
Logic Programs Using Semantic Trees

IONELA MANIU, DANIEL HUNYADI
Computer Science Department,
Lucian Blaga University, Sibiu

mocanionela@yahoo.com
danyhunyadi@yahoo.com

ROMANIA

GEORGE MANIU
Mannagement department

Spiru Haret University, Brasov
costelmaniu@yahoo.com

ROMANIA

Abstract: In order to design software that is intended to compute answers to queries that are in accordance with
some logic programming semantics, one would like to offer up a formal specification of the software design which
could be used profitably to construct the software, and one would want to be able to prove that the specification is
in fact faithful to the semantics. This paper presents a constructive formal specification of semantic trees and truth-
value determinations using semantic trees for disjunctive logic programs with negation as failure. This
specification methodology directly supports the design of top-down interpreters for well-founded semantics.

Keywords: Logic programming, Negation as failure, Formal negation, Program trees, Semantic trees, Bounded
trail property.

1. Motivation and Background
Consider the abstract logic program P (or its Prolog
equivalent):

p <- q(1), q(2)
q(x) <-
r(x) <-
q(2) <- q(1)
r(1) <-

For the goal <- p, the following derivation tree D,
pictured below on the left, using the clauses of P:

However, M  actually searches (or grows) the tree T,
pictured above on the right.
We call a tree like T a semantic program tree. For
positive logic programs, the general definition of a
semantic program tree, or a P-tree for short, requires
the trees themselves to be finite (a finite data
structure), to have unordered branching determined
by ground instances of clauses of the program P, and
to allow repeated (but separately identifiable) nodes
(because the clauses of P could sometimes lead to
repeated occurrences).

We say that a ground positive literal of the program
is a tree-consequence of the program P provided that
there is some (finite) P-tree rooted at the literal
having all 'true' leaves.
A ground literal L is a tree-consequence of the
positive logic program P if, and only if, L belongs to
the least model of P.
Thus, we see that M  directly implements the tree-
based "semantics" defined above (which is equivalent
to the standard least model semantics). It is
interesting that the tree-based specification is both a
requirements specification (because it is equivalent
to least-model semantics) and a design specification
(because of its direct relationship to the meta-
interpreter).
Now, if we turn our attention to logic programs with
negation as failure, we will see that the distinction
between derivation trees and semantic trees is more
important. [2]
The class of disjunctive programs with negation as
failure considered here contain disjunctive clauses of
the form:

A1,A2,...,Ak <- B1,...,Bm,not(C1),...,not(Cn)
where each Ai, each Bi, and each Ci is a positive
literal (possibly containing variables), k >= 1, m,n >=
0. The sequence of literals A1,A2,...,Ak constitutes the
head of the clause and this sequence is a disjunction.
The sequence of literals B1,...,Bm,not(C1),...,not(Cn) is
a conjunction and is the body of the clause. In
particular, there is no stratification assumed. We
design a constructive "specification of semantics"

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 356

mailto:mocanionela@yahoo.com
mailto:danyhunyadi@yahoo.com
mailto:costelmaniu@yahoo.com

based upon semantics program trees. This
specification uses a (finite) tree data structure to
determine (or support) meanings. The clauses of the
program, together with well specified contra positive
clause forms associated with the program, are used to
specify the semantic trees. The tree-based
specification must accommodate looping along trails
in the trees. The trails can stay in a tree or leave at a
negative leaf. Recursion, or looping, may be positive
(within a single tree), or through negation (involving
nodes in more than one tree). The tree-based
specification must specify generally when a P-tree is
"full" enough: For non disjunctive logic programs,
this happens when all leaves are 'true'.
The specification uses three truth values, with
positive looping counting as failure, and looping
through negation counting as indeterminacy
(undefined truth value). Lastly, but closely related to
the previous requirements, we require that the tree-
based semantics should correspond -- as much as we
can guarantee -- to the well-founded semantics for
non disjunctive logic programs with negation as
failure.
The resulting constructive tree-based specification of
semantics for disjunctive logic programs then serves
as the design (and requirements) specification for a
meta-interpreter that computes well-founded
semantics.
The paper provides the formal definitions for the
tree-based specifications and characterizes the basic
propositions regarding its properties. In particular,
for nondisjunctive logic programs with negation as
failure, the tree-based semantics is provably
equivalent to the well-founded semantics if BP is
finite. We believe that the relationship to well-
founded semantics holds much more generally.
The literature has references to similar trees for non-
disjunctive logic programs, referred to as "clause
trees" , or sometimes as "proof trees".

