
An Implementation View on Job Shop Scheduling Based on CPM

MILOŠ ŠEDA
Institute of Automation and Computer Science

Brno University of Technology
Technická 2, 616 69 Brno

CZECH REPUBLIC
seda@fme.vutbr.cz

Abstract: - The scheduling of manufacturing processes aims to find sequences of jobs on given machines
optimal by a selected criterion, e.g. minimal completion time of all operations. With respect to NP-hardness of
these problems and the necessity to solve them by heuristic methods, the problem representation and the
effectiveness of their procedures is substantial for computations to be completed in a reasonable amount of
time. In this paper, we deal with job shop scheduling problem (JSSP) in a disjunctive graph-based
representation. Turning all undirected edges into directed ones, the problem is transformed to a problem
solvable by the Critical Path Method (CPM). We propose an original implementation of the CPM that makes it
possible to decrease its time complexity and thus also the running time of all JSSP iterations.

Key-Words: - manufacturing process, job shop scheduling, NP-hard problem, disjunctive graph, CPM

1 Introduction
Practical machine scheduling problems are
numerous and varied [3]. They arise in diverse areas
such as flexible manufacturing systems, production
planning, logistics, communication, computer
design etc. A scheduling problem is to find
sequences of jobs on given machines with the
objective of minimising some function of the job
completion times.

In a simpler version of this problem, flow shop
scheduling, all jobs pass through all machines in the
same order. A more complex case is represented by
a job shop scheduling problem where machine
orderings can be different for each job.

Job shop scheduling problem (abbreviated to
JSSP or JSS) is one of the hardest combinatorial
optimization problems. It belongs to the class of
NP-hard problems, consequently there are no known
algorithms guaranteed to give an optimal solution
and run in polynomial time. That means, classical
optimization methods (branch and bound method,
dynamic programming) can only be used for small-
scale tasks. Therefore, more complex tasks must be
solved by heuristic methods [10], [12]. Successful
heuristic methods include approaches based on
simulated annealing [6], tabu search [11], [14], and
genetic algorithms [9]. A very efficient method
combines a variable depth search procedure with a
shifting bottleneck framework [2], [15].

2 Mathematical Model of JSSP
The classical JSS problem can be described as
follows [13]: There are a set of m machines and a
set of n jobs. Each job consists of a sequence of
operations, each of which needs to be processed
during an uninterrupted time period of a given
length on a given machine. Each machine can
process at most one operation at a time. We assume
that any successive operations of the same job are
processed on different machines. A schedule is an
assignment of the operations to time intervals on the
machines.

The problem is to find a schedule which
optimises a given objective. Assume that three finite
sets J, M, O are given where J is a set of jobs 1, … ,
n, M is a set of machines 1, … , m, and O is a set of
operations 1, … , N.

Consider the following denotations: Ji = the job
to which operation i belongs, Mi = the machine on
which operation i is to be processed, ti = the start
time for operation i, pi = the processing time for
operation i, Cmax = the makespan.

On O, a binary relation → is defined that
represents precedence constraints between
operations of the same job.

If i→j, then Ji=Jj and there is no
k∈{i,j}satisfying i→k or k→j. (Operation i is the
predecessor of operation j). Thus, if i→j, then Mi ≠
Mj by the JSSP specifications.

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 542

The problem of optimal job shop scheduling is to
find a starting ti time for each operation i∈O such
that
 (1) (max i i

i O
t p

∈
+)

k

is minimised subject to:
 ∀i∈O : ti ≥ 0 (2)
 ∀i, j∈O, i→j : tj ≥ ti + pi (3)
∀i, j∈O, i≠j, Mi =Mj : (tj ≥ ti + pi) ∨ (tj ≥ ti + pj) (4)

The conditions (3) express precedence
constraints which represent technological link-up of
operations within the same task. The conditions (4)
express machine capacity constraints, i.e. each
machine can process at most one operation at a time.

The described equations cannot be directly used
for determining a schedule. We need to eliminate
symbols of binary relation → and disjunction ∨ and
try to get a formulation of integer programming.

