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Abstract: - In the present work we study the treatment of parameters’ uncertainties in complex circuits, i.e. 

composed by lumped and distributed elements. These problems are usually treated by the use of Monte Carlo 

techniques, which are extremely time-consuming. 

A simple procedure for the calculation of the upper and lower limit of the response (i.e. the response bounds) 

is defined by using the wavelet expansion in time domain of the circuit variables. 

When only a part of the circuit is affected by uncertainties we use the Thevenin’s equivalent in the wavelet 

domain (straightforwardly evaluated) to further reduce the analysis complexity.  

The proposed method allows us to directly evaluate the response bounds related to the parameters 

uncertainties without performing repeated simulations (Monte Carlo method), with a consequent CPU time 

saving. 
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1   Introduction 
increasing performances of integrated circuits have 

as a direct consequence the need of simulation tools, 

which at the same time guarantee accuracy of the 

results and low CPU time consumption.  

It is common practice, especially in the industrial 

environment, to model complex microwave circuits 

by the use of equivalent circuits, composed by 

lumped elements and transmission lines, to be used 

in SPICE-like simulators. 

As well known, there are different techniques for the 

extraction of the circuit parameters, each of them 

leading to different values of the parts [1]; in fact we 

can consider the different values of the elements as 

an uncertainty on the value of the element itself. 

Furthermore a different class of uncertainties can be 

identified: industrial processes cannot guarantee 

100% accuracy in the construction, while the aging 

of the materials modify the performances of the 

circuits. 

All these aspects lead to equivalent circuits 

characterized by uncertain elements; in this work we 

suppose to know the interval of variation of the 

parameters. 

In this paper we focus our attention on the following 

situation: only a part of the whole model is affected 

by parameters uncertainty; we propose a simple and 

accurate procedure through which it is possible to 

define the bounds (upper and lower bound) of the 

response. 

The time domain simulation of the complex circuit 

is performed in the wavelet domain. Indeed, this 

technique has proven to give accurate results at a 

low CPU time cost [2]; taking into account the 

characteristics of the wavelet expansion, we define a 

Thevenin’s representation in the wavelet domain for 

the part of the circuit which is not characterized by 

parameters’ uncertainties.  

Usual treatment of circuits affected by uncertainties 

is by Monte Carlo techniques [3], by probabilistic 

approaches under some simplifying hypotheses [4], 

or by calculating a time domain sensitivity function 

(see for example [5]). 

Based on the wavelet representation we define a set 

of equivalent source terms, related to the 

uncertainties of the parameters, and a simple 

algebraic operation on such equivalent source terms 

leads us to easily define the response bounds. The 

results are compared with a standard Monte Carlo 

procedure, characterized by long computational 

time. 

In the following sections the procedure to obtain the 

Thevenin’s equivalent in the wavelet domain and the 

definition of the response bounds are described. 

Then the method is applied to a complex circuit, and 

the results obtained show the accuracy and low 

computational effort of the method. 
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2   Thevenin’s equivalent in the 

wavelet domain 
A Thevenin’s equivalent of a complex circuit 

(accessed by a port) can be represented in the 

Laplace Domain by the well known relation 

 

( ) ( ) ( ) ( )the s e s Z s i s= −     (1) 

 

where s is the Laplace variable. In the same way if 

an evaluation in the frequency domain is performed, 

the previous equation can be represented as 

 

( ) ( ) ( ) ( )the e Z iω ω ω ω= − �� �    (2) 

 

In [6] it is shown that, for lumped parameters 

circuits, it is possible to obtain the equivalent 

representation in the wavelet domain (where wavelet 

expansion is performed in time) directly by using 

the symbolic differential and integral operators; for 

this reason eq. (1) can be represented in the wavelet 

domain as follows  

 

th= −e e Zi      (3) 

 

where e , the  and i  are vectors of wavelet 

coefficients and Z  is a matrix representing the 

impedance in the wavelet domain. 

In [6] the calculation is performed analytically or by 

the use of the general methods for circuit analysis. 

When more complex circuits, involving lumped 

parameters are considered, such simple analysis 

cannot be performed. In [7] a procedure for the 

direct calculation of the matrix Z  is shown: its 

columns can be calculated by performing a direct 

measure on the system or by a low number of 

simulations; in both cases the excitations are a 

subset of the wavelet basis function. 

