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Abstract: - The scheduling of manufacturing processes aims to find sequences of jobs on given machines 
optimal by a selected criterion, e.g. minimal completion time of all operations. With respect to NP-hardness of 
these problems and the necessity to solve them by heuristic methods, the problem representation and the 
effectiveness of their procