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Abstract: - The purpose of machine condition monitoring is to determine the present health of machineries. 

Capturing the abnormal symptoms of machineries from vibration signatures involves the use of signal 

processing algorithms on measured vibrations. However, the commonly used method such as FFT based power 

spectra assumes the the signal is ergodic and stationary. The FFT based method may produce unpredictable 

results especially in an industrial environment that subjected to random or periodic noise.  Such effects can be 

detected, however, with second-order cyclostationary statistical method such as Degree of Cyclostationary 

(DCS). This paper discussed the implementation of machinery fault diagnosis using the Quad-Phase 

Unconstrained Optimal Tradeoff Synthetic Discriminant Function (QUOTSDF) and DCS features for fault 

classification.  Quad-Phase Unconstrained Optimal Tradeoff Synthetic Discriminant Function (QUOTSDF) is 

used in this effort because of its ability to provide high discrimination while providing noise tolerance. The 

machine health condition is identified based on the comparison of acquired real-time vibration features with 

template features. The vibration data were collected from the Schenck Motor MM-61. Four machinery 

conditions are simulated by the motor, which are normal (no fault), bearing damage, machine imbalance, and 

foundation looseness. The Fast Fourier Transform (FFT) and the Degree of Cyclostationary (DCS) have been 

utilized for features extraction from the power spectrum of the vibration data. Fault diagnosis based on DCS 

features are shown to outperform FFT in accuracy. 

 

Key-Words: - Fault diagnosis, pattern recognition, second-order cyclostationary analysis, Fast Fourier 

Transform, Quad-Phase Unconstrained Optimal Tradeoff Synthetic Discriminant Function,  spectral analysis. 

 

 

 

1 Introduction 
 

Capital intensive manufacturing machineries are 

the heart of functionality of the manufacturing 

industry. In order to maximize the return of 

investment, it is important to ensure the adherence 

of machineries to planned routine, extend their 

useful life, eliminate break down and unplanned 

stoppages. To achieve these, an effective 

maintenance plan has to be implemented. The 

purpose of machine condition monitoring is to 

determine the present health of machineries. It is a 

process that captures abnormal symptoms of 

machineries and uses the symptoms to decide 

whether the machineries are associated to any faults. 

Since most systems operate in noisy industrial 

environments, some form of statistical averaging is 

usually required to extract reliable features. Many 

methods assume that the signal is ergodic and 

stationary such as estimating the signal variance can 

provide an easily computed indicator of severe 

faults and estimating the autocorrelation and then 

calculating the Fourier Transform to give signal 

power spectra [1]. However, these methods may 

produce unpredictable in an industrial environment 

subjected to random or periodic noise. Such effects 

can be detected, however, with second-order 

cyclostationary statistical methods such as degree of 

cyclostationary (DCS) [2]. Second-order 

cyclostationary signals are defined as those which 

have a periodically time-varying autocorrelation. In 

this paper, a comparison study of rotating machinery 

fault diagnosis using vibration signature based on 
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Fast Fourier Transform (FFT) and DCS is reported. 

Their practical implementation of the analysis of 

vibration signals of rotating machinery is discussed. 

The vibration signature recognition is achieved by 

using advanced correlation filters called the Quad-

Phase Unconstrained Optimal Tradeoff Synthetic 

Discriminant Function (QUOTSDF) filters [3] for 

its ability to provide high discrimination while 

providing noise tolerance. Typically, QUOTSDF 

filter will produce sharp distinct correlation peak for 

patterns from the class of the filter and produce 

insignificant peak for patterns from other classes. 

The peak values are then used in deciding the class 

of a given pattern. 

Section II of this paper describes the degree of 

cyclostationary. Section III describes the vibration 

data utilized in the fault diagnosis experiment. The 

features extraction methods used and QUOTDF 

filters are introduced in Section IV and Section 4 

respectively. The structure of the fault diagnosis 

carried out is explained in Section V. Section VI 

discussed the experimental results obtained.. 

