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Abstract: - This paper discussed the implementation of Particle Swarm Optimization (PSO) to optimize a 

Radial Basis Function (RBF) neural controller for tanker ship control. The RBF neural controller uses 

reinforcement learning strategy to achieve the heading regulation of tanker ship exposed to plant changes and 

disturbances. However, the tuning of the neural controller design parameters are considered to be difficult and 

tedious due to the high nonlinearity of the ship dynamic model and the external disturbances. It is shown that 

PSO can provide a very promising technique for its simplicity and ease of use. Moreover, Centroidal Voronoi 

Tessellation (CVT) is implemented to select the starting positions of the particles strategically. The promising 

results from the experiment provide direct evidence for the feasibility and effectiveness of PSO for the 

optimization of neural controller for tanker ship heading regulation. 

 

Key-Words: - Particle Swarm optimization, autopilots, nonlinear optimization, ship steering, neural controller,     

radial basis function networks. 

 

1 Introduction 
 

An autopilot is a ship’s steering controller, which 

automatically manipulates the rudder to decrease the 

error between the reference heading angle and the 

actual heading angle. To improve fuel efficiency 

and reduce wear on ship components, autopilot 

systems have been developed and implemented for 

controlling the directional heading of ships. Often, 

the autopilots utilize simple control schemes such as 

PID control. However, manual adjustments of the 

PID parameters are required to compensate for 

disturbances acting upon the ship such as wind and 

currents. Once the PID parameters are fine-tuned 

manually, the controller will generally work well for 

small variations in the operating conditions. For 

large variations, the parameters of the autopilot must 

be continually modified. Such continual adjustments 

are necessary because the dynamics of a ship vary 

with, for example, speed, trim, and loading. In 

addition, it is useful to change the autopilot control 

law parameters when the ship is exposed to large 

disturbances resulting from changes in the wind, 

waves, current, and water depth. Manual adjustment 

of the controller parameters is often a burden on the 

crew. Moreover, poor adjustment may result from 

human error. As a result, it is of interest to have a 

method for automatically adjusting or modifying the 

underlying controller. In this paper, a Particle 

Swarm Optimization (PSO) of Radial Basis 

Function (RBF) neural controller using 

reinforcement learning strategy [11] is proposed to 

achieve the heading regulation of tanker ship 

exposed to plant changes and disturbances.  PSO 

has been shown to be a promising approach for 

solving both unconstrained and constrained 

optimization problems [2][3][4][5]. Recently, 

several heuristics have been developed to improve 

the performance and set up suitable parameters for 

the PSO algorithm [2][3]. Some theoretical work to 

analyze the trajectory of particles has been carried 

out. A constriction factor has been proposed by 

Clerc and Kennedy [2] to ensure convergence. 

Trelea [3] reported on the trajectory analysis using 

dynamic systems theory. In addition, random 

starting configurations always lead to additional 

variability in PSO. The performance of PSO can be 

improved by strategically selecting the starting 
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positions of the particles. It has been suggested the 

use of generators from Centroidal Voronoi 

Tessellation (CVT) as the starting points for the 

swarm can ensure the broad coverage of the search 

space and thus the solution space is fully explored 

for the optimal solution [6]. The same population 

initialization strategy, CVT will be applied in this 

paper. 

     Section II presents the steering dynamics and 

control of a tanker ship model. In Section III, the 

Radial Basis Function (RBF) neural controller is 

explained. Section IV describes the Trelea’s PSO 

model. Centrodail Vornoi Tesselation algorithm is 

briefly described in Section V. Section VI discusses 

experimental results comparing the optimized neural 

controller. Conclusion is presented in Section VII. 

 

2 Tanker Ship Steering 
 

  Assuming the “bobbing” or “bouncing” effects of 

the ship is neglected for large vessels, the motion of 

the ship is described by a coordinate system which 

is fixed to the ship [10]. Based on Fig. 4, a simple 

model which describes the dynamical behavior of 

the ship can be expressed by the following 

differential equation: 
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where ψ  is the heading of the ship and δ  is the 

rudder angle. Assuming zero initial conditions, (1) 

can be written 
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where 1 2, ,K τ τ  and 3τ  are parameters which are a 

function of the ship’s constant forward velocity u  

and its length l  as expressed below: 
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We assumes that for a tanker ship under “ballast” 

conditions (a very heavy ship), 

0 10 20 305.88, 16.91, 0.45, 1.43,K τ τ τ= = − = =  

and 350 metersl =  [8]. For “full” conditions, 

0 10 20 300.83, 2.88, 0.38, 1.07K τ τ τ= = − = = . 

The nominal speed of the tanker ship traveling in 

the x  direction is 5u m s= . The maximum 

deviation of the rudder angle is assumed to be 

80 degrees.± This is only valid if the ship make 

small deviations from a straight line path, ( )5δ < �
. 