2. Disjunctive Logic Programs
Let us assume that P is a disjunctive logic program
whose clauses may have negationas- failure literals in
the bodies of its clauses. Thus, the clauses of P can
be described as having the form:

A1,A2,...,Ak <- BB1,...,Bm,not(C1),...,not(Cn)
where Ai, each Bi, and each Ci is a positive literal, k
>= 1, m,n >= 0. The sequence of literals A1,A2,...,Ak
constitutes the head of the clause and this sequence is
a disjunction. The sequence of literals

BB1,...,Bm,not(C1),...,not(Cn) is a conjunction and is the
body of the clause. The sequence B1,...,Bm is the
positive part of the body and the sequence
not(C1),...,not(Cn) is the negative part of the body. If
k=1 then the clause is said to be definite, otherwise it
is indefinite. An indefinite program must have at least
one indefinite clause, otherwise the program is
definite.
In what follows, we will need to refer to
contrapositive forms of a clause. A primary
alternative of the clause:

A1,A2,...,Ak <- BB1,...,Bm,not(C1),...,not(Cn)
has the form:
Aj<-alt(~A1),...,alt(~Aj-

1),alt(~Aj+1),...,alt(~Ak),B1,...,Bm,not(C1),...,not(Cn)
where 1<= j <= k. There are k primary alternatives if
k>=2. If k=1 then the clause is definite and does not
have any primary alternatives. The '~' denotes formal
negation.
The 'alt' forms are special markers for the
alternatives. Note that there are now two kinds of
negation that could be referred to: 'not' is negation as
failure, and '~' is formal negation.
We will need to maintain a careful distinction
between these two negations. For a primary
alternative the sequence alt(~A1), ...,alt(~Aj-

1),alt(~Aj+1),...,alt(~Ak) is called the alternative part
of the body.
There are other contrapositive forms of clauses of an
indefinite program that could be useful. These are
called backlinks. They are formed as follows.
Suppose that:

A <- αB, β
is either a definite clause of P or a primary alternative
whose head is the positive literal A and B is a literal
in the positive part of the body; α, βare (possibly
empty) sequences of the other literals of the body.
Then:

~B <- α ~A, β
is a backlink clause, where '~' is formal negation.
Working Example.
Consider the indefinite program P (X is a variable):

p(X), q(X) <- r(X), not(s(X))
s(a) <- p(a)
r(a) <- r(b) <-
d(X) <- p(X), w(X)
d(X) <- q(X), v(X)
w(a) <- w(b) <- v(a) <- v(b) <- v(c) <-
k(X) <- not(d(X))

The primary alternatives of the indefinite clause are:
p(X) <- alt(~q(X)), r(X), not(s(X))

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 357

q(X) <- alt(~p(X)), r(X), not(s(X))
Here are all of the possible backlinks:

~r(X) <- alt(~q(X)), ~p(X), not(s(X))
~r(X) <- alt(~q(X)), ~q(X), not(s(X))
~p(X) <- ~d(X), w(X)
~w(X) <- p(X), ~d(X)
~q(X) <- ~d(X), v(X)
~v(X) <- q(X), ~d(X)

Given a disjunctive logic program P, we say that the
usable clauses of P are the definite clauses of P
together with the primary alternatives of P and the
backlink clauses of P. Note that the only usable
clauses of P that actually belong to P are the definite
clauses of P. The other usable clauses are
contrapositive forms of clauses of P.

3. Program Trees
P-trees are constructed using the usable clauses of P.
Let BP be the set of ground positive literals of P, and
let

~BP = { ~b | b ∈ BBP}.
The branchings for P-trees are formed using the
usable clauses of P. If

a <- c1,...,cS
is a ground instance of a usable clause of P, then the
corresponding branching node is :

P-trees of height 0 are just elements of BBP U ~BP. P-
trees of height 1 are those just described using a
single branching node, rooted at some a  BP U ~BP. If
T is a P-tree and c is a leaf not of the form 'alt(-)' or
'not(-)' then T may be extended using another
branching at that leaf, as described above for P-trees
of height 1. Negation-as-failure nodes 'not(-)' and
alternatives 'alt(-)' must be leaves in the P-trees.
Inductively, A P-tree is any finite tree that can be
constructed in this fashion. The height of such a tree
is, in general, the length of the longest branch from
the root of the P-tree to its deepest leaf. If c <- is a
ground instance of a unit clause of P, then we write
the corresponding branching P-tree node as:

 Suppose that a ∈ B

1) an element of S, or
2) of the form ~b where b ∈ S
3) a literal in BP U ~BP which does not unify with
the head of any clause of P, or
4) a literal in BP U ~BP which has itself as an
ancestor in T, or
5) the true leaf, true, or
6) a negation-as-failure node of the form not(b),or
7) an alternative form alt(b).
If P-tree T is {}-full then we simply say that T is full.
An ancestor trail is a sequence a0,a1,...,an of nodes in
P-trees such that ai+1 is either a positive node which is
a child of ai or else ai+1=b where 'not(b)' or 'alt(b)' is a
child of ai. Note that ancestor trails can wind through
several trees. Trails can leave a particular tree at a
negative leaf.