The binary relation can be eliminated easily so
that O will be decomposed into subsets of
operations that correspond to tasks. Then we will
assign to operations in each task numbers creating a
sequence of consecutive integers by the operation
order.

Denote nj = the number of operations in job j,
and Nj = the total number of operations of the first j
jobs.

Evidently:

 0
1 1

0, , .
j n

j k
k k

N N n N
= =

= = =∑ ∑n (5)

Using the denotation for total number of
operations of the first j−1 jobs, we assign to nj
operations of task j numbers Nj−1 + 1, … , N j−1 + nj
where N j−1 + nj = Nj.

Now we can express equation (3) as follows:

 ()()1 11 1 :j j i i ij J N i N t t p− +∀ ∈ + ≤ ≤ − ≥ + (6)

The makespan is then determined as the
maximum of the completion times of the last
operations in jobs. Hence, we get:

 max:
j jN Nj J C t p∀ ∈ ≥ + (7)

Let us define capacity constraints using binary
variables xij ∈{0,1} as follows:

, , , :

1, , operation precedes

0, , operation precedes

i j

j i i
ij

i j j

i j O i j M M

t t p i j
x

t t p j

∀ ∈ ≠ =

≥ +⎧⎪= ⎨ ≥ +⎪⎩

If T is an upper bound of the makespan, then,
using xij, we can replace equation (4) by pairs of
inequalities (9) as follows:

()
()

1
, , , :

1

j i i ij ij
i j

i j j ij i

t t p x T x
i j O i j M M

t t p x Tx

⎧ ≥ + − −⎪∀ ∈ ≠ = ⎨
≥ + − −⎪⎩ j

 (9)

Hence, the job shop scheduling problem with
makespan objective can be formulated as follows:

Minimise
 Cmax (10)

subject to
 ∀i∈O : ti ≥ 0 (11)
()()1 11 1 :j j i i ij J N i N t t p− +∀ ∈ + ≤ ≤ − ≥ + (12)

max:
j jN Nj J C t p∀ ∈ ≥ + (13)

()
()

{0,1}

, , , : 1

1

ij

i j j i i ij ij

i j j ij i

x

i j O i j M M t t p x T x

t t p x Tx

⎧ ∈
⎪
⎪∀ ∈ ≠ = ≥ + − −⎨
⎪

≥ + − −⎪⎩ j

 (14)

3 Disjunctive Graph-Based
 Representation
An important feature of heuristic methods is
problem representation. In [4], a review of
frequently used representations is presented. Here,
we briefly describe only one based on disjunctive
graphs.

The disjunctive graph-based representation: A
disjunctive graph is defined as follows:

 (),G V C D= ∪ (15)

where
V is a set of vertices representing operations.

This set contains also two special vertices numbered
0 and N+1 representing the fictitious start and end
operations, respectively. The processing time of
each operation is denoted as the weight of the
vertex. The two fictitious operations 0 and N+1 have
operation times of zero.

C is a set of directed conjunctive edges. These
edges represent pairs of consecutive operations of
the same job, as well as edges from the start vertex 0
to the first operation of each job and edges from the
last operations of each job to the end vertex N+1. i

 (8)

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 543

D is a set of undirected disjunctive edges
representing pairs of operations to be processed by
the same machine.

To determine a schedule we must define an
ordering of all operations processed on the same
machine. It can be done by turning all undirected
(disjunctive) edges into directed ones. Evidently,
there are

 ()1 2 | || |1 2
ln 22 2 2 MM m m mmm m e + + +

= (16)

possible disjunctive graphs, where mi is the number
of operations on machine i. Some of them are
infeasible because of cycles.

A set S of all directed edges selected from
disjunctive edges is called a complete selection. A
complete selection S defines a feasible schedule if
and only if the resulting directed graph is acyclic
which guarantees there are no precedence conflicts
between operations, see Figure 2. Obviously, the
time required to complete all jobs (makespan) is
given by the length of the longest weighted path
from the start vertex to the end vertex in a directed
graph G(S)=(V,C∪S), where S is an acyclic
complete selection. This path is called the critical
path and is composed of a sequence of critical
operations.

 r

Fig. 1: Disjunctive graph for the JSSP instance and a
feasible schedule

Using Critical Path Method (CPM) [7], we easily

get the earliest possible start times of operations and
the corresponding schedule.

