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Abstract: - The continuity of capacitor voltages and inductor currents, well-known from the deterministic case, cannot 
be directly applied if the initial conditions are random. In this paper, new continuity relations for probability densities, 
mean values, correlation and covariance functions of the state variables are introduced. An example illustrates the use 
of the new relations for a global characterization of random transients. 
     Deterministic transients can be regarded as particular, degenerated, random transients. On this basis, one can 
develop a unified analysis approach of deterministic and random transients in electrical circuits. This unified 
framework is certainly an advantage, first of all, in teaching activities related to transient analysis. 
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1   Introduction 
Students find subjects related to random phenomena as 
difficult and vague [1]. Particularly, random transients 
can be analyzed using stochastic differential equations, 
which are also not very attractive for the average student 
[2], [3], [4], [5].  Therefore, at least from a teaching 
point of view, a simple method extending the 
deterministic analysis approach to random transients is a 
justified attempt. 
     It is well known that solutions of differential 
equations describing deterministic transients in electrical 
circuits are based on the continuity of capacitor voltages 
and inductor currents [6], [7]. Supposing transient states 
released by closing or opening a switch at the moment 

0=t , the continuity of the "initial conditions", can be 
written as  

)0()0()0( CCC vvv =−=+                 (1) 
for capacitor voltages, respectively, 

)0()0()0( LLL iii =−=+                   (2) 
for inductor currents. In these deterministic continuity 
relations, the notation 0+  signifies “just after 0=t ” 
and 0−  means “just before” 0=t . The physical 
reasons for the above continuity relations are obvious: 

according to 
dt

dv
Ci C

C = , in order for the capacitor 

voltage to change instantaneously, the capacitor current 

Ci , would have to be infinite. Similarly, in order for the 
inductor current to change instantaneously, the inductor 
voltage would have to be infinite. 
     This paper refers to random transients in linear 
electrical circuits characterized by the uncertainty of the 
initial condition values. Such transient states represent 
an intermediate step between pure deterministic 
transients and more complicated cases where the input 
signals or the system itself are random.  
     Section 2 presents some mathematical generalizations 
of the deterministic continuity relations, namely for the 
probability densities, mean values, covariance and 
correlation functions. Section 3 contains an example 
with analytical results and their graphical illustration. 
The last section is dedicated to conclusion. 
 
2   Generalized Continuity Relations 
In this section, the continuity relations (1) and (2) are 
generalized to include the case of random initial 
condition. The generalization is of pure mathematical 
nature and refers to probability density functions (p.d.f.), 
as well to first and second order statistical moments. 
 
 
2.1 Continuity of probability densities 
Obviously, the continuity of each possible value of a 
capacitor voltage assures the continuity of the p.d.f. of 
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this voltage. This fact is expressed by the following 
relation:  

)()()( CCC vpvpvp == −+                (3) 
The continuity of the p.d.f. of an inductor current can be 
expressed by similar equalities:  

)()()( LLL ipipip == −+                  (4)  
With the same physical justification, one can state 
continuity relations for mutual p.d.f. of two or more 
random variables. 
     If Cv  and Li  are continuous random variables, )(⋅p  

in (3) and (4) are ordinary functions. However, if Cv  
and Li  are of discrete or mixed types, the corresponding 
p.d.f. contain Dirac impulses (generalized functions). In 
the particular case of deterministic initial conditions, the 
continuity relations (1) and (2) can be written as 
equivalent relations between probability densities: 

=−−=+− −+ )]0([)]0([ CCCC vvvv δδ  

)]0([ CC vv −= δ          (5) 

)]0([)]0([ −−=+− −+
LLLL iiii δδ  

)]0([ LL ii −= δ          (6) 
Thus, deterministic initial conditions can be considered 
as particular, degenerated cases of general random initial 
conditions. 
 
 
2.2 Continuity of statistical moments 
In electrical circuits, the capacitor voltages and inductor 
currents are state variables. Therefore it is suitable to 
consider the state-space description of a general 
electrical circuit (system) [8]. 
     A continuous-time system can be described by a state 
equation  

)()()( tBXtAZtZ +=&                      (7) 
and an output equation 

DX(t)CZ(t)Y(t) += .                      (8) 
The general solution of this state-space system, 
representing the transient state vector 

)()()( tZtZtZ FIC +=                    (9) 
has two components. Thus,  

)Z(te(t)Z 0
)0tA(t ⋅= −

IC                  (10) 
represents the initial condition response, also called the 
zero-input solution (IC solution). The second component 
of the state vector, 

∫ ⋅⋅⋅= −
t

0t

τ)A(t dτXBe(t)Z )(τF             (11) 

is the forced solution, caused by the forcing input vector, 
)(τX . 