In case the frequency characterization of the 

impedance ( )Z ω is known (by measurement or as a 

simulation result) the same procedure can be 

performed by the use of the Fast Fourier Transform, 

which allows us to calculate the response of the 

system to the wavelet basis functions. 

Straightforwardly the term the  can be determined 

simply by performing the wavelet expansion of the 

open port voltage, known from a time domain 

simulation, a direct measurement or a frequency 

domain characterization. 

In this way the part of the circuit not affected by 

uncertainty can be taken into account simply as a 

boundary condition for the wavelet model of the 

remaining part (affected by uncertainty). The result 

is a representation of the whole complex circuit by 

an algebraic system 

 
=Ax b       (4) 

 

where A  is a sparse block matrix, analytically 

calculated, whose entries depend on the circuits 

parameters, x  is the vector of unknown wavelet 

coefficients (of voltages and currents) and b  is the 

known term (whose entries are the exciting 

generators). 

 

 

3   Definition of the bounds 
A variation of one (or several) parameter leads to a 

change in matrix A , hence the new circuit equation 

can be written as  

 

=Ax b� �       (5) 

 

where A�  is the new matrix resulting from the 

variation; x�  is the new solution (coefficients of the 

new voltages and currents) and b  remains 

unchanged since the energizing generators are the 

same. 

 

Equation (5) can be more conveniently written as 

 
( )( )+ ∆ + ∆ =A A x x b     (6) 

 

where the variation of the matrix A  and of the 

vector x  is now evidenced. Simple algebraic 

calculation performed on (6) lead to 

 

( ) 1−+ ∆ ∆ = −∆A A x AA b     (7) 

 

The evaluation of ∆x  yields 
 

( ) 1 1− −∆ = − + ∆ ∆x A A AA b    (8) 

 

For uncertainties of the parameters such that 

( ) 1 1− −+ ∆ ≅A A A  we obtain the following expression 

of the variation 

 
1 1− −∆ = − ∆x A AA b     (9) 

 

This formula has the advantage of requiring 

practically no computation overhead with respect to 

the evaluation of the solution corresponding to the 

nominal values of the parameters. A better estimate 

of the variation ∆x  that also holds for greater 
variations of the matrix A  (i. e. those that do not 
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satisfy the condition ( ) 1 1− −+ ∆ ≅A A A ) may be 

obtained by the following series expansion: 

 

( ) ( )1 1 1

0

k

k

∞
− − −

=

 
+ ∆ = − ∆ 

 
∑A A A A A   (10) 

 

Substituting equation (10) in equation (8) we obtain: 

 

( )1 1

1

k

k

∞
− −

=

 
∆ = − ∆ 

 
∑x A A A b  (11) 

 

Obviously the summation may be truncated to a 

proper order that can be estimated by evaluating the 

norm of 1− ∆A A . 

The evaluation of the summation in (10) can be 

quickly performed if we consider that both the 

matrices A  and ∆A  are sparse. The matrix 1−A  can 

be made sparse by a threshold procedure [8] and this 

implies a substantial degree of sparsity of the 

product 1− ∆A A . As a consequence efficient 

algorithms for the treatment of sparse matrices can 

be used in the computation of (11) so reducing the 

computational overhead. 

The most common way to define the bounds of the 

response in presence of parameter’s uncertainty is to 

perform a Monte Carlo procedure, by repeating 

several simulations with a random variation of the 

parameters. Here we propose the following different 

approach, based on the evaluation of the variation 
∆x  by (9) or (11) 
Let us indicate the k varying parameters as 

11 1np p x %= ± , 22 2np p x %= ± , ..., n kpk pk x %= ±  , 

where the subscript n is related to the nominal value. 

From Eq. (9) it is possible to evaluate the ∆x  for the 
worst case condition for the general ith parameter, 

i.e. (1 100)n ipi pi x= + /  and (1 100)n rpi pi x= − / . In 

case we have k varying parameters, we determine 2k 

values of ∆x . Among the two ∆x  ( 1p +∆x  and pi−∆x ) 

calculated for each parameter we choose the 

maximum one (named pim∆x ). 