4. Tree-based Semantics
Define a mathematical relation R on the set:

(BP U ~BP) x {t,f,u} x 2(BP U ~BP)
where t, f, u stand for 'true', 'false', 'undetermined',
respectively. We will use the notation "...=...#..." to
describe this relation. That is, write a = v # S
provided that (a,v,S) is in R, where a is a ground
atom in BP U ~BP, v is a truth value in {t,f,u} and S is
a subset of BP U ~BP. The definition is recursive.
Define a = t # S to mean that there is some S-full P-
tree T rooted at a such that every leaf node of T is
either:
(i) true,
(ii) of the form ~b where b ∈ S,
(iii) of the form not(c), and c = f # (S U S') where S'
is the set of positive literals
which are ancestors of not(c) in T, or
(iv) of the form alt(~d), where ~d = t # (S U S')
where S' is the set of positive
literals which are ancestors of alt(~d) in T.
Condition (ii) is called the ancestor resolution rule.
Define a = f # S to mean that every S-full P-tree T
rooted at a has at least one leaf which has one of the
following forms:
 (i) a literal b ∈ BP U ~BP which does not unify with
the head of any usable clause of P,
(ii) a literal c ∈ BBP U ~BP which has itself as an
ancestor in T
(iii) not(b) where b = t # (S U S'), and S' is the set of
positive literals which are

BP U ~BP and that S is a subset of
BP

ancestors of the leaf not(b) in T.
B U ~BP. Then T is an S-full P-tree rooted at a if T

is a P-tree rooted at a each of whose leaf nodes is
either:

Note that a leaf of the form 'alt(-)' never can
contribute to failure (f truth value) of the root of the

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 358

tree. Alt-leaves can contribute to "truth" by allowing
resolution with an ancestor, but otherwise their
appearance contributes to "indeterminacy".
The bounded trail property (BTP) states that every
ancestor trail (if sufficiently extended) through a
forest of P-trees eventually stops at a node having no
descendants or else the trail eventually repeats an
element previously encountered on the trail.
 Disjunctive programs without function symbols
satisfy the bounded trail property.
Two example programs which do not have the BTP
are P1 = {p(x) <- p(f(x))} and P2 = {p(x) <-
not(p(f(x))}. Many programs with lots of function
symbols do have the BTP.
 If P has the bounded trail property, then for every
literal a, at least one of a = t # {} or a = f # {} does
not hold.
Thus, for programs with the bounded trail property,
we may finish the truth-value definition, as follows.
Define a = u # {} means that neither a = t # {} nor a
= f # {} holds.
Now, of course, the definitions of truth value based
on trees must be used with care. For example, in the
program:

a <- not(b)
a <- not(a)
a <- c

we have that a = t # {} based upon the first clause (or
corresponding tree), whereas if the first clause were
ignored, then we would have had a = u # {}, and we
would have had a = f # {} if only the last clause were
available. As for well founded semantics, t
supersedes u, which in turn supersedes f; that is, t > u
> f. For the tree-based semantics, this is a
consequence of the three parts of the definition for
truth values. A rough characterization of this would
be: a literal is true if at least one tree supports with all
"truthful" leaves, or the literal is false if all trees
trying to support have at least one "failing" leaf,
otherwise the literal is indeterminate.
An example can be used to motivate the use of 'alt'
literals in the alternative clauses. Consider the
program:

a, b <-
c <- not(a).

Now we have a = u # {}. To emphasize why this is
the case, consider that:

is the only full P-tree rooted at a, and clearly ~b = f #
{}, but this last fact does not "falsify" the alt(~b) leaf,
as previously noted. Thus c = u # {}.
A bottom-up characterization for the semantics
corresponding to the semantic trees specification can
be given as follows. Let us assume that the program
P itself is already grounded, and let us also assume
that for any ground positive literal L, L only occurs
(as one of the disjuncts) in the head of finitely many
clauses of P. A sequence of programs Pi and
sequences of truth sets Ti, false sets Fi, and
undetermined sets Ui are define by induction.