     For an n-order system (circuit), the vector of the 

mean values of the state variables at moment 0=t , can 
be written in the form 

{ }
ni

mZEm ii

....,,2,1                              
;)0()0()0(

=

==Z       (12) 

where {}⋅E  and ⋅  are denoting mathematical 
expectation and the matrix notation, respectively. In 
addition to the initial mean values, two second order 
statistical moments at 0=t  are important 
characteristics of the state vector: the correlation matrix  

{ }
( ) njir

ZZER

ij

ji

....,,2,1,;0             

)0()0()0,0(

==

=⋅=Z
        (13) 

and the covariance matrix 
[ ] [ ]{ }

( ) njic

ZZEC

ij

jCiC

....,,2,1,;0                   

)0()0()0,0(

==

=⋅=Z        (14) 

In (14), ( ){ }⋅−⋅=⋅ ZEZZC )()(  represents a centred 
component of the state vector. 
     The continuity of the statistical moments is a direct 
consequence of the continuity of the probability 
densities. For example, one can write 

( ) ( )

( ) iii

iiiiii

dzzpz

dzzpzdzzpz

⋅⋅=

=⋅⋅=⋅⋅

∫

∫∫
∞

∞−

∞

∞−

−
∞

∞−

+

                                     

     (15) 

or  [1] 
( ){ } ( ){ }

( ){ } niZE
ZEZE

i

ii

....,,2,1;0         
00
==
== −+

              (16) 

From (16) follows the continuity of the mean values 
vector: 

)0()0()0( ZZZ mmm =−=+ .              (17) 
     Using the continuity of joint densities of any two 
variables from the state vector, 

nji

zzpzzpzzp jijiji

....,,2,1,                             

),(),(),(

=

== −+
         (18) 

we conclude the equality of second order expected 
values 

.),(

),(

),(

jijiji

jijiji

jijiji

dzdzzzpzz

dzdzzzpzz

dzdzzzpzz

∫ ∫

∫ ∫

∫ ∫

∞

∞−

∞

∞−

∞

∞−

∞

∞−

−

∞

∞−

∞

∞−

+

⋅

=⋅

=⋅

         (19) 

and, finally, the continuity of the correlation matrix:  

Proceedings of the 11th WSEAS International Conference on CIRCUITS, Agios Nikolaos, Crete Island, Greece, July 23-25, 2007               148



)0,0()0,0()0,0( ZZZ RRR =−−=++ .       (20) 
Using the continuity of joint p.d.f., the continuity of the 
covariance matrix can also be put into evidence. 
However, the continuity of the covariance can be proved 
from the continuity of the correlation and the mean 
functions. Actually, taking (17) and (20) into account 
and the following equalities for 021 == tt , 

[ ] [ ]{ }
{ }
{ } { }

....,,2,1,);()(),(
)()(

)()(

)()(),(

2121

21

21

2121

njitmtmttr
tZMtZM

tZtZM

tZtZMttc

jiij

ji

ji

jCiCij

=⋅−

=⋅−

−⋅

=⋅=

        (21) 

the continuity of the correlation matrix follows: 
)0,0()0,0()0,0( ZZZ CCC =−−=++ .          (22) 

     The continuity relations (3), (4), (17), (20) and (22) 
can be used in the calculation of random transients. 
Deterministic transients can be regarded as degenerated 
random transients, where the corresponding p.d.f. are 
impulse (Dirac) functions.  
 
 
3   An Example 
In order to illustrate the utilization of the derived 
continuity relations, we consider the simple example of 
a first-order RC low-pass filter with constant input 
voltage: V1)( =tx  for 0≥t . The coefficients of state 
equations (7) and (8) are: ;aA −=  ;aB = 1=C  and 

0=D  with ;/1 RCa =  For numerical computations 
the following values are considered: Ω= kR 10 ; 

FC μ1=  resulting a time constant msRC 10=  and 
Hza 100= . The single state variable (the voltage on the 

capacitor) is also the output signal, )()( tytz = . In this 
case, the state-space equations can be expressed as 

)()()( txatyaty ⋅+⋅−=&                 (23) 
with solution 

0;1)0()( ≥−+⋅= −− teyety atat .     (24) 
     Contrary to the usual assumption, we consider that 
the initial voltage on the capacitor is unknown and has a 
uniform p. d. f. 

        
otherwise.                 0

        1
        

)0;()(

21
12

⎪⎩

⎪
⎨

⎧ ≤≤
−=

=−=−

vyv
vv

ypyp YY

          (25) 

We can now apply the continuity relation  
),;()()()( 21 vvyypypyp YYY Π=== +−      (26) 

Since )0(y  is unknown, according to (24), the output 
voltage is a linear transformation of the random variable  

)0(Y : 

βα +⋅= )0()( YtY  
where ate−=α  and ate−−= 1β . The p.d.f. of the 
output variable )(tY  is [1]: 

 
otherwise.                       0

        
)(

1
),;();(

21
12

21

⎪⎩

⎪
⎨

⎧ +≤≤+
−=

=++Π=

βαβα
α

βαβα

vyv
vv

vvytypY

     (27) 

This p.d.f. is represented in Fig.1 for V11 −=v , 
V22 =v  at five different moments during the transient 

process: mst 0= , ms10 , ms20 , ms30  and .40ms  The 
transient p.d.f. shows that with increasing time the 
random effect of the initial condition disappears and the 
output voltage becomes deterministic. The uniform p.d.f. 
approaches a Dirac impulse, for ∞→t . 