The key operator of the tabu search and
simulating annealing methods is one used to
construct a neighbourhood of the current solution in
which these algorithms search for a solution to be
used in the next iteration. In the literature, many

sophisticated strategies can be found. For lack of
space, we only mention the neighbourhood search
strategy of Nowicki and Smutnicki [11], [14]. It is
based on modifications of critical blocks that create
a critical path evaluated by the CPM. These blocks
are given by maximal sequences of consecutive
critical operations on the same machine.

For a single (arbitrarily selected) critical path u
and critical blocks B1, … , BBr defined for u, it swaps
the first (and the last) two operations in blocks B2B ,
…, BBr−1. In the first block B1B it swaps only the last
two operations, and, via symmetry in the last block
BBr, it swaps only the first two operations. These
swaps define the set of moves from the processing
order pi. This set of moves is not empty only if the
number of blocks is greater than one (r >1) and if
there exists at least one block with the number of
elements greater than one. The neighbourhood of pi
is then defined as all the processing orders obtained
by applying moves from pi. This strategy
implemented within the framework of a tabu search
led to the best known results for benchmarks from
the OR-Library.

4 CPM and Its New Implementation
Given a network of one project in A-on-A graphical
representation (activity = arrow (directed edge))
with weights of edges (i, j) determined by activity
durations ti j, we can calculate, for each activity, by
means of the well known Critical Path Method
(CPM) [1], [7], [8] the earliest possible start time
(the earliest possible time that the activity can
begin); the earliest possible finish time (the earliest
possible time plus the time ti j needed to complete
the activity); the latest allowable finish time (the
latest time an activity can end without delaying the
project) and the latest allowable start time (the latest
allowable finish time minus the time needed to
complete the activity) and total (activity) slack or
total (activity) float (the amount of time by which
the start of a given activity can be delayed without
delaying the completion of the project).

In A-on-A graphical representation, the
following notions are referred to start and end
vertices of the network graph: Ti

(0) represents the
earliest possible start time of vertex i, Tj

(1) the latest
allowable finish time of vertex j. TSi j = Tj

(1) − Ti
(0) −ti j

is the total slack of activity (i, j).

4.1 CPM for topologically sorted network
 graph

finish

8 9 10 11

sta
1 2 3 4

t
5 6 7 12 0

8 9 10 11

start
1 2 3 4

5 6 7 0 12
finish

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 544

A classical version of the CPM implementation is
based on that topological ordering [5] of the
vertices which means that, for each edge (i, j), i
appears before j in the ordering, that is, i< j.

Let nt be the number of the network graph
terminal, n0 the number of the network graph origin,
and m the number of edges.

The denotation n0 is used only for the sake of
generality because in literature the origin is
numbered by 0 or 1.

Then, a topological ordering of the vertices can
be computed as follows:
1. Start from the origin and assign n0 to it.
2. Leave all edges outgoing from n0 and assign

numbers n0+1, … , n0+k1 to k1 vertices that have
no input edge.

3. Leave all edges outgoing from the vertices
numbered in the previous step and assign
numbers n0+k1+1, … , n0+k1+k2 to k2 vertices
that have no input edge.

4. Continue this way until all vertices are
numbered.

In the program realization of this algorithm, we
keep for each vertex a value C(v) that determines
the number of unselected vertices adjacent to v. At
the beginning, we initialise C(v) by 0 for each vertex
v and then, for all end vertices w of directed edges
(v, w), we make the assignment C(w):=C(w)+1. This
process is applied to each vertex v of edges (v, w)
satisfying C(v)=0. Pruning the edges outgoing from
a vertex v numbered in the previous step
corresponds to executing the statements modifying
the value C(w) of end vertices of edges (v, w) by
C(w) :=C(w)−1.

The time complexity of the topological sort is
O(|V|+|E|) [5].