P0 = P
T0 = the set of heads of body-less clauses of
P0. These can be disjuncts.
F0 = the set of literals occurring in the head
of no clause of P0.
U0 = BP \ (T0 U F0).
Now, assumming that Pi, Ti, Fi, and Ui have

been defined for i < k, Pk is obtained from Pk-1 by
modifying or deleting clauses of Pk-1:
Erase body literals L from clauses of Pk-1 when L
∈Tk-1. Erase body literals not(L) from clauses of Pk-1

when L ∈ Fk-1. Erase a clause of Pk-1 when the clause
has a body literal not(L) and L ∈ Tk-1. (Erase clauses
D <- ... where D ∈ Tk-1.)
Tk = Tk-1 U {heads of body-less clauses of Pk} U
{stretch and factor disjuncts in Tk-1 using clauses
from Pk}.
Fk = Fk-1 U {positive literals of Uk-1 now occurring in
the head of no clause of Pk}.
Uk = BP \ (Tk U Fk).
Stretching and factoring can be understood using an
example. Suppose that disjunct 'a v b' is in Tk-1 and
that clauses 'c v d <- b' and 'c <- a' are in Pk. Then a v
b can be stretched using the two clauses, obtaining 'c
v c v d', and then factoring produces 'c v d' in Tk.
These operations correspond to clausal resolution on
the body literals of the clauses ('a' and 'b' in the
example), followed by the elimination of repeated
factors produced in the resolvent; this is a traditional
theorem-proving technique. Stretching can only be
performed using clauses with a single positive body
literal (but the corresponding head may be
disjunctive).
Finally, let the net truth, false, and undefined sets be
given as follows:
T = U Tk , F = U Fk unde k = 1 .. ∞
U = BP \ (T U F)
For the Working Example. Consider ground instances
of the program clauses.

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 359

p(a), q(a) <- r(a), not(s(a))
p(b), q(b) <- r(b), not(s(b))
p(c), q(c) <- r(c), not(s(c))
s(a) <- p(a)
r(a) <- r(b) <-
d(a) <- p(a), w(a)
d(b) <- p(b), w(b)
d(c) <- p(c), w(c)
d(a) <- q(a), w(a)
d(b) <- q(b), w(b)
d(c) <- q(c), w(c)
w(a) <- w(b) <- v(a) <- v(b) <- v(c) <-
k(a) <- not(d(a))
k(b) <- not(d(b))
k(c) <- not(d(c))
Then: T0 = {r(a), r(b), w(a), w(b), v(a), v(b), v(c)}

F0 = {s(b), s(c), r(c), w(c)}
P1:
p(a), q(a) <- not(s(a))
p(b), q(b) <-
s(a) <- p(a)
d(a) <- p(a)
d(b) <- p(b)
d(a) <- q(a)
d(b) <- q(b)
k(a) <- not(d(a))
k(b) <- not(d(b))
k(c) <- not(d(c))
T1 = T0 U {p(b) v q(b)}
F1 = F1 U {p(c), q(c), d(c)}
P2:
p(a), q(a) <- not(s(a))
s(a) <- p(a)
d(a) <- p(a)
d(b) <- p(b)
d(a) <- q(a)
d(b) <- q(b)
k(a) <- not(d(a))
k(b) <- not(d(b))
k(c) <-
T2 = T1 U {d(b), k(c)} Stretch and factor p(b) v q(b)
F2 = F1
P3:
p(a), q(a) <- not(s(a))
s(a) <- p(a)
d(a) <- p(a)
d(a) <- q(a)
k(a) <- not(d(a))
T = T2 = {r(a), r(b), w(a), w(b), v(a), v(b), v(c), p(b)
v q(b), d(b), k(c)}
F = F2 = {s(b), s(c), r(c), w(c), p(c), q(c), d(c)}

U = {p(a), q(a), s(a), d(a), k(a)}
For the working example, the bottom-up
characterization of semantics and the treebased
specification give the same truth values to positive
literals. We conjecture that this is true more
generally:
For nondisjunctive logic programs with negation as
failure, if BP is finite, then the tree semantics is the
same as well-founded semantics characterized using
the bottom-up definition.
A stronger version of this bottom-up characterization
would interpret disjunction exclusively (if it could):
If positive literal A has been added to Tk, if each of A
and B1, B2, ..., Bn ∈ Uk-1 and disjunct D = A v B1 v
BB2 v ... Bn ∈ Tk-1 then remove D from Tk and add
each of B1, B2,...,Bn to Fk. In addition, one must insist
that Fk be purged of positive literals that appear in Tk
. The stronger approach would be in adherence to the
generalized closed world assumption (GCWA).
The GCWA approach forces more "disjunctive
literals" to be false because disjunction is being
interpreted exclusively. For example, consider the
logic program:

a , b <-
b <-
c <- not(a).