 

2 Degree of Cyclostationary 
 

Some definitions: 

Stationary: A random signal x(t) is said to be 

stationary at the nth-order if its time-domain nth-

order moment does not depend on time t.  

Cyclostationary: A random signal x(t) is said to 

show cyclostationarity at the nth-order if its time 

domain nth-order moment is a periodical function of 

time t . 

It was mention in [4] that vibration signal display 

second-order cyclostationarity. Hence, we have 

chosen to exploit this cyclostationary property of 

vibration signal as another way to extract the 

machine condition features. The second-order 

cyclostationarity of a signal x(t) is also called the 

cyclic autocorrelation function. It gives the amount 

of energy in the signal that is due to cyclostationary 

components at cyclic frequency α, where α = 1/T 

and T is the cyclic period. According to [4], the 

cyclic autocorrelation function is defined by 
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 where E indicates the mathematical expectation 

and τ is the lag variable. T is the cyclic period and 

the cyclic frequency is represented by α, where 

α=1/T. We have utilized the degree of 

cyclostationarity (DCS) for features representation. 

It was given by McCormick et al. in [4] as 
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where 
x
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α

 is the Fourier transform of 
x

R
α
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To illustrate the capability of DCS in discriminating 

vibration signals, let us look at Figure 1 where two 

DCS spectrums (DCS in frequency domain) have 

been plotted. Notice that there is an extra significant 

spike at frequency range 200-500Hz in Figure 1(b). 

 

 

 

 

 

 
(a) 

 
(b) 

Figure 1: DCS spectrums from two different 

fault types. 
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3 Schenck Vibration Data 

The vibration data that we have for this project were 

collected from Schenck Motor Kit MM-61 that used 

for the purpose of machine vibrations simulation. 

Four machinery conditions can be simulated by the 

motor kit, which are normal (no fault), bearing 

damage, machine imbalance, and foundation 

looseness. To obtain vibration data on machine 

running with damaged bearing, we replaced the 

good bearing at one end of the motor kit with a 

dented one. Figure 2 (a) and (b) shows the good and 

dented bearing respectively. Figure 3 shows the 

location where the bearing was replaced. To 

simulate imbalance, weights (screws) were added to 

the rotating wheel at both of the sides. The holes on 

rotating wheels are numbered as shown in Figure 4. 

In our case of simulating imbalance, we have 

arbitrarily added screws on number 1 to 4 for the  

  

(a) 

  

(b) 

Figure 2: (a) Good bearing (b) Dented bearings  

 

Figure 3: Location of bearing to be replaced 

Figure 4: Weights (screws) were added to 

the left and right rotating wheels to simulate

imbalance. 

 
Figure 5: Location of knob on the right end. 

(b) 

 

 

(a) 

Figure 6: Difference between (a) before 

loosing and (b) after loosening the 

springs at the base of the motor kit. 
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left wheel and number 7 to 10 on the right wheel. 

There are springs mounted at the base of the motor 

kit. To simulate foundation looseness, we loosened 

the knob at both left and right ends of the motor kit 

(Figure 5) to reduce the springs’ stiffness. The 

difference between before loosening and after 

loosening is shown in Figure 6 (a) and (b). Since 

more than one problem might happen at one time, 

we have combined them and came out with a list of 

eight possible conditions that might occur: 

1. Normal 

2. Bearing damaged 

3. Imbalance 

4. Loose foundation 

5. Bearing damaged + Imbalance 

6. Bearing damaged + Loose foundation 

7. Imbalance + Loose foundation 

8. Bearing damaged + Imbalance + Loose foundation 

Schenck Vibration Data was collected with the aid 

of the several hardware and software available in the 

Applied Mechanics Laboratory forming a PC-based 

data acquisition system. 

