, to a set 
point step change of 0.015 p.u., are depicted. In 
Figure 4, both the open-loop and the closed-loop 
system response for operational point III, to the 
same set point change and to a step load disturbance 
of 0.001 p.u., are given. From these Figures, it can 
be easily recognized that the designed PI controller 
is very effective in facing large parametric 
uncertainty, set point changes and load disturbances.  
 
 

0 10 20 30 40 50
-0.01

-0.005

0 

0.005

0.01

0.015

0.02

Time (second) 
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δ (rad)

  
 Figure 4. Open-Loop and  Closed-Loop system response for O.P. II, to 

a set point step change and to a step load disturbance 
 
 

5   Conclusion 
The SPT has been applied, in this paper, to an uncer-
tain hydrogenerator system, in order to design a 
robustly stabilizing PI controller. Simulation results 
concerning the closed-loop system response as well 
as the robust stability region of the control loop have 
been presented. As it has been shown by 
simulations, the designed robust PI controller retains 
a satisfactory closed-loop response in cases of load 
disturbances and set point changes. 
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APPENDIX 
A s1 ( ) = −16403015287. − 245697 5166. s   − 2270 5455 2. s
A s2 ( ) = −808056 6756. −1225734966. s  − 45416972 2. s
A s3 ( ) = −808056 6756. − 245697 5166. s    − 45416972 2. s
A s4 ( ) = −16403015287. −1225734966. s  − 2270 5455 2. s
B s1 ( ) = 764282 2624. + s+ 77 +

+ 83 + +  
361280 3908. 3358423 2. s

10123 0723 3. s 9 9738 4. s 48 0680 5. s s6

B s2 ( ) = 1039049 8310. + s+ 63842 +
+ + +  

3911013798. 2612 2. s
8787 1623 3. s 872 7566 4. s 48 0680 5. s s6

B s3( ) = 1039049 8310. + s+ 63842 +
+ 87 + +  

361280 3908. 2612 2. s
10123 0723 3. s 2 7566 4. s 48 0680 5. s s6

B s4 ( ) = 764282 2624. + s+ 773 +
+ + +  

3911013798. 358423 2. s
8787 1623 3. s 839 9738 4. s 48 0680 5. s s6
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