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Abstract: – The paper presents an integrated environment for mobile robot guidance based on images acquired from 
the robot’s workspace. The gray-scale images are processed using cellular neural networks (CNNs), well known for 
their high speed processing and the capability to be implemented on a VLSI chip. 
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1. Introduction 
An important research theme in mobile robotics is the 

design of the path planning system for a real 
environment with obstacles. These systems should be 
able to provide the trajectory for one or more robots, 
starting from an initial position to the target position, 
avoiding the obstacles located in the workspace. If we 
take into account that both obstacles and the target can 
change dynamically their position and that the obstacles 
can have any shape, it becomes clear that the above 
mentioned problem is not a trivial one. 

The path planning is a complex process, starting with 
the perception of the environment based on maps or 
images. A central supervisor can do this task, but in 
many cases, the corrections of the path based on 
sensorial information obtained online through robot’s 
sensors are required. The most frequently used sensors 
for mobile robot are the visual sensors (video cameras) 
and proximity sensors (laser, IR, sonar). Though recent 
research using a camera includes efficient localization 
methods due to the wealth of information, efficient 
processing using limited computing power is still not an 
easy task. 

By using cellular neural networks [1],[11], having a 
very short image processing time, a good displacement 
speed for the mobile robots can be obtained. In the last 
time, CNN methods have been often considered as a 
solution for images processing in autonomous mobile 
robots guidance [2],[3],[4],[5],[6],[7],[8],[9],[10]. 

The choice of CNNs for the visual processing is based 
on their possibility to be hardware implemented in large 
networks on a single VLSI chip [11],[12],[13]. 

Usually, for mobile robot path planning by using 
CNN, the image of the environment with obstacles must 
be divided into discrete images (pixels), which can be 

represent through a standard neural network, having m×n 
cells. The gray level, corresponding to each pixel, have 
values belonging to the interval [-1, 1], known as the 
standard CNN domain. For binary images, these values 
can be only +1 for the black pixels and –1 for the white 
pixels. 

2. The structure of the Integrated 
Environment  

In Fig. 1, the structure of the integrated environment 
used for trajectory planning and movement control of a 
mobile robot based on the real workspace images is 
presented. 
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Fig. 1. The structure of the integrated environment. 
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The robot has to take the shortest way toward the 
target avoiding the obstacles located between the start 
and the target position. The personal computer (PC) 
supervises the whole activity of the robot by processing 
images of the workspace, acquired by a visual sensor 
(video camera). It should be noted that the images of the 
whole environment are captured at discrete moments of 
time. After each acquired image is processed, the PC will 
plan a new direction for the mobile robot displacement 
and a control signal will be sent to the robot, accordingly. 

The flowchart of the whole algorithm used for image-
based path planning and control of the mobile robot is 
presented in Fig. 2. 
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Fig. 2. The flowchart for mobile robot path planning and 
control process. 

The color image of the workspace, acquired by the 
video camera, is transferred into Matlab environment. It 
results three matrixes which have the element values 
proportionally with primary color components (red, 
green, blue) of each pixel. In these images will be then 
identified the mobile robot position and the target 
position, respectively. For the shake of simplicity, both 
the robot and the target positions will be represented in 
the next phase of the image processing by only one pixel 
each,  called the central point (of the robot and the target, 
respectively). Actually, the central point of an object 
within a binary image represents the pixel located on 
horizontal and vertical axes, equally spaced from the 
extreme points of that object on both axes. 

In order to simplify the finding task of the robot and 
target positions, a monochrome light source (LED) can 
be attached to the up side of the robot and the target, 

respectively. If the color of the light source (LED) 
corresponds to one of the fundamental color (red, green 
or blue), than it is easy to identify the positions of the 
robot and the target based on the color images given by 
the camera. 

Practically, in this step, the line and the column 
corresponding to each of these positions are determined. 
For this purpose, the discrete step (resolution) of images 
of the workspace has to be adequately chosen. 

3. CNN based image processing 
The obstacle positions from the environment are 

identified based on a gray-scale image. This image is 
transferred into standard CNN domain, having the value 
of each pixel in the interval [-1, 1], from white to black. 
In this way the image can be processed with a standard 
cellular neural network. In our paper the MATCNN 
toolbox [14], from simulation environment Matlab was 
used for this purpose. 

If the pixels corresponding to the obstacles placed in 
the image of the workspace have the luminance lower 
than the pixels representing the free space, then obstacles 
in the captured image can be identified through a CNN 
image processing using the template TRESHOLD [14]. 
This template is given by the relation (1): 
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The gray-scale image of the environment is applied to 
the input and state layers of the cellular neural network. 
By the end of the image processing, using threshold 
template, the binary image of the environment is 
obtained at the output layer of the cellular neural 
network. 