)1(),(lim −=
∞→

ytypYt
δ                   (28) 

 
 

Fig.1 Probability density function of the output voltage for 
five distinct time values 

 
     The initial condition of the mean value is 

∫
+

=
−

=
2

1

21

12 2
1)0(

v

v
Y

vv
dy

vv
ym .           (29) 

The transient mean value has the expression 
{ }

.1)0(          
)()(

at
Y

at
Y

eme
tYEtm

−− −+=

==
             (30) 

 
For 11 −=v  and 22 =v , the mean value of the output 
voltages can be written as 

at
Y etm −⋅−= 5.01)(                      (31) 

This particular mean value is represented in Fig.2, 
together with four transient output voltages 
corresponding to V5.0)0( −=y , V0 , V5.1  and V2 . 
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Obviously, the mean value can be regarded as the output 
voltage for V5.0)0( =y  initial condition. 
 

 
 

Fig.2 Particular transient voltages on the capacitor 
for different initial conditions 

 
     In order to determine the initial autocorrelation 
function we express the joint p.d.f. using the conditional 
p.d.f. [1]:  

)(),,(                         
)|()(),(

12211

12121

yyvvy
yypypyyp YYY

−⋅Π=
=⋅= −−−

δ
       (32) 

It follows, for every 0, 21 ≤tt , 
{ }

).0,0(
3

                             

)(),,(

)()(),(

2
221

2
1

211221121

2121

Y

Y

Rvvvv

dyydyyvvyyy

tYtYMttR

=
++

=

=−⋅Π⋅=

==

∫ ∫
∞

∞−

∞

∞−
δ

          (33) 

According to the definition of the autocorrelation 
function we obtain the general expression: 

{ }

( ) ( )
( ) ( )

( ) ( )21

12

21

)21(
2121

11

01

01

)0,0(

)()(),(

atat
Y

atat
Y

atat

tta
Y

ee

mee

mee

Re

tYtYMttR

−−

−−

−−

+−

−⋅−+

+⋅−+

+⋅−+

+⋅=

==

                  (34) 

For the particular values V11 −=v , V22 =v , the 
transient autocorrelation function equals 

1

),(
21

)21(
21

+−−

−=
−−

+−

atat

tta
Y

ee

ettR
               (35) 

This last expression is represented in the Fig.3, for the 
domain mstt 40,0 21 ≤≤ . Obviously, with increasing 

1t  and 2t , the autocorrelation approaches a constant 
value equal to the square of the constant steady-state 
value of the output voltage. 
 

 
 

Fig.3 The autocorrelation function 
msttttRY 40,0);,( 2121 ≤≤  

 
     The initial value of the covariance function can be 
calculated using the centered initial p.d.f. 

⎟
⎠
⎞

⎜
⎝
⎛ −−

Π
2

,
2

; 1221 vvvvy  

It follows,  

( )

( ) ( ) (36)                                  0,0
12

)(
2

,
2

;,

2
12

2112

1221
2121

Y

Y

Cvv

dydyyy

vvvvyyyttC

=
−

=

=−⋅

⋅⎟
⎠
⎞

⎜
⎝
⎛ −−

Π⋅= ∫ ∫
∞

∞−

∞

∞−

δ  

Finally, we obtain the transient covariance function, 
( ) )21(

21 )0,0(, tta
YY eCttC +−⋅= .          (37) 

For 11 −=v  and 22 =v , the covariance has the 
particular expression: 

( ) )21(
21 4

3, tta
Y ettC +−⋅=                    (38) 

 
 

Fig.4 The covariance function 
msttttCY 40,0);,( 2121 ≤≤  
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This covariance function is represented in Fig.4. For 
increasing 1t  and 2t  the covariance approaches zero 
because the steady-state value of the output voltage is a 
constant. 
     One can also observe from this example, that the 
transient p.d.f., mean value, correlation and covariance 
functions offer a global description of all possible 
transients of the state variables or output signals in an 
electrical circuit. This global characterization is a 
valuable alternative in the case when, due to the random 
initial condition, one can not specify a particular, 
deterministic, transient process. 
 
 
4   Conclusion 
This paper presents continuity relations for probability 
densities, mean values, correlation and covariance 
functions of state variables in electrical circuits. The 
introduced relations are mathematical generalizations of 
the well known initial condition continuity relations 
from the deterministic case. A simple example illustrates 
the use of these new relations in a global 
characterization of random transients.  
     Deterministic transients can be regarded as particular, 
degenerated random transients. On this basis one can 
develop a unified analysis approach of deterministic and 
random transients in electrical circuits. A unified 
framework is certainly an advantage, first of all, in 
teaching activities related to transient analysis. 
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