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Abstract: - In this paper, a new -control technique is proposed, in order to attenuate changes in the prime 
mover torque which degrade the performance of synchronous electric machines. The proposed technique relies 
on multirate-output controllers. Its main feature consists in reducing the original problem, to an associate 
discrete -control problem for which a fictitious static state feedback controller is to be designed. The 
effectiveness of the method is demonstrated by several simulation results. 
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1   Introduction 
After its original formulation in [1], the -
optimization problem has drawn great attention [2]-
[13]. Several approaches have been reported in order 
to solve this important design problem for a variety 
of systems types. In particular, the -control 
problem for discrete-time and sampled-data 
singlerate and multirate systems has successfully 
been treated in the past in [7]-[13]. Generally 
speaking, when the state vector is not available for 
feedback, the -control problem is usually 
solved, in both the continuous and the discrete-time 
cases, by the use of dynamic measurement feedback. 
This approach, however, requires the solution of two 
coupled algebraic Riccati equations, which is, in 
general, a hard task. On the basis of these two 
Riccati equations, it is plausible to compute a 
dynamic controller that achieves the desired design 
requirments [10]. Nevertheless, a complete 
characterization of all controllers satisfying the 
design requirements is not as yet available.  
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Recently, a new technique is presented, for the 
solution of the -disturbance attenuation problem 
in [13]. This technique is based on multirate-output 
controllers (MROCs). MROCs contain a multirate 
sampling mechanism with different sampling period 

to each system measured output. The technique 
proposed in [13], in order to solve the sampled-data 

-disturbance attenuation problem relies mainly 
on the reduction, under appropriate conditions, of 
the original -disturbance attenuation problem, to 
an associated discrete -control problem for 
which a fictitious static state feedback controller is 
to be designed, eventhough state variables are not 
available for feedback. This fact has beneficial 
impact on the theoretical and the numerical 
complexity of the problem, since using the 
technique reported in [13], only one algebraic 
Riccati equation is to be solved, as compared to two 
algebraic Riccati equations needed by other well 
known -control techniques. Another key feature 
of the approach proposed in [13] is the ability of 
choosing, under appropriate conditions, the 
dynamics of the MROC arbitrarily. Thus, here, 
strong stabilization is assured without imposing the 
parity interlacing property requirement in the system 
under control.  
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 In this respect, in the present paper, the technique 
reported in [13], is used to treat the -disturbance 
attenuation problem in synchronous electric 
machines, whose application in many engineering 
areas, such as energy production, robotics, etc., is 
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well known. Our design objective here, is to reduce 
the effect of the load disturbance (change in the 
prime mover torque) on the controlled outputs of the 
machine, which are the torque angle, the machine 
speed, the excitation voltage, the prime mover 
torque, the prime mover valve setting and the 
generated field voltage, to an acceptable level. In 
particular, in the present paper, we consider both 
unsaturated and saturated synchronous machines 
[14]. Various simulations of the proposed technique 
are performed and their results show the 
effectiveness of the proposed method. In particular, 
it is shown in the paper that the less disturbance 
attenuation level we want to achieve (and thus the 
less the effect of the disturbances on the controlled 
system outputs), the larger must be the value of the 
control law. Moreover, it is shown that the minimum 
achievable disturbance attenuation level is increased 
whereas the control effort is decreased, if the 
fundamental sampling period is increased. 
 
 
2   H∞-Control using MROCs 
Consider the controllable and observable linear 
state-space system of the form 

)(tx& =Ax(t)+Bu(t)+Dq(t),  (1a) 0x =)0(
)(tym =Cx(t)+J1u(t), =Ex(t)+J)(tyc 2u(t) (1b) 

where, 
x(t)∈ ,u(t)∈ ,q(t)∈ ,ynR mR d

2L m(t)∈ ,y1pR c(t)∈  
are the state, the input, the external disturbance, the 
measured output and the controlled output vectors, 
respectively. In (1), all matrices have real entries 
and appropriate dimensions.  

2pR

The following definition is useful in the sequel.  
 
 

 
 

Fig. 1. Control of linear systems using MROCs 
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To system (1) we next apply the multirate sampling 
mechanism depicted in Figure 1. Assuming that all 
samplers start simultaneously at t=0, a sampler and a 
zero-order hold with period  is connected to each 
plant input , i=1,2,…,m, such that 

T0

u ti ( )

u(t)=u ( )0kT   ,   [ )00 1)T+(k ,kTt ∈
while the ith disturbance , i=1,…,d, and the ith 
controlled output , i=1,…, , are detected at 

time , such that for  

)t(qi

)t(y i,c 2p
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The ith measured output , i=1,…, , is 

detected at every , such that for 

)t(y i,m 1p

iT 1N,...,0 i −=μ  
( ) ( ) ( )i1i0ii0i,m TkTTkTy Jxc +μ+=μ+ u ( )0kT  

where, ( )i2J  is the ith row of the matrix . Here, 

 are the output multiplicities of the 
sampling and  are the output sampling 
periods having rational ratio, i.e. 