If a network graph is topologically ordered, then
the earliest possible start times are determined as
follows:

0

(0) 0nT = (17)

{ }(0) (0)
0 0

(,)
max , 1, 2, ,ij tj ii j E

T T t j n n
∈

= + = + + … n (10)

The following two equations are used to
determine the latest allowable finish times of the
vertices:

(1) (0)
t tn nT T= (18)

{ }(1) (0)
0

(,)
min , 1, 2, ,ij t ti ji j E

T T t j n n
∈

= − = − − … n (12)

From these equations it is obvious that the time
complexity of both the earliest possible start times
and the latest allowable finish times calculations is
equal to O(|V||E|).

The phase of the topological sort included, the
total time complexity of the algorithm is therefore
O(|V|+|E|+|V||E|).

4.2 CPM for network with lexicographical
ordering of edges
Consider a lexicographical ordering of the edges
defined in the following way: Let e1, e2 ∈E, e1 = (a1,
a2), e2 = (b1, b2), then

() ()()0 0 0 0

1 2 0

0

{1,2}:

1 :i i i i

e e i

a b i i i a b

⇔ ∃ ∈

< ∧ ∀ ≤ < =

≺
 (19)

In this definition, we do not consider the edges
equality because each network graph is simple and
thus all edges differ minimally in one vertex. Using
this ordering, we can simplify the formulae for the
earliest possible start and latest allowable finish
times calculations so that the pairs of nested cycles
in the algorithm are replaced by simple sequential
cycles:

Formally, we express this for the earliest possible
start times of the vertices as follows:

(0): ii V T 0∀ ∈ = (20)

{ }(0) (0) (0)(,) : max , ijj j ii j E T T T t∀ ∈ = +

Notice that the cycle is processed by
the ordering ≺ from the “lowest” edge to the
“highest” edge.

(,)i j E∀ ∈

Next two equations make it possible to determine
the latest allowable finish times of the vertices
where, in the cycle (,)i j E∀ ∈ , we use the “inverse”
ordering from the highest edge to the lowest one:

These formulae imply that, in this type of
ordering, the time complexity of the vertices times
is O(|V|+|E|). However, time complexity of the
lexicographical sort must also be considered. From
the most efficient sorting algorithms MergeSort,
HeapSort and QuickSort, we selected the last one
for the reason of its simple implementation. The
time complexity of QuickSort is O(|E| log2|E|). As
the lexicographical sort is preceded by the
topological sort, the total time complexity of this
CPM implementation is given by
O(|V|+|E|+|V|+|E|+|E| log2|E|), which can be
simplified to O(|V|+|E|+|E| log2|E|).

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 545

Now we can write a pseudopascal version of the
described CPM implementation for network graphs
using a lexicographically ordered list of edges. Here
ne denotes the number of edges of network graph,
i.e., it equals |E|. The user-defined type
net_graph represents an array of records
describing edges. Their items are given by SV =
starting vertex of edge, EV = ending vertex of edge,
t = weight of edge represented by the activity
duration and TS = total slack of activity. The user-
defined type ivector is used for arrays of
numbers assigned to vertices.

procedure CPMlex(var graph: net_graph; ne, nv0,
nv: integer; var T0,T1: ivector) ;
 var i: integer ;
 begin for i : = nv0 to nv do
 T0[i] : = 0;
 for i : = 1 to ne do
 with graph[i] do
 if T0[SV] + t > T0[EV]
 then T0[EV] : = T0[SV] + t ;
 { max }
 for i : = nv downto nv0 do
 T1[i] : = T0[nv];
 for i : = ne downto 1 do
 with graph[i] do
 if T1[EV] − t < T1[SV]
 then T1[SV] : = T1[EV] − t ;
 { min }
 for i : = 1 to ne do
 with graph[i] do
 TS : = T1[EV] − T0[SV] − t
 end ;
{ CPMlex - CPM implementation for network graph
using a lexicographically ordered list of edges }

5 Conclusions
In this paper, we presented a mathematical model of
the job shop scheduling problem. Based on a mixed
integer programming formulation, it could be used
for computation in such optimization tools as
GAMS and LINDO. Obviously, because of NP-
hardness of the model, they can only get an optimal
solution for small JSSP instances. Therefore, other
representation schemes, more suitable for
computations by approximation or heuristic
methods, must be searched. As frameworks of these
methods are sufficiently known, we focused on the
key neighbourhood operator of the probably best
known algorithm proposed by Nowicki and

Smutnicki to disjunctive graph-based representation
of JSSP.

