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Abstract: In order to design software that is intended to compute answers to queries that are in accordance with 
some logic programming semantics, one would like to offer up a formal specification of the software design which 
could be used profitably to construct the software, and one would want to be able to prove that the specification is 
in fact faithful to the semantics. This paper presents a constructive formal specification of semantic trees and truth-
value determinations using semantic trees for disjunctive logic programs with negation as failure. This 
specification methodology directly supports the design of top-down interpreters for well-founded semantics. 
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1. Motivation and Background 
Consider the abstract logic program P (or its Prolog 
equivalent): 

p <- q(1), q(2) 
q(x) <- 
r(x) <- 
q(2) <- q(1) 
r(1) <- 

For the goal <- p, the following derivation tree D, 
pictured below on the left, using the clauses of P: 

                         
 
However, M  actually searches (or grows) the tree T, 
pictured above on the right. 
We call a tree like T a semantic program tree. For 
positive logic programs, the general definition of a 
semantic program tree, or a P-tree for short, requires 
the trees themselves to be finite (a finite data 
structure), to have unordered branching determined 
by ground instances of clauses of the program P, and 
to allow repeated (but separately identifiable) nodes 
(because the clauses of P could sometimes lead to 
repeated occurrences). 

We say that a ground positive literal of the program 
is a tree-consequence of the program P provided that 
there is some (finite) P-tree rooted at the literal 
having all 'true' leaves.  
A ground literal L is a tree-consequence of the 
positive logic program P if, and only if, L belongs to 
the least model of P. 
Thus, we see that M  directly implements the tree-
based "semantics" defined above (which is equivalent 
to the standard least model semantics). It is 
interesting that the tree-based specification is both a 
requirements specification (because it is equivalent 
to least-model semantics) and a design specification 
(because of its direct relationship to the meta-
interpreter ). 
Now, if we turn our attention to logic programs with 
negation as failure, we will see that the distinction 
between derivation trees and semantic trees is more 
important. [2] 
The class of disjunctive programs with negation as 
failure considered here contain disjunctive clauses of 
the form: 

A1,A2,...,Ak <- B1,...,Bm,not(C1),...,not(Cn) 
where each Ai, each Bi, and each Ci is a positive 
literal (possibly containing variables), k >= 1, m,n >= 
0. The sequence of literals A1,A2,...,Ak constitutes the 
head of the clause and this sequence is a disjunction. 
The sequence of literals B1,...,Bm,not(C1),...,not(Cn) is 
a conjunction and is the body of the clause. In 
particular, there is no stratification assumed. We 
design a constructive "specification of semantics" 
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based upon semantics program trees. This 
specification uses a (finite) tree data structure to 
determine (or support) meanings. The clauses of the 
program, together with well specified contra positive 
clause forms associated with the program, are used to 
specify the semantic trees. The tree-based 
specification must accommodate looping along trails 
in the trees. The trails can stay in a tree or leave at a 
negative leaf. Recursion, or looping, may be positive 
(within a single tree), or through negation (involving 
nodes in more than one tree). The tree-based 
specification must specify generally when a P-tree is 
"full" enough: For non disjunctive logic programs, 
this happens when all leaves are 'true'. 
The specification uses three truth values, with 
positive looping counting as failure, and looping 
through negation counting as indeterminacy 
(undefined truth value). Lastly, but closely related to 
the previous requirements, we require that the tree-
based semantics should correspond -- as much as we 
can guarantee -- to the well-founded semantics for 
non disjunctive logic programs with negation as 
failure. 
The resulting constructive tree-based specification of 
semantics for disjunctive logic programs then serves 
as the design (and requirements) specification for a 
meta-interpreter that computes well-founded 
semantics. 
The paper provides the formal definitions for the 
tree-based specifications and characterizes the basic 
propositions regarding its properties. In particular, 
for nondisjunctive logic programs with negation as 
failure, the tree-based semantics is provably 
equivalent to the well-founded semantics if BP is 
finite. We believe that the relationship to well-
founded semantics holds much more generally. 
The literature has references to similar trees for non-
disjunctive logic programs, referred to as "clause 
trees" , or sometimes as "proof trees".  
 