Depending on the illumination conditions, the 
acquired images can include different noises. As a result, 
some portions from the free space can be interpreted like 
obstacles. These noises can be removed by applying the 
template EROSION [14], having the form (2): 
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The erosion procedure can affect, in the same time, the 
obstacles dimensions in the processed images. In order to 
prevent that, a new image processing is needed, using the 
template DILATION [14]. This template is given by (3):  
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As we already mentioned, the robot and the target 
positions are identified each by a single pixel. In our 
experiment, the occupied pixels, having values of +1 
(black), represent the forbidden positions, where the 
robot can’t move while the pixels having values of –1 
(white) represent the free positions, accessible for the 
mobile robot. 

4. Path planning 
The robot displacement will be made step by step over 

the free space of the workspace, avoiding obstacles, until 
the target position is reached. Moreover, the planned 
trajectory have to keep a fixed distance away from any 
obstacle. 

4.1. Artificial potential field method 
In order to estimate the distance between the target 

and different points from the workspace, the artificial 
potential field method [15],[16] will be used.  We will 
suppose, in the following, that an attractive potential 
field and a repulsive potential field will be created over a 
image having a m×n resolution. 

The attractive field is created based on the function 
Uatt(i, j) which, in any point from the workspace, has the 
values given by the relation (4). 
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In the above, k is a positive scaling factor and d(i, j) 
represents the Euclidean distance between the target 
point and the point (i, j) from the image. 

In this way, for each point in the image representing 
the environment is allocated a value proportionally with 
the distance between that point and the target. 

If we consider that the target point T has the 
coordinates (xt, yt), then the distance between a point (i, j) 
up to the target is given by the relation (5). 
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The attractive potential has the minimum value in the 
target point while in other points from the workspace the 
potential value is proportionally with the distance 
between that points and the target point. 

The repulsive field is created based on the function 
Urep(i, j) which has the values given by the relation (6): 
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Here, n represent a positive integer number and q is 
the radius of action of that field around the obstacles 
positions (z, c). 

Finally, based on the total potential field the robot will 
be “attracted” by the target and in the same time will be 
“pushed” away from the obstacle (relation 7). 
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Using the potential field method, the mobile robot will 
be controlled to choose, every time, the optimally 
direction toward the target, which corresponds to the 
minimum potential around the pixel representing the 
current position of the robot. The robot movement will 
keep the same direction until the value of the attractive 
potential decreases. 

4.2. Determination of the trajectory 
The mobile robot trajectory is determined pixel by 

pixel starting with the pixel which indicates the initial 
position of the robot (iR, jR). The next position of the 
robot corresponds to the pixel which has the minimal 
value of the potential field within a neighborhood with 
radius r = 1 around of the current pixel. 

If the actual position of the mobile robot in the 
processed image is represented by the pixel (i, j), the 
possible directions of movement are as shown in Fig. 3. 
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Fig. 3. The possible movement directions of the robot. 

The pixels values around the current pixel are 
representing by a line matrix X and the minimal value is 
given by the parameter d (relations 8): 
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=
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The next pixel of the trajectory will be obtained 
through comparison of d with the matrix elements. That 
pixel becomes actual pixel and so on, until the pixel 
representing the target point will be reached. 

5. The robot displacement 
The robot displacement toward the target along the 

planned trajectory can be done after three main steps are 
completed. These steps are: generating and transmitting 
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of the command toward the locomotion system, robot 
orientation on the specified direction and, finally, the 
robot movement. 

5.1. Generating the control signals 
The locomotion system (Fig. 4) includes two DC 

engines MD and MS, which are controlled by Ud and Us 
signals (TTL levels). In the front of the chassis a omni 
directional wheel is mounted. The maximum speed of the 
robot is 0.92 m/s. 

MS 

Movement 
direction 

MD 

 

Fig. 4. The locomotion system of the mobile robot. 

The movement realized by the robot and the 
corresponding command signals are as follows: 

• moving forward (Ud = 1, Us = 1); 
• moving to the right (Ud = 0, Us = 1); 
• moving to the left (Ud = 1, Us = 0). 

The turn angle depends on the active time of the 
control signals. Experimentally, the following parameters 
of the motion have been determined: 

• turn at  45 degrees - t = 0.2 sec.; 
• turn at 90 degrees - t = 0.4 sec.; 
• turn at 135 degrees - t = 0.6 sec.; 
• turn at 180 degrees - t = 0.8 sec.. 

It should be mentioned that the locomotion system is 
open loop controlled, no position sensors are used for 
this purpose. 

5.2. Transmitting the control signals  
The control signal is transmitted to the mobile robot 

through the parallel port of the PC. In the same time,  this 
port can receive data regarding the position of obstacles, 
acquired by sensors that equip the robot.   

In the present experiment, Data0 and Data1 lines of 
the parallel port of the PC are used in order to control the 
robot movement. These lines can be configured from the 
Matlab environment as output pins. Data0 pin outputs the 

signal Ud and Data1 pin gives the signal Us, 
respectively.  