Both the tree-based semantics and the bottom-up
characterization conclude that a = u # {}, whereas a
semantics using the GCWA would insist that "a is
false".
The tree-based semantics presented in this paper
provides a generalization of the previous concepts to
disjunctive programs with negation as failure, using
an extension of well founded semantics. Our purpose
is to explain the top-down, semantic tree
specification approach.
In the truth value definition, negation-as-failure
nodes and alternative nodes were not allowed to be
the roots of P-trees, and no truth value was
independently ascribed to 'not(...)' nor to 'alt(...)'
literals. Informally, we do so as follows:
not(b) = t # S if b = f # S
not(b) = f # S if b = t # S
not(b) = u # S if b = u # S
alt(~b) = t # S if ~b = t # S
alt(~b) = u # S if ~b = f or u # S
Using this informal notation, we have, supposing that

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 360

Suppose that, as before, ~B <- α ~A, β is a backlink
clause of P. This backlink is said to be potentially
useful provided that the positive literal B is an
indefinite literal.

is a P-tree branching based upon a usable clause of P.
Suppose that a = v # {}, and that ni = vi # {a} for i =
1,...,k, where v, vi ∈ {t,u,f}. If this is the only P-tree
rooted at a then a = min{vi | i = 1, ..., k} # {} where
the ordering is the usual t > u > f. On the other hand,
if T1,..., Tm are all of the P trees rooted at a, and if a =
vj # {} when only the subprogram growing Tj is
considered, then, for a net result a = max{vj | j = 1,...,
m}# {}.

 Suppose that P is a disjunctive logic program, that a
∈BBP, that a is an indefinite literal of P, and that a = t
{}, using a supporting forest of program trees F.
Then any backlink clause actually used to grow a
branch of some tree in F must be apotentially useful
backlink. This shows that tree semantics is a sort of "maxi-min

computation". Using a metaphor of deliberation, one
seeks the strongest overall argument, where each
individual argument is only supported by (or is as
strong as) its weakest evidence.

For the Working Example of section 1, this ratio is
2/6=1/3. It should be possible to establish some
mathematical relationships for this ratio in terms of
parameters which measure the number of disjuncts in
heads of clauses, the occurrence of indefinite literals
in the bodies of clauses, etc.

5. Useful Clauses Usable clauses were for an indefinite logic program
were characterized in the first section. It is probably
apparent that not all of the usable clauses would
actually be needed to grow P-trees in order to
determine truth values. The following proposition
shows that formally negative literals can never
sustain a 't' truth value on their own.

6. Conclusion.
The tree-based semantics presented in this paper
provides a generalization of the previous concepts to
disjunctive programs with negation as failure, using
an extension of well founded semantics.
We are not here claiming to have the correct
approach to semantics for disjunctive programs.
Rather, our purpose is to explain the top-down,
semantic tree specification approach. An excellent
discussion of semantics issues for disjunctive logic
programs is in the paper by Apt and Bol (1994)[1].

Suppose that P is a disjunctive logic program with no
formally negative literals in any clause. Then, for any
formally negative ground literal ~a ∈ ~BP we have
~a = f # {}
The proposition may seem surprising at first, but
recall that ~a = t # S has only occurred in the
examples only when S contained sufficient ancestors
for ancestor resolution.

References

[1] Apt, K.R., and R. Bol (1994). Logic
programming and negation: a survey, Preprint.

Suppose that P is a disjunctive logic program and that
H is a positive literal (which can contain variables).
H is said to be an indefinite literal (with respect to P)
provided either that h unifies with some literal in the
head of some indefinite clause of P, or else there is
some definite clause A <-B1,...,Br,not(C1),...,not(Cs)
of P such that H and A have most general unifier σ
and for some j=1,...,r, σ (Bj) is an indefinite literal.

[2] Clark, K. (1978). Negation as Failure. Logic and
Databases, Plenum Press.
[3] M.R. Genesereth, and N.J. Nilsson (1999),
Logical Foundations of Artificial Intelligence, State
Polytechnic University, Pomona.
[4] Van Gelder, A., A. Ross, and J.S. Schlipf (2000).
The well-founded semantics for general logic
programs.

In the Working Example of section 1, the literals
p(x), q(x), s(a), d(x) are all indefinite literals (as
would be any variants or instances of any of these
literals).

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 361