For 5δ > �
, an extended model given as follows 

should be used [8]. 
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 where ( )( )H tψ�  is a nonlinear function of  ( )tψ� . 

The function is approximated as equation (19) under 

steady state condition, 0.ϖ ψ δ= = =����  

( ) 3
H a bψ ψ ψ= +� � �                 (6) 

where a  and b  are real valued constants such that 

a  is always positive. They are chosen to be 1 in this 

paper. For optimization purpose, the following cost 

function which represents the propulsive energy 

losses due to steering is defined. 

( ) ( )( )2 2

1

1 T

t

J e t t
T

λδ
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 
= + 

 
∑                            (7)   

The λ  value is set to 0.01 in the simulation. 

 

3 Radial Basis Function Neural 

Controller and Learning Mechanism 

Design 
 

  From Fig. 2, the inputs of the Radial Basis 

Function network are 1 2,  and x e x c= = the neural 

controller output is ( ),F e cδ =   where F  

represents the processing by the entire radial basis 

function neural network. We use the error ( )e k  and 

the derivative of ( )e k  as the inputs to the radial 

Figure 1. Tanker Ship 
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basis function network and ,
r

ψ ψ  represent the 

desired plant output and actual plant output.  

r

r

e

e

ψ ψ

ψ ψ

= −

= −� ��
                                                         (8)                        

A backward difference approximation to the 

derivative is used for ( )e k�  

( )
( ) ( )

( )
e kT e kT T

e k c kT
T

− −
≈ =�               (9)        (15) 

where T = 10 sec and k  is an index for the time step 

and T is the sampling period of the digital 

controller. As is standard in discrete-time systems, 

we use “ k ” rather than “ kT ” as the argument for 

the signals. Let ( ) ( ) ( ),k e k c k=   x  as the input 

vector to the  th
i receptive field unit and its output 

denoted with ( )iR x . The receptive field unit has a 

“weight” which we denote by 
i

b . Assume that there 

are 
R

n  receptive field units. From Figure,  

( ) ( ) ( )( ) ( )( )
1

,
Rn

i i

i

k F e k c k b R kδ
=

= =∑ x .        (10)       (16) 

The receptive field units are chosen as  
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where 1 2,i ic c =  
ic , 

iσ  is a scalar. 

In this paper, we use the 121
R

n =  and create a 

uniform grid for the 
i

c  centers, assume that 

( ) ,
2 2

e k
π π 

∈ −  
 and ( ) [ ]0.01,0.01c k ∈ − . For 

the receptive field units we use spreads 

1 0.7i

R
n

π
σ =  and 2

0.02
0.7i

R
n

σ = . The tuning of 

the receptive field unit weights , 1,2, ,
i R

b i n= …  is 

considered. The receptive field unit weights are 

initialized to be zero to represent that the neural 

network knows little about how to control the ship 

heading. The weights are adjusted based on 

reinforcement learning [11]. The controller learns 

quantifies the relative success or failure of its 

actions. If the action it took tended to lead it closer 

to its reference model, then it strengthens the 

tendency to pick that action again, otherwise, the 

action selection tendency will be weaken for the 

unsuccessful case. To define the reinforcement 

signal, first define a reference model 
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The reference model indicates a smooth first order 

response for changes in the desired ship heading. 

The reference model output ( )m kTψ is discretized 

and computed. 

We use 

( ) ( ) ( )

( )
( ) ( )

e m

c

y kT kT kT

e kT e kT T
y kT

T

ψ ψ= −

− −
=

                          (13)   

as inputs to the reinforcement function. Define 
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where 

( ) ( )( ) ( ) ( )( ),R e c e e c cJ y kT y kT y kT y kTη η η= − −

 and 0.005α =  is chosen. Here, c,  and 
e

η η η  and 

considered as design parameters. The parameters 
e

η  

and 
c

η  are adjusted to indicate the importance of 

achieving tracking and deviations in tracking, 

respectively. The parameter η  is the adaptation 

gain; for small value, adaptation will be slow, for 

large value may lead to instabilities. The receptive 

field unit weights will be adjusted according to  

 

 

Figure 2. Reinforcement learning and RBF 

neural controller for ship heading regulation 
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( ) ( ) ( ) ( )i i R ib kT b kT T J kT R kT T= − + −     (15)       (21) 

It is proposed to use particle swarm optimization 

(PSO) technique to optimize the three design 

parameters c,  and 
e

η η η  to improve the 

performance of adaptive neural control.  