2J
+∈ZiN
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i0i N/TT = , 
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The sampled values of the plant measured outputs 
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-dimensional column vector *N
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i1 N,...,1for  and p1,...,=ifor =μ . As it has been 

shown in [13], for an observable pair, under the 
assumption that 
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then matrix [ ]qH Θ  has full column rank for 

almost every sampling period , if  0T

iiN σ≥   , i=1,2,…,  1p
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Moreover, if  and  are chosen such that  γL uL
[ ] [ ]dm×γ = 0FHL qΘ ,  (4) ζγ= ΘLLu

then, for almost every sampling period , the 
control law of the form (2), is equivalent to a static 
state feedback control law of the form 

0T
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In this particular case, (2) is equivalent to (5), if  
is chosen such that  

γL

[ ] [ ]dmsp, ×γ = 0LFHL uqu ΘΘ  (7) 
 
The -disturbance attenuation problem treated in 
this paper, is as follows: Find a MROC of the form 
(2), which when applied to system (1), 
asymptotically stabilizes the closed-loop system and 
simultaneously achieves the following design 
requirement  
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value of ( )z
cqyT , and where use was made of the 

standard definition of the -norm of a discrete 
signal  
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Our attention will now be focused on the solution of 
the above -control problem. To this end, the 
following assumptions on system (1) are made:  
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Assumptions:  
a) The matrix triplets ( )CBA  , ,  and  are 

stabilizable and detectable. 
( )EDA  , ,

b) Relation (3) and/or (6) hold.  
c) [ ] [ ]mmnm2

T
2 ××= I0JEJ  

d) There is a sampling period , such that the 
discrete-time system  
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is stabilizable and observable and does not have 
invariant zeros on the unit circle.  
>From the above analysis, it becomes clear that the 
procedure for -disturbance attenuation using 
MROCs, essentially consists in finding a fictitious 
state matrix F, which equivalently solves the 
problem and then, either determining the MROC 
pair 

∞H

( )u,LL γ  by (4) or choosing a desired  and 

determining  by (7). As it has been shown in [8], 
matrix F has the form  

L u

γL

( ) ΦPBBPBIF T1T ˆˆˆ −
+=  

where P is an appropriate solution of the Riccati 
equation 
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Once matrix F is obtained, the MROC matrices  

and  (in the case where  is free), can be 
computed according to the following relations 
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where [ ] IHH q =Θ~  and  is an 
arbitrary specified matrix. In the case where 
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3   Synchronous Machine Model 
In the present paper, we consider both unsaturated 
and saturated synchronous electric machines that 
supply power through a step-up transformer and a 
transmission line to an infinite grid. The model 
describing the system has been discussed before in 
[14], wherein a linearized state space model of the 
form (1) for the synchronous machine is obtained. In 
particular, assuming that the resistances of the 
system are neglected, we obtain  
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where, δ is the torque angle, ω is the machine speed, 
Eq is the excitation voltage, Tm is the prime mover 
torque, xE is the prime mover valve setting, Efd is the 
generated field voltage, uG is the governor input, uVR 
is the voltage regulator input, TL is the a 
perturbation of the prime mover torque (load 
disturbance), Ki, i=1,…,6, are constant coefficients, 
M is the inertia coefficient,  is the damping 
coefficient, T is the thyristor time constant, G is the 
thyristor gain, T

$D

τ is the turbine time constant, R is 
the speed regulation due to governor action and TG 
is the time constant of the speed governing 
mechanism. Note that Ki, i=1,2,4,5,6 have the same 
values for both saturated and unsaturated machine, 
while K3 is given by 

K3=
de

'
de

xx
xx

+
+

  ,  K3=
)xx()xx(m

xx
'
dd

'
de

'
de

−++
+

 

for the cases of the unsaturated and the saturated 
machine, respectively, where, xe is the series 
reactance of the transmission system, xd is the d-axis 
synchronous reactance,  is the d-axis transient 
reactance and m is the d-axis saturation factor. 

'
dx

 
 

]
xy =c

4   Simulation Study 
In this Section, the multirate -disturbance 
attenuation technique proposed in Section 2 is 
applied to several specific machine models.  
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Fig.2. The maximum singular value of  over ω, for 

the unsaturated machine and for γ=2.5. 