2. Disjunctive Logic Programs 
Let us assume that P is a disjunctive logic program 
whose clauses may have negationas- failure literals in 
the bodies of its clauses. Thus, the clauses of P can 
be described as having the form: 

A1,A2,...,Ak <- BB1,...,Bm,not(C1),...,not(Cn) 
where Ai, each Bi, and each Ci is a positive literal, k 
>= 1, m,n >= 0. The sequence of literals A1,A2,...,Ak 
constitutes the head of the clause and this sequence is 
a disjunction. The sequence of literals 

BB1,...,Bm,not(C1),...,not(Cn) is a conjunction and is the 
body of the clause. The sequence B1,...,Bm is the 
positive part of the body and the sequence 
not(C1),...,not(Cn) is the negative part of the body. If 
k=1 then the clause is said to be definite, otherwise it 
is indefinite. An indefinite program must have at least 
one indefinite clause, otherwise the program is 
definite. 
In what follows, we will need to refer to 
contrapositive forms of a clause. A primary 
alternative of the clause: 

A1,A2,...,Ak <- BB1,...,Bm,not(C1),...,not(Cn) 
has the form: 
Aj<-alt(~A1),...,alt(~Aj-

1),alt(~Aj+1),...,alt(~Ak),B1,...,Bm,not(C1),...,not(Cn) 
where 1<= j <= k. There are k primary alternatives if 
k>=2. If k=1 then the clause is definite and does not 
have any primary alternatives. The '~' denotes formal 
negation. 
The 'alt' forms are special markers for the 
alternatives. Note that there are now two kinds of 
negation that could be referred to: 'not' is negation as 
failure, and '~' is formal negation. 
We will need to maintain a careful distinction 
between these two negations. For a primary 
alternative the sequence alt(~A1), ...,alt(~Aj-

1),alt(~Aj+1),...,alt(~Ak) is called the alternative part 
of the body. 
There are other contrapositive forms of clauses of an 
indefinite program that could be useful. These are 
called backlinks. They are formed as follows. 
Suppose that: 

A <- αB, β 
is either a definite clause of P or a primary alternative 
whose head is the positive literal A and B is a literal 
in the positive part of the body; α, βare (possibly 
empty) sequences of the other literals of the body. 
Then: 

~B <- α ~A, β 
is a backlink clause, where '~' is formal negation.  
Working Example. 
Consider the indefinite program P (X is a variable): 

p(X), q(X) <- r(X), not(s(X)) 
s(a) <- p(a) 
r(a) <- r(b) <- 
d(X) <- p(X), w(X) 
d(X) <- q(X), v(X) 
w(a) <- w(b) <- v(a) <- v(b) <- v(c) <- 
k(X) <- not(d(X)) 

The primary alternatives of the indefinite clause are: 
p(X) <- alt(~q(X)), r(X), not(s(X)) 
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q(X) <- alt(~p(X)), r(X), not(s(X)) 
Here are all of the possible backlinks: 

~r(X) <- alt(~q(X)), ~p(X), not(s(X)) 
~r(X) <- alt(~q(X)), ~q(X), not(s(X)) 
~p(X) <- ~d(X), w(X) 
~w(X) <- p(X), ~d(X) 
~q(X) <- ~d(X), v(X) 
~v(X) <- q(X), ~d(X) 

Given a disjunctive logic program P, we say that the 
usable clauses of P are the definite clauses of P 
together with the primary alternatives of P and the 
backlink clauses of P. Note that the only usable 
clauses of P that actually belong to P are the definite 
clauses of P. The other usable clauses are 
contrapositive forms of clauses of P. 
 
3. Program Trees 
P-trees are constructed using the usable clauses of P. 
Let BP be the set of ground positive literals of P, and 
let 

~BP = { ~b | b ∈ BBP}. 
The branchings for P-trees are formed using the 
usable clauses of P. If 

a <- c1,...,cS 
is a ground instance of a usable clause of P, then the 
corresponding branching node is : 

 
P-trees of height 0 are just elements of BBP U ~BP. P-
trees of height 1 are those just described using a 
single branching node, rooted at some a  BP U ~BP. If 
T is a P-tree and c is a leaf not of the form 'alt(-)' or 
'not(-)' then T may be extended using another 
branching at that leaf, as described above for P-trees 
of height 1. Negation-as-failure nodes 'not(-)' and 
alternatives 'alt(-)' must be leaves in the P-trees. 
Inductively, A P-tree is any finite tree that can be 
constructed in this fashion. The height of such a tree 
is, in general, the length of the longest branch from 
the root of the P-tree to its deepest leaf. If c <- is a 
ground instance of a unit clause of P, then we write 
the corresponding branching P-tree node as: 

 
 Suppose that a ∈ B

1) an element of S, or 
2) of the form ~b where b ∈ S 
3) a literal in BP U ~BP  which does not unify with 
the head of any clause of P, or 
4) a literal in BP U ~BP  which has itself as an 
ancestor in T, or 
5) the true leaf, true, or 
6) a negation-as-failure node of the form not(b),or 
7) an alternative form alt(b). 
If P-tree T is {}-full then we simply say that T is full. 
An ancestor trail is a sequence a0,a1,...,an of nodes in 
P-trees such that ai+1 is either a positive node which is 
a child of ai or else ai+1=b where 'not(b)' or 'alt(b)' is a 
child of ai. Note that ancestor trails can wind through 
several trees. Trails can leave a particular tree at a 
negative leaf. 
 