The communication between the parallel port and the 
mobile robot can be done in different way: wired transfer 
or wireless, using IR or radio communication. 

5.3. The robot orientation 
In this experiment the mobile robot receives a control 

signal which includes the parameters Ud, Us, t. If the 
actual orientation of the robot is different from the 
orientation provided by the received command, the robot 
will be turn on the specified direction. 

For example, if the robot initial orientation is SE, the 
possible orientations are E, NE, N (turn left) and S, SW, 
W, NW (turn right) like in Fig. 5. 

N

S

E W

SW

NE NW

SE Turn left

Turn right  

Fig. 5. The possible orientations when actual orientation of the 
robot is SE. 

After the robot orientation is completed the robot will 
move on the planned trajectory (Ud = 1, Us = 1). The 
time interval for this command is proportionally with the 
number of pixels on the same unchanged direction 
toward the target. 

5. Experimental results 
The components of the integrated environment have 

been experimentally tested. In the first version, a web 
camera USB PC Camera 305 connected to the USB port 
of a Pentium IV computer was used for image of the 
environment acquisition. The behavior of the video 
camera and the moments of image acquisition are 
controlled using VFM software application (Vision For 
Matlab) [17],[18]. 

Practically, this program transfers into Matlab 
simulation environment the acquired images in form of 
three matrixes, each of these representing one of the 
primary color weight (red, green and blue) for each pixel 
from the current image. The resolution of the acquired 
images can be modified in five levels, from 160×120 
pixels up to 640×480 pixels. These images are then 
converted into the CNN domain in order to be processed 
using the MATCNN toolbox [14].  

In the following it will be presented, briefly, the CNN 
based image processing for obstacles detection.  
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An image acquired by the video camera and having 
the resolution 160×120 pixels is presented in Fig. 6a. 
The picture represents the gray-scale image of the real 
environment and was used for system testing. The binary 
image obtained through CNN processing is shown in Fig. 
6b. In this figure, black pixels represent obstacles and the 
free space is represented by white pixels. After a CNN 
processing, using EROSION template, results the image 
given in Fig. 6c. Finally, we obtain the image used for 
path planning (Fig. 6d), by applying the DILATION 
template. 

  
 

  
 

a) b) 

d) c)  

Fig. 6. CNN processing of the real environment image; a) the 
gray-scale image, b) the binary image obtained by applying the 

template TRESHOLD, c) applying the template EROSION,   
d) the finally image after the template DILATION was used. 

In the example presented above, the target was 
identified situated on the column 140 and line 40, 
respectively, so that the attractive potential field is 
presented in Fig. 7. 

As a result of the images presented in Fig. 7, the entire 
planned trajectory of the robot can be determined as is 
shown in Fig. 8. The initial position of the robot has the 
coordinates (15, 100) and the target point (130, 40), 
respectively. 

In this case, having only static obstacles, a single 
image of the environment was captured and processed in 
order to control the robot to reach the desired target 
position. 

6. Conclusions 
The paper presents an integrated environment for 

mobile robot navigation based on visual information 
given by a video camera. The acquired images have been 
processed using functions from the MATCNN toolbox 
[14], and some instructions from Matlab. 

     
 a) b) 

d) c)  

Fig. 7. Example of an artificial attractive potential field;         
a) image of the environment with obstacles, b) the attractive 

potential, c) the repulsive potential, d) shape of the total 
potential. 

 

Fig. 8. The planned trajectory of the mobile robot. 

The total processing time can be reduced if all images 
and even the control signals are entirely processed using 
cellular neural networks (CNN chips). The robot can be 
recognized after his shape or based on his movement, 
using CNN procedures (we suppose that the robot is the 
only moving object in the whole workspace). On the 
other hand, the target (if that is fixed) can be identified 
based on the gray-scale images of the workspace. 
Starting from these assumptions the camera can be set to 
acquire, directly, the gray-scale image of the 
environment. 
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The path planning based on the artificial potential field 
method has the disadvantage that the mobile robot can be 
blocked in local minima if concave obstacles are present 
in the environment (having the concavities oriented 
toward the robot) and these obstacles are placed on the 
planned trajectory of the robot. The solution to this 
problem is to eliminate the concavities from the acquired 
images, using CNN based procedures. After that, the 
potential field method can be applied without any 
difficult. 

Another problem we should pay attention is the light 
sources position in the workspace. For the best results, 
the light sources must be distributed over the whole 
workspace in order to provide a uniform illumination. If 
the environment illumination is not optimally, some 
areas from the free space (dark-picture portions) can be 
identified like obstacles. In the same time, the obstacle 
shadow can be interpreted like area occupied by 
obstacles. 

The environment surface is important in order to 
achieve a safety navigation because of the slippage of the 
robot's wheels. A good positioning of the robot can be 
obtained if robot is provided with odometers. 
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