It is now possible to define the variation of the 

response as follows: 

 

1 2p m p m pkm∆ = ∆ + ∆ + + ∆x x x x…   (12) 

 

The upper and lower bounds of the response are 

straightforwardly defined as: 

 

up

low

= + ∆

= − ∆

x x x

x x x
    (13) 

 

It is noteworthy that the bounds in (13) are obtained 

at the cost of an algebraic system solution of the 

nominal system (giving the solution x ) a matrix 

inversion and 2k evaluation of the summation in 

(10) that usually requires a few sparse matrix 

products. This leads to a much lower CPU time 

consumption than the one characterizing Monte 

Carlo solutions. 

Upper and lower bounds xup and xlow can be also 

evaluated by using partial derivatives (sensitivities) 

of the network functions with respect to circuit 

parameters. To this aim the adjoint technique is 

widely used and formulas for first and second order 

sensitivity are available [9], [10].  

In [10] the computation overhead of some methods 

for the sensitivity evaluation including the adjoint 

technique is reported. In both the proposed method 

and the adjoint technique based analysis, the CPU 

times required increase with the range of variation 

of the uncertain parameters. In the sensitivity 

analysis an increased number of partial derivatives 

has to be evaluated at the computational cost 

described in [10]. With the proposed approach we 

simply need to evaluate some additional sparse 

matrix products with a remarkable CPU time 

saving..  

 

 

4   Numerical results 
In this section we show the application of the 

method to a complex circuit characterized by 

transmission lines and lumped parameters. The 

circuit is shown in Figure 1, and the values of all the 

parameters can be found in [11]. 

The part of the circuit which is supposed to vary is 

the one included in the ellipse; for this reason the 

remaining part of the circuit has been represented by 

the Thevenin’s equivalent in the wavelet domain, 

calculated at point A in figure 1. The topology of the 

system is shown in Figure 2, where the shaded box 

represents the part affected by uncertainty. The 

Thevenin’s impedance has been evaluated by the use 

of FFT, starting from the impedance in the 

frequency domain calculated by a single SPICE 

simulation. 

In particular the uncertain parameters are the per 

unit length parameter of the transmission line and 

the values of lumped inductance, capacitance and 

resistance in the ellipse. A variation of 10% of the 

values is considered, (satisfying eq. (9)) typically 

requiring 3 terms in (10) to obtain a good 

approximation of ( ) 1−
+ ∆A A .. 
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Figure 1. Selected circuit. 

 

A second order sensitivity analysis via the adjoint 

technique has been also performed to obtain the 

response bounds. The two methods have produced 

practically coincident results. The proposed methods 

has allowed a CPU time saving of about 30% with 

respect to the adjoint technique.  

 

 
Figure 2.  Examined circuit after the application of the 

Thevenin’s equivalent. 

 

The bounds obtained have been compared with 

standard Monte Carlo technique. 

Figure 3 shows voltage at node B, where only the 

per unit length parameters of the line are uncertain; 

figure 4 shows the same results where also the 

lumped elements are uncertain. The Monte Carlo 

simulations are characterized by a number of 10000 

runs, and the accuracy of the calculated bounds can 

be easily seen from the figures. The CPU time 

consumption for the calculation of the bounds is of 

the order of 3 minutes, 2 orders of magnitudes lower 

than the CPU time required for a consistent Monte 

Carlo simulation. 

 

 
Figure 3. Comparison between the calculated bounds and 

Montecarlo simulations: only the p.u.l. parameters of the 

line are allowed to vary. 

 

 
Figure 4. Comparison between the calculated bounds and 

Montecarlo simulations. All the parameters of the 

encircled portion of the circuit in figure 1 are uncertain. 
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5   Numerical results 
A method for the evaluation of the effect of 

parameters’ uncertainties in complex circuits has 

been presented. The method is based on an efficient 

wavelet representation of the entire circuit through 

the use of a Thevenin’s equivalent in the wavelet 

domain; the resulting model is an algebraic system, 

whose matrix is characterized by uncertain 

coefficients. A simple procedure to determine the 

effects, in terms of response bounds, of such 

uncertainties has been defined, and the results are 

compared with standard Monte Carlo techniques. 

The proposed method has proven to be accurate and 

characterized by low CPU time consumption. 
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