4. Tree-based Semantics 
Define a mathematical relation R on the set: 

(BP U ~BP) x {t,f,u} x 2(BP U ~BP) 
where t, f, u stand for 'true', 'false', 'undetermined', 
respectively. We will use the notation "...=...#..." to 
describe this relation. That is, write a = v # S 
provided that (a,v,S) is in R, where a is a ground 
atom in BP U ~BP, v is a truth value in {t,f,u} and S is 
a subset of BP U ~BP. The definition is recursive. 
Define a = t # S to mean that there is some S-full P-
tree T rooted at a such that every leaf node of T is 
either: 
(i) true, 
(ii) of the form ~b where b ∈ S, 
(iii) of the form not(c), and c = f # (S U S') where S' 
is the set of positive literals 
which are ancestors of not(c) in T, or 
(iv) of the form alt(~d), where ~d = t # (S U S') 
where S' is the set of positive 
literals which are ancestors of alt(~d) in T. 
Condition (ii) is called the ancestor resolution rule. 
Define a = f # S to mean that every S-full P-tree T 
rooted at a has at least one leaf which has one of the 
following forms: 
 (i) a literal b ∈  BP U ~BP which does not unify with 
the head of any usable clause of P, 
(ii) a literal c ∈ BBP U ~BP which has itself as an 
ancestor in T 
(iii) not(b) where b = t # (S U S'), and S' is the set of 
positive literals which are 

BP U ~BP and that S is a subset of 
BP

ancestors of the leaf not(b) in T. 
B  U ~BP. Then T is an S-full P-tree rooted at a if T 

is a P-tree rooted at a each of whose leaf nodes is 
either: 

Note that a leaf of the form 'alt(-)' never can 
contribute to failure (f truth value) of the root of the 
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tree. Alt-leaves can contribute to "truth" by allowing 
resolution with an ancestor, but otherwise their 
appearance contributes to "indeterminacy". 
The bounded trail property (BTP) states that every 
ancestor trail (if sufficiently extended) through a 
forest of P-trees eventually stops at a node having no 
descendants or else the trail eventually repeats an 
element previously encountered on the trail.  
 Disjunctive programs without function symbols 
satisfy the bounded trail property. 
Two example programs which do not have the BTP 
are P1 = {p(x) <- p(f(x))} and P2 = {p(x) <- 
not(p(f(x))}. Many programs with lots of function 
symbols do have the BTP. 
 If P has the bounded trail property, then for every 
literal a, at least one of a = t # {} or a = f # {} does 
not hold. 
Thus, for programs with the bounded trail property, 
we may finish the truth-value definition, as follows. 
Define a = u # {} means that neither a = t # {} nor a 
= f # {} holds. 
Now, of course, the definitions of truth value based 
on trees must be used with care. For example, in the 
program: 

a <- not(b) 
a <- not(a) 
a <- c 

we have that a = t # {} based upon the first clause (or 
corresponding tree), whereas if the first clause were 
ignored, then we would have had a = u # {}, and we 
would have had a = f # {} if only the last clause were 
available. As for well founded semantics, t 
supersedes u, which in turn supersedes f; that is, t > u 
> f. For the tree-based semantics, this is a 
consequence of the three parts of the definition for 
truth values. A rough characterization of this would 
be: a literal is true if at least one tree supports with all 
"truthful" leaves, or the literal is false if all trees 
trying to support have at least one "failing" leaf, 
otherwise the literal is indeterminate. 
An example can be used to motivate the use of 'alt' 
literals in the alternative clauses. Consider the 
program: 

a, b <- 
c <- not(a). 