Since JSSP in the disjunctive graph-based
representation is based on the CPM calculation step,
the efficiency of this step plays a significant role
here. In this paper, a new implementation of the
CPM was proposed. After the usual topological sort
of vertices, an additional step (lexicographical sort
of edges) is included. It was shown that for a
network graph G =(V, E) the time complexity of this
version of CPM is equal to O(|V|+|E|+|E| log2|E|),
and thus it is lower than the time complexity of the
classical CPM implementation using topological
ordering of vertices.

Further investigation will include fuzzy versions
of these problems where two cases of uncertainties
can be obtained - uncertain due dates and uncertain
processing times.

Acknowledgments
The results presented have been achieved using a
subsidy of the Ministry of Education, Youth and
Sports of the Czech Republic, research plan MSM
0021630518 "Simulation modelling of mechatronic
systems".

References:
[1] A. Azaron, C. Perkgoz and M. Sakawa, A

Genetic Algorithm for the Time-Cost Trade-off
in PERT Networks, Applied Mathematics and
Computation, Vol. 168, 2005, pp. 1317-1339.

[2] E. Balas and A. Vazacopoulos, Guided Local
Search with Shifting Bottleneck for Job Shop
Scheduling, Management Science, Vol. 44,
1998, pp. 262-275.

[3] J. Blazewicz, K.H. Ecker, G. Schmidt and J.
Weglarz, Scheduling Computer and
Manufacturing Processes, Springer-Verlag,
Berlin, 1996.

[4] R. Cheng, M. Gen and Y. Tsujimura,
A Tutorial Survey of Job-Shop Scheduling
Problems Using Genetic Algorithms – I.
Representation, Computers & Industrial
Engineering, Vol. 30, No. 4, 1996, pp. 983-
997.

[5] T.H. Cormen, C.E. Leiserson, R.L. Rivest and
C. Stein, Introduction to Algorithms, MIT
Press, Cambridge, Massachusetts, 2001.

[6] A. El-Bouri, N. Azizi, S. Zolfaghari, A
Comparative Study of a New Heuristic Based
on Adaptive Memory Programming and
Simulated Annealing: The Case of Job Shop
Scheduling, European Journal of Operational
Research, 2007, 17 pp., in press

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 546

[7] S.E. Elmaghraby, Activity Networks: Project
Planning and Control by Network Models,
John Wiley & Sons, New York, 1977.

[8] S.M.T.F. Ghomi and E. Teimouri, Path Critical
Index and Activity Critical Index in PERT
Networks, European Journal of Operational
Research, Vol. 141, 2002, pp. 147-152.

[9] J. Goncalves, J. de Magalhaes-Mendes and M.
Resende, A Hybrid Genetic Algorithm for the
Job Shop Scheduling Problem, European
Journal of Operational Research, Vol. 167,
2005, pp. 77-95.

[10] Z. Michalewicz and D.B. Fogel, How to Solve
It: Modern Heuristics, Springer-Verlag, Berlin,
2002.

[11] E. Nowicki and C. Smutnicki, A Fast Taboo
Search Algorithm for the Job Shop Problem,
Management Science, Vol. 42, 1996, pp. 797-
813.

[12] C.R. Reeves, Modern Heuristic Techniques for
Combinatorial Problems, Blackwell Scientific
Publications, Oxford, 1993.

[13] R. Vaessens, E. Aarts and J. Lenstra, Job Shop
Scheduling by Local Search, INFORMS
Journal on Computing, Vol. 8, 1996, pp. 302-
317.

[14] J.P. Watson, A. Howe and L. Whitley,
Deconstructing Nowicki and Smutnicki's i-
TSAB Tabu Search Algorithm for the Job-Shop
Scheduling Problem, Computers & Operations
Research, Vol. 33, 2006, pp. 2623-2644.

[15] H. Wenqi and Y. Aihua, An Improved Shifting
Bottleneck Procedure for the Job Shop
Scheduling Problem, Computers & Operations
Research, Vol. 31, 2004, pp. 2093-2110.

Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 547

	