 

4  Particle Swarm Optimization (PSO) 

 The particle swarm optimization (PSO) is a 

parallel evolutionary computation technique, 

originally developed by Kennedy and Eberhart 

[1][2]. The PSO algorithm is initialized with a 

population of random candidate solutions, 

conceptualized as particles. Each particle is assigned 

a randomized velocity and is iteratively moved 

through the problem space. Each particle is attracted 

towards the location of the best fitness so far by the 

particle itself and by the location of the best fitness 

achieved so far across the population. The algorithm 

is described in the following: 

(i) Initialize a population of random 

positions and velocities in the n-

dimensional problem space. 

(ii) Evaluate the fitness value for each 

particle. 

(iii) Each particle’s fitness evaluation is 

compared with the current particle’s 

pbest. If current value is better than 

pbest, update the pbest with the current 

value in n-dimensional space. 

(iv) Compare fitness evaluation with the 

population’s global best fitness, gbest, 

then reset gbest to the current particle’s 

array index and value. 

(v) The velocities and positions of the 

particle are updated as follows: 

( ) ( ) ( )( )
( )( )

( ) ( ) ( )

1 1

2 2

1

1 1

i i i i

i

i i i

t w t c rand t

c rand t

t t t

+ = + −

+ −

+ = + +

v v pbest x

gbest x

x x v

 (16) 

 
(vi)  Loop to (ii) until a stopping criterion is 

met. 

The vector [ ]1 2 3, , , ,
T

i i i in
x x x x= …ix  stands for 

the position of the 
th

i particle, 

[ ]1 2 3, , , ,
T

i i i in
v v v v v= …i represents the velocity of 

the ith particle. The variable w  is the inertia 

weight, 1c  and 2c  are positive constants; 1rand  

and 2rand  are uniform random numbers in the 

range [0; 1], generated anew for each dimension, 

1, ,i n= …  of the particle i . The inertia weight 

w represents the momentum of the particles. The 

constants 1c  and 2c  stands for the controlling 

factors of the “cognition” and “social” parts that 

attract each particle toward pbest and gbest. The 

“cognition” factor governs the independent 

behavior of the particle itself whereas the “social” 

factor determines the collective behavior of the 

particles. In the paper [2], Clerc and Kennedy 

introduced a constriction coefficient k  for swarm 

system stability and convergence. The velocity 

equation is updated according to  

( )

( ) ( )( ) ( )( )1 1 2 2

1
i

i i i i

t

k t crand t c rand t

+

 = + − + − 

v

v pbest x gbest x
       

                                         (17) 

where 
2

2

2 4
k

ϕ ϕ ϕ
=

− − −
 with 1 2 4c cϕ = + >  

and k  is a function of 1c  and 2c . By default, ϕ  is 

set to 4.1 ( )1 2 2.05c c= = , and the construction 

coefficient k  is 0.729. This is equivalent to 

1 20.729, 1.494w c c= = =  in equation (16). In this 

paper, the PSO is named as Clerc model. Trelea [3] 

also presented convergence analysis for a one-

dimensional particle. The parameter settings 

reported in his simulations were 

1 20.85, 1.7w c c= = = . It is named as Trelea model 

in this paper. 

 

5 Centroidal Voronoi Tessalations 
 

A group of points in the search space is designed 

to be the set of solution generators. Particle 

initialization in PSO can be thought as a process to 

allocate the solution generators in the search space. 

The space is partitioned into compartments with 

particle as their centroid.   The particles should be 

initialized so that they are distributed as evenly as 

possible throughout the space to ensure broad 

coverage of the search spaces. The standard method 

of particle initialization in PSO fails to accomplish 

this goal, especially in high-dimensional spaces [6]. 

Centroidal Voronoi Tessellation (CVT) is a way to 

partition a space into compartments [6]. It has been 

shown that CVT can initialize the PSO particles 
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evenly in the solution space and lead to improved 

performance [6]. Two of the most well-known 

algorithms for computing CVTs are Mac Queen’s 

method [6] and Lloyd’s method [7].  Lloyd’s 

algorithm is deterministic and requires only a few 

iterations, but each one is computationally 

expensive. In this paper, Lloyd’s algorithm is 

chosen to compute CVT using the source codes 

available from the authors [7]. The details of the 

algorithm are explained in the literature [7]. Figure 

3 shows the CVTs for 30 points of generators to be 

used as initial population of particles in PSO for the 

experiment to be discussed in this paper. 

 

6 Experimental Results 

 

 The nonlinear process model given in equation (9) 

is used to emulate the “real” ship dynamics. The 

PSO models will perform the neural controller 

optimization for the three design parameters 

c,  and 
e

η η η based on the cost function defined in 

equation (14). The PSO algorithms were 

implemented in Matlab [10]. During the numerical 

experiments, the Trelea PSO model was run with an 

initial population of particles generated by CVTs 

shown in Figure 3. All the running trials were 

carried out with a population of 30 particles and 200 

generations. The results of the Trelea PSO model is 

shown in Figure 4. From the results obtained, the 

PSO model presents the ability to optimize the 

neural controller of tanker ship steering. Table 1 

summarizes the results. 