Now we have a = u # {}. To emphasize why this is 
the case, consider that: 

 

is the only full P-tree rooted at a, and clearly ~b = f # 
{}, but this last fact does not "falsify" the alt(~b) leaf, 
as previously noted. Thus c = u # {}. 
A bottom-up characterization for the semantics 
corresponding to the semantic trees specification can 
be given as follows. Let us assume that the program 
P itself is already grounded, and let us also assume 
that for any ground positive literal L, L only occurs 
(as one of the disjuncts) in the head of finitely many 
clauses of P. A sequence of programs Pi and 
sequences of truth sets Ti, false sets Fi, and 
undetermined sets Ui are define by induction. 

P0 = P 
T0 = the set of heads of body-less clauses of 
P0. These can be disjuncts. 
F0 = the set of literals occurring in the head 
of no clause of P0. 
U0 = BP \ (T0 U F0). 
Now, assumming that Pi, Ti, Fi, and Ui have 

been defined for i < k, Pk is obtained from Pk-1 by 
modifying or deleting clauses of Pk-1: 
Erase body literals L from clauses of Pk-1 when L 
∈Tk-1. Erase body literals not(L) from clauses of Pk-1 

when L ∈ Fk-1. Erase a clause of Pk-1 when the clause 
has a body literal not(L) and L ∈ Tk-1.  (Erase clauses 
D <- ... where D ∈ Tk-1.) 
Tk = Tk-1 U {heads of body-less clauses of Pk} U 
{stretch and factor disjuncts in Tk-1 using clauses 
from Pk}. 
Fk = Fk-1 U {positive literals of Uk-1 now occurring in 
the head of no clause of Pk}. 
Uk = BP \ (Tk U Fk). 
Stretching and factoring can be understood using an 
example. Suppose that disjunct 'a v b' is in Tk-1 and 
that clauses 'c v d <- b' and 'c <- a' are in Pk. Then a v 
b can be stretched using the two clauses, obtaining 'c 
v c v d', and then factoring produces 'c v d' in Tk. 
These operations correspond to clausal resolution on 
the body literals of the clauses ('a' and 'b' in the 
example), followed by the elimination of repeated 
factors produced in the resolvent; this is a traditional 
theorem-proving technique. Stretching can only be 
performed using clauses with a single positive body 
literal (but the corresponding head may be 
disjunctive). 
Finally, let the net truth, false, and undefined sets be 
given as follows: 
T = U Tk , F = U Fk unde k = 1 ..  ∞
U = BP \ (T U F) 
For the Working Example. Consider ground instances 
of the program clauses. 
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p(a), q(a) <- r(a), not(s(a)) 
p(b), q(b) <- r(b), not(s(b)) 
p(c), q(c) <- r(c), not(s(c)) 
s(a) <- p(a) 
r(a) <- r(b) <- 
d(a) <- p(a), w(a) 
d(b) <- p(b), w(b) 
d(c) <- p(c), w(c) 
d(a) <- q(a), w(a) 
d(b) <- q(b), w(b) 
d(c) <- q(c), w(c) 
w(a) <- w(b) <- v(a) <- v(b) <- v(c) <- 
k(a) <- not(d(a)) 
k(b) <- not(d(b)) 
k(c) <- not(d(c)) 
Then: T0 = {r(a), r(b), w(a), w(b), v(a), v(b), v(c)} 

F0 = {s(b), s(c), r(c), w(c)} 
P1: 
p(a), q(a) <- not(s(a)) 
p(b), q(b) <- 
s(a) <- p(a) 
d(a) <- p(a) 
d(b) <- p(b) 
d(a) <- q(a) 
d(b) <- q(b) 
k(a) <- not(d(a)) 
k(b) <- not(d(b)) 
k(c) <- not(d(c)) 
T1 = T0 U {p(b) v q(b)} 
F1 = F1 U {p(c), q(c), d(c)} 
P2: 
p(a), q(a) <- not(s(a)) 
s(a) <- p(a) 
d(a) <- p(a) 
d(b) <- p(b) 
d(a) <- q(a) 
d(b) <- q(b) 
k(a) <- not(d(a)) 
k(b) <- not(d(b)) 
k(c) <- 
T2 = T1 U {d(b), k(c)} Stretch and factor p(b) v q(b) 
F2 = F1
P3: 
p(a), q(a) <- not(s(a)) 
s(a) <- p(a) 
d(a) <- p(a) 
d(a) <- q(a) 
k(a) <- not(d(a)) 
T = T2 = {r(a), r(b), w(a), w(b), v(a), v(b), v(c), p(b) 
v q(b), d(b), k(c)} 
F = F2 = {s(b), s(c), r(c), w(c), p(c), q(c), d(c)} 