The illustration of the complete data acquisition 

set up is shown in Figure 7.Vibrations from motor 

kit MM-61 are sensed by the accelerometers 

MTN1100C and going through signal connector box 

BNC2140, signals arrive at data acquisition card 

PCI4552. LabVIEW® provides the interfacing 

between user and the data acquisition card to allow 

user to define how the data should be sampled and 

saved. An arbitrarily high sampling frequency – 

102400Hz – was chosen for data collection After the 

sampling was done, the spectrums of the collected 

signals are plotted (refer to Appendix A). From the 

spectrums in Appendix A, we can see that the 

highest significant frequency component is about 

35000Hz which is more than 2 times smaller than 

the sampling frequency. Hence, according to 

Shannon’s sampling theorem, anti-aliasing effect 

should not happen here.  All data were taken 30 

seconds after the motor kit started to run. This was 

to make sure data are collected when the motor kit 

was running at stable condition. For each set of data, 

we have taken 1024000 samples which is equivalent  

to 10 seconds in time. Each of them is in the form of 

1024000X1 matrix and saved as text (.txt) file for 

further manipulation.  

To summarize, we have taken a total number of 

32 sets of data consisting of 8 machine conditions 

where each conditions has 4 sets of data 

corresponding to 4 accelerometers used. 

 

4 Feature Extraction 

 
Prepare Patterns with FFT Features Extraction 

Starting with four matrices of size 1X1024000 

which represents the data from four sensors of one 

machine condition, we have extracted the first 2048 

samples. All the four sets of 2048 samples were 

multiplied by Hanning window of the same length 

and their FFT were taken. The magnitude square 

(power spectrum) of the four FFT data was 

calculated forming four matrices of size 1X2048. 

Data points from number 5 to 604 from each of the 

four matrices were extracted and reshaped into a 

matrix of size 48X50. This particular range was 

chosen by manual observation on the spectrums 

obtained and which was seen to be maximizing 

inter-class seperability and minimizing intra-class 

seperability. In our experiment, 225 patterns were 

prepared for each of the machine conditions. Figure 

10(a) visualizes one of the patterns created using 

this method. 

 

Prepare Patterns with DCS Features Extraction 

The same 2048 samples extractions were done on 

each of the 4 rows of samples. When the first 2048 

data were extracted from each of the 4 rows, their 

cyclic auto-correlations were calculated. The 

resultant output of cyclic auto-correlation (with τ=1) 

for each of the 2048 data samples was a 3X2048 

matrix. Hence up to this point we had 4 matrices 

with size 3X2048. Each of them was multiplied with 

a 2D Hamming windows and their FFT were taken 

after that. Next, their spectrums for degree of 

cyclostationarity were obtained. After that, 600 data 

points were extracted starting from point number 6 

to 605. This particular range was chosen by manual 

observation on the spectrums obtained and which 

was seen to be maximizing inter-class seperability 

and minimizing intra-class seperability. We did not 

start from point zero to avoid taking into account the 

spike in front. Again, this process was repeated for 

225. For each machine condition (fault type), 100 

patterns were created.   

 
Figure 7: Illustration of data collection system 
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4 QUOTSDF Filter 
  

 The basic concept of using QUOTSDF filters for 

classification here is to cross-correlate a template 

pattern with a testing pattern, producing a 

correlation plane. Ideally, correlation filters should 

suppress false class pattern, be tolerant to noise, and 

produce a correlation peak that be easily detected. 

Noise tolerance can be provided by reducing the 

output noise variance (ONV)[3]. On the other hand, 

the sidelobes can be suppressed by reducing the 

average correlation energy (ACE) to provide a sharp 

correlation peak [3]. However, minimizing the ONV 

and minimizing the ACE are conflicting goals. 

Refregier [6] first proposed a method of finding an 

optimal tradeoff between the two criteria and 

introduced the Optimal Tradeoff Synthethic 

Discriminant Function (UOTSDF) filter. We assume 

that there are N  training templates, and that each 

template is of size 1 2d d×  containing 1 2d d d=  

feature values. Matrices in the frequency domain are 

denoted by uppercase bold characters, and vectors in 

the frequency domain are denoted by lowercase 

bold characters. Vectors in the feature domain are 

denoted by lowercase letters.  Matrices in the 

feature domain are denoted by uppercase letters. 

Scalar elements are denoted by lowercase italicized 

letters. The superscript “+” refers to the conjugate 

transpose. The two-dimensional (2-D) FT of the i th 

training template is lexicographically scanned to 

form a column vector 
i

x  containing d  elements. 

The 2-D filter in the frequency domain is similarly 

scanned and represented by the column vector h . 

The UOTSDF [3] filter maximizes the square of the 

average correlation height (ACH) defined below 

instead of constraining the peak values of all 

training templates to a specified value, and the 

resulting filter becomes simpler to compute. 

1

1 N

i

i

ACH
N

+ +

=

= =∑h x h m                                (4) 

Where m  is the average of the N  vectors 

1 2, , ,
N

x x x… . Maximizing the square of 

ACH leads to the UOTSDF filter given below [3 ], 

( )
1

1α α
−

= + −h D C m                                  (5) 
 

where C  is a d d×  diagonal matrix containing the 

elements of the input noise power spectral density 

along its diagonal and D  is a d d×  diagonal matrix 

containing the average power spectrum of the 

training templates placed along its diagonal. α  is 

the relative weight for noise tolerance and peak 

sharpness. If the testing pattern is similar to the 

template pattern, or in other words they belong to 

the same class, the correlation output will have a 

large peak value. On the other hand, if they are 

coming from different classes, the peak value would 

not be significant. From the foregoing research [3], 

it may beneficial to quantize the phase of input 

template Fourier Transform and the filter h  to four 

phase values. It was found that the correlation peaks 

were further sharpened and the memory storage 

requirement of filters is reduced. Hence the resulting 

filter will be named QUOTSDF filter where each 

element in the filter array will take on 1±  for the 

real component and j±  for the imaginary 

component in the following manner. 

   In Schenck vibration monitoring experiment, eight 

independent QUOTSDF filters were created to 

represent the eight different motor health conditions. 

 

 

(a) 

(b) 

Figure 10: Visualization of a Schenck pattern 

created with (a) FFT features (b) DCS features. 
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Template patterns are created according to Equation 

(5) by utilizing 60 training patterns from each of the 

machine conditions.   

( )
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( )
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h

h
h

h

h

                    (6) 

 

5  Fault Diagnosis 

As shown in Figure 11, eight QUOTSDF filters 

have been used. Each of the filters was created with 

60 training patterns from their respective fault class. 

While classifying an input pattern, the pattern was 

fed into each of the templates available in the 

network and cross-correlation was performed. The 

peak values from the outputs of the cross-

correlation`s (P1 to P8 in this case) were taken to 

check for the highest value. The class of the 

QUOTSDF filter which produced the highest peak 

value was taken as the class of belonging of the 

input pattern. This was done to all the other torque 

levels except the number of QUOTSDF filters 

within their decision making network was different, 

depending on the available data sets. 

 A pattern (training or input) was prepared by  

taking 1024 data points from each of the 8 sensors 

in the same time period. Cyclic autocorrelation for 

each of the 8 sets of 1024 data points were obtained. 

Then, they were multiplied by a Hamming window 

before their fast Fourier transform (FFT) was taken.  

After that, data points contained in the frequency 

range of 5Hz to 55Hz (approximately 300 data 

points) were extracted, forming 8 sets of 300 points 

data.  It was then reshaped into a matrix of size 

48X50. 

6  Experimental Results 

 

 

 

 

Class # %Correct %Wrong %Undecided 

1 96.89    3.11 0.00 

2 63.56 36.44 0.00 

3 98.67   1.33 0.00 

4 84.89 15.11 0.00 

5 68.89 31.11 0.00 

6 81.33 18.67 0.00 

7 96.44   3.56 0.00 

8 66.67 32.89 0.44 

Overall 82.17 17.39 0.44 

 

 

 

 