 

Table 1 Summary of results  
η  

e
η  

c
η  gbest (J) PSO 

model 

(Clerc) 
4.2682 0.8051 40.2761 24.1123 

 

The optimized neural controller is utilized for the 

tanker ship steering regulation under different 

operating conditions such as wind disturbances, 

changes of speed, existence of sensor noise and ship 

weight changes.  

 

Nominal conditions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Centroidal Voronoi Tesselations for 30 
points 

Figure 4. Result for the neural controller 

optimization of tanker ship steering using Trelea 

PSO model. 

 

 

 

Figure 5. Controller response surface and 

closed-loop response resulting from using the 

optimized neural controller for tanker ship 

steering under nominal condition. 
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The first simulation study concerns the tanker 

ship steering control under nominal condition, 

where we have ballast conditions (heavy weight), no 

wind, no sensor noise, and a nominal speed of 5 

m/s. The close-loop response is shown in Fig. 5. 

Significant overshoot of the desired response is 

observed at early stage of simulation. It is due to the 

lack of initial knowledge about how to control the 

ship heading. The neural controller perform on-line 

reinforcement learning effectively and eventually 

the response is improved, overshoot is reduced until 

ultimately the tanker can tracks closely the desired 

heading 
m

ψ .The learned input-output of controller 

surface is shown in Fig 5.  

 

Effects of Wind Disturbances 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The wind disturbance on effects on the ship is 

studied in this experiment. An additional sinusoidal 

disturbance effect is added to the rudder angle of the 

tanker ship. In Fig. 6, we found that the neural 

controller is able to compensate the wind 

disturbance effects to achieve very good regulation 

of the ship heading. The neural controller learns 

how to shape the mapping to reduce the effects of 

the wind disturbances by on-line reinforcement 

learning, even though the precise characteristics of 

the wind disturbance are not known. The final 

neural controller response surface is shown in Fig. 

6. 

 

Effects of Speed Change 

 

 

 

 

 

 

 

 

 

 

 

In this experiment, we consider the effect of 

speed change on the tanker ship steering control. 

For the first 9000 seconds, the ship operates at a 

speed of 5u m s= . The speed is changed abruptly 

at 9000t =  seconds. The close-loop response and 

the controller response surface  is depicted in Fig  7. 

The same response as for nominal conditions are 

observed for the first 9000 seconds. Then, it adapts 

to the speed change after 9000t =  seconds. A 

slightly degraded transient response is shown but 

adaptively improved later. The final tuned controller 

response surface in Fig. 7 is different from Fig. 5 

that works under nominal conditions.  

 

Effects of Weight Changes 

 

We consider the case of how the ship steers when 

at 9000t =  seconds, we switch from ballast to full 

conditions. Fig. shows the close-loop response. The 

neural controller is able to compensate for the  

 

 
Figure 6. Controller response surface and 

closed-loop response resulting from using the 

optimized neural controller for tanker ship 

steering under wind disturbances. 

 

 

Figure 7. Controller response surface and closed-

loop response resulting from using the optimized 

neural controller for tanker ship steering under 

speed change. 
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weight change, and the final tuned controller 

response surface under full conditions (Fig. 8) is 

different from the response surface under ballast 

condition. The difference in the controller mapping  

is shown in Fig. 8c. The input-output map changes 

when the controller adapts from a ballast condition 

to a full one. 

 

Effects of Sensor Noise 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

The close-loop response shown in Fig. 9 

indicates the additive sensor noise uniformly 

distributed on [ ]0.01,0.01−  has little effect on 

the response. The neural controller is robust to 

the sensor noise effects. 
 

7 Conclusion 
 

    This paper described the study of PSO 

optimization of Radial Basis Function neural 

controller for the tanker ship steering system. 

Despite the highly nonlinear characteristics of 

tanker ship dynamics, the optimized neural 

controller has shown its robustness and ability to 

regulate steering angle under wind disturbance, 

 

 

Figure 9. Controller response surface and closed-

loop response resulting from using the optimized 

neural controller for tanker ship steering under 

sensor noise. 

 

(b) 
 

(d) 

 
(c) 

Figure 8. (a) Controller response surface under 

ballast condition (b) Controller response surface 

under full condition (c) Changes of controller 

response surface after switching and (d) Closed-

loop response resulting from using the optimized 

neural controller for tanker ship. 

(a) 
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speed change, sensor noise effect and sudden 

change of ship load. The neural controller exhibits 

its fast and adaptive changes of controller response 

to compensate the external and internal 

disturbances. The ship heading error is effectively 

minimized. The promising results in this paper 

clearly indicate that PSO can be an effective tool to 

optimize the adaptive neural controller steering 

control of tanker ship and other naval engineering 

applications. 
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