U = {p(a), q(a), s(a), d(a), k(a)} 
For the working example, the bottom-up 
characterization of semantics and the treebased 
specification give the same truth values to positive 
literals. We conjecture that this is true more 
generally: 
For nondisjunctive logic programs with negation as 
failure, if BP is finite, then the tree semantics is the 
same as well-founded semantics characterized using 
the bottom-up definition. 
A stronger version of this bottom-up characterization 
would interpret disjunction exclusively (if it could): 
If positive literal A has been added to Tk, if each of A 
and B1, B2, ..., Bn ∈ Uk-1 and disjunct D = A v B1 v 
BB2 v ... Bn ∈ Tk-1 then remove D from Tk and add 
each of B1, B2,...,Bn to Fk. In addition, one must insist 
that Fk be purged of positive literals that appear in Tk 
. The stronger approach would be in adherence to the 
generalized closed world assumption (GCWA).  
The GCWA approach forces more "disjunctive 
literals" to be false because disjunction is being 
interpreted exclusively. For example, consider the 
logic program: 

a , b <- 
b <- 
c <- not(a). 

Both the tree-based semantics and the bottom-up 
characterization conclude that a = u # {}, whereas a 
semantics using the GCWA would insist that "a is 
false". 
The tree-based semantics presented in this paper 
provides a generalization of the previous concepts to 
disjunctive programs with negation as failure, using 
an extension of well founded semantics. Our purpose 
is to explain the top-down, semantic tree 
specification approach.  
In the truth value definition, negation-as-failure 
nodes and alternative nodes were not allowed to be 
the roots of P-trees, and no truth value was 
independently ascribed to 'not(...)' nor to 'alt(...)' 
literals. Informally, we do so as follows: 
not(b) = t # S if b = f # S 
not(b) = f # S if b = t # S 
not(b) = u # S if b = u # S 
alt(~b) = t # S if ~b = t # S 
alt(~b) = u # S if ~b = f or u # S 
Using this informal notation, we have, supposing that 
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Suppose that, as before, ~B <- α ~A, β is a backlink 
clause of P. This backlink is said to be potentially 
useful provided that the positive literal B is an 
indefinite literal. 

is a P-tree branching based upon a usable clause of P. 
Suppose that a = v # {}, and that ni = vi # {a} for i = 
1,...,k, where v, vi ∈ {t,u,f}. If this is the only P-tree 
rooted at a then a = min{vi | i = 1, ..., k} # {} where 
the ordering is the usual t > u > f. On the other hand, 
if T1,..., Tm are all of the P trees rooted at a, and if a = 
vj # {} when only the subprogram growing Tj is 
considered, then, for a net result a = max{vj | j = 1,..., 
m}# {}. 

 Suppose that P is a disjunctive logic program, that a 
∈BBP, that a is an indefinite literal of P, and that a = t 
# {}, using a supporting forest of program trees F. 
Then any backlink clause actually used to grow a 
branch of some tree in F must be apotentially useful 
backlink. This shows that tree semantics is a sort of "maxi-min 

computation". Using a metaphor of deliberation, one 
seeks the strongest overall argument, where each 
individual argument is only supported by (or is as 
strong as) its weakest evidence. 

For the Working Example of section 1, this ratio is 
2/6=1/3. It should be possible to establish some 
mathematical relationships for this ratio in terms of 
parameters which measure the number of disjuncts in 
heads of clauses, the occurrence of indefinite literals 
in the bodies of clauses, etc. 

 
5. Useful Clauses  Usable clauses were for an indefinite logic program 
were characterized in the first section. It is probably 
apparent that not all of the usable clauses would 
actually be needed to grow P-trees in order to 
determine truth values. The following proposition 
shows that formally negative literals can never 
sustain a 't' truth value on their own. 

6. Conclusion. 
The tree-based semantics presented in this paper 
provides a generalization of the previous concepts to 
disjunctive programs with negation as failure, using 
an extension of well founded semantics. 
We are not here claiming to have the correct 
approach to semantics for disjunctive programs. 
Rather, our purpose is to explain the top-down, 
semantic tree specification approach. An excellent 
discussion of semantics issues for disjunctive logic 
programs is in the paper by Apt and Bol (1994)[1]. 

Suppose that P is a disjunctive logic program with no 
formally negative literals in any clause. Then, for any 
formally negative ground literal ~a ∈ ~BP we have 
~a = f # {} 
The proposition may seem surprising at first, but 
recall that ~a = t # S has only occurred in the 
examples only when S contained sufficient ancestors 
for ancestor resolution. 
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