Class # %Correct %Wrong %Undecided 

1 100.00    0.00 0.00 

2    62.67 37.33 0.00 

3    96.44    3.56 0.00 

4    98.67    1.33 0.00 

5    79.11  20.89 0.00 

6    87.11  12.89 0.00 

7 100.00    0.00 0.00 

8    88.44  27.00 0.00 

Overall    89.06     10.94 0.00 

 

In this experiment, 225 unseen data for each fault 

class represents the test set. The classification 

results for Schenck patterns using FFT features and 

DCS features are shown in Table 1 and Table 2. The 

QUOTSDF filter is very successful in detecting a 

single motor fault mode such as imbalance and 

  

QUOTSDF 

F1 

 

INPUT 

PATTERN 

 

Max( P1, P2,…,P8) 

P7 

P1 

P2 

P8 

 

CLASS 

 

QUOTSDF 

F2 

 

QUOTSDF 

F7 

 

QUOTSDF 

F8 
 

Figure 11: Structure of decision making network. 

Table 1: Classification Results for Schenck 

Patterns Using FFT in Features Extraction 

Table 2: Classification Results for Westland 

Patterns Using DCS in Features Extraction 
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loose foundation. It is relatively poor in identifying 

single bearing fault than other fault modes. 

However, the fault diagnosis accuracy is improved 

in case 6 (multiple faults) despite the presence of the 

bearing fault. It is evident from Table 4 that fault 

diagnosis based on DCS features outperforms FFT 

features. This experiment ended up with an overall 

of 89.06% correct classification for DCS features 

and 82.17% for FFT features. The overall resulting 

classification by QUOTSDF filters of different 

faults occurring in the Schenck motor, proved to be 

reasonable good. The QUOTSDF filters are able to 

detect and distinguish each fault successfully. It also 

successfully differentiated between single and 

multiple faults when presented with the test set. This 

classification of single and multiple faults achieved 

by the QUOTSDF filters is not possible by utilizing 

the features of the DCS features by means of visual 

inspection. The results of the present work showed 

that DCS feature extraction is a powerful tool in 

preprocessing raw measured vibration data. It is also 

evident that a selected set of the extracted features 

could be used an input vector to QUOTSDF filters 

to detect and identify the exact type of fault 

occurring in the rotating machinery. Although no 

direct comparison to other classification methods 

are made here, QUOTSDF filter is attractive for its 

simplicity and optimal class differentiability. 

Moreover, the preprocessing approach taken in this 

study is to work on the whole signal rather than the 

changes on the amplitude of a specific frequency 

range. Preprocessing the whole signal enables 

detection of any fault feature which occurs across 

the whole range of frequency. This method has a 

great advantage if an intelligent system is built for 

on-line condition monitoring and fault diagnosis of 

rotating machinery. This intelligent system may 

detect and identify other dominant fault features by 

considering the whole vibration signal rather any 

specific frequency range.  

 

 

 

FFT DCS 

82.17% 89.06% 

 

7  Conclusion 
  

    The basic theory of the classification 

methodology and the capability of using QUOTSDF 

filters to perform machinery faults diagnosis have 

been reviewed by using DCS and FFT spectrum to 

represent the features. The fault diagnosis was done 

by a simple voting scheme using the peak values 

from the correlation output. The results presented 

and discussed in this work show that DCS transform 

were utilized successfully to preprocess seven 

different types of vibration signals obtained a 

Schench motor drive-line. Then the QUOTSDF 

filter are used on the preprocessed data in order to 

determine its health condition by classifying 

different kinds of fault and differentiate between 

single and multiple faults. From the investigation 

carried out the following points can be concluded: 

the combination of DCS features with the 

QUOTSDF filters provided a useful tool for 

intelligent diagnostics of faults in rotating 

machinery and diagnostics of faults based on DCS 

outperforms FFT for its ability to extract useful 

information from signal that exhibits periodically 

time-varying autocorrelation. However, using DCS 

and FFT were found to be relatively poorer in 

detecting bearing faults in comparison to the other 

faults investigated. The reasons for poor 

performance of bearing fault detection will be 

subjected to future investigation.  
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