)z(
cqyT

 
As a first case, we next consider the unsaturated 
machine model with K1=1.3307, K2=1.3843, K3= 
0.4113, K4= 1.0839, K5=-0.0984, K6=0.4724, M=10 
sec, =3, T=0.05 sec, G=100, TD̂ τ=1 sec, R= 0.04 
p.u., TG=0.1 sec. The proposed MROC based -
control technique can be applied to the above model, 
since the conditions and assumptions listed in 
Section 2 are satisfied. In the sequel, the proposed 
technique is simulated for several values of γ and T

∞H

0.  
Consider, first, the case where γ =2.5 and T0=0.1 
sec. An observability index vector of ( , ),  *A *C
is ={ . Setting , i=1,2,3, 
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{ }321 ,, σσσ }2,1,4 iiN σ=
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In Figure 2, the maximum singular value of  
is depicted, as a function of the frequency ω. 
Clearly, the design requirement 

)z(
cqyT

( ) ≤
∞

z
cqyT 2.5, is 

satisfied. Moreover, as it can be easily checked the 
poles of the closed loop system, lie inside the unit 
circle. Therefore, the requirement for the stability of 
the closed-loop system is also satisfied. 
Consider now the case where γ =1 and all the other 
parameters are as above. Then, we obtain  
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Fig.3. The maximum singular value of  over ω, for 

the unsaturated machine and for γ=1. 
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In Figure 3, the maximum singular value of  
is given as a function of the frequency ω. Clearly, 
the design requirement 

)z(
cqyT

( ) ≤
∞

z
cqyT 1, is satisfied, 

and the closed-system is stable.  
Note that, in the case of unsaturated machine the 
H∞-norm of the open-loop system transfer function 
between disturbances and controlled outputs has the 
value ( ) =−ω

∞

− DAIC 1j 58.4513, while the 

minimum achievable disturbance attenuation level is 
9252.0inf =γ .  

Consider now, as a second case, a saturated machine 
with d-axis saturation factor m=1.9. In this  
case, K3=0.3002, and all the other parameters are as 
in the case of the unsaturated machine. Let γ=1 and 
T0=0.1 sec. Since an observability index vector of 
( , ), is *A *C { }321 ,, σσσ ={ , if we set }2,1,4

iiN σ= , i=1,2,3, then, we obtain 
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Fig.4. The maximum singular value of  over ω, for 

a saturated machine with m=1.9 and for γ=1. 
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Fig. 5. Minimum achievable disturbance attenuation level γinf 

versus d-axis saturation factor m. 
 

In Figure 4, the maximum singular value of  
is depicted, as a function of the frequency ω. 
Clearly, the design requirement 

)z(
cqyT

( ) ≤
∞

z
cqyT 1, is 

satisfied. Moreover, as it can be easily checked the 
closed loop system is once again stable. It is not 
difficult to check that, in this case, the H∞-norm of 
the open-loop system transfer function between 
disturbances and controlled outputs has the value 

( ) =−ω
∞

− DAIC 1j 66.5855, while the minimum 

achievable disturbance attenuation level is infγ = 
0.9148, which, in the present case, is less than the 
minimum achievable disturbance attenuation level 
obtained in the case of the unsaturated machine. 
However, this is not true, in general, for all m, as it 

can be easily realized by Figure 5, where the 
variation of infγ  with respect to the variation of the 
d-axis saturation factor m is depicted.  
We repeat in the sequel the design of an H∞ 
controller, for the case of the saturated machine with 
all the parameters as above, except for the sampling 
period T0 which now has the value T0=0.2 sec. In 
this case, as it can be easily checked the design 
requirement ( ) ≤

∞
z

cqyT 1 cannot be satisfied, 

since for the attenuation level γ=1, the Riccati 
equation (9) does not admit a positive definite 
solution. As it can be easily checked, in this case, 
the minimum achievable disturbance attenuation 
level is infγ  =1.209 and the respective controller is 
given by  
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Finally, consider the case where T0=0.02 sec. In this 
case, the minimum achievable disturbance 
attenuation level is infγ  =0.8158. In this case, the 
controller achieving the disturbance attenuation 
level γ=1, has the value  

=γL ⎢
⎣

⎡
−

−−
×

2358.24347.46999.2
7616.05008.19110.0

107

⎥
⎦

⎤
−−

−
0005.00006.03030.25011.0

0002.00002.07743.01717.0
 

=uL ⎥
⎦

⎤
⎢
⎣

⎡
−

−
7777.00616.87

2441.08466.21
  ,  

 7
max 104654.6)( ×=σ γL

 
>From the above two simulations, it can be easily 
recognized that the sampling period of the multirate 
mechanism is an important factor of the design 
procedure since both the achievable disturbance 
attenuation level and the control effort are crucially 
affected by T0.  
 Remark 4.1. It can be easily checked that, in all 
simulations presented above, the eigenvalues of the 
respective matrices Lu lie outside the unit circle. 
Moreover, it is not difficult to check that, here, 
condition (6) cannot be satisfied for both cases of 
saturated and unsaturated machine models. That is, 
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matrix Lu cannot be arbitrarily selected as a stable 
matrix and therefore, strong stabilization cannot be 
achieved, in our case, simultaneously to H∞ 
disturbance attenuation.  
 
 
5   Conclusion 
An -control technique based on multirate-output 
controllers, has been proposed, in order to attenuate 
load disturbances which degrade the performance of 
synchronous electric machines. As it has been 
shown by various simulations, the less disturbance 
attenuation level we want to achieve, the larger must 
be the value of the control law. Moreover, it has 
been shown that the control effort in attenuating 
disturbances is decreased if the sampling period 
related to the multirate mechanism is increased and 
vice versa. 

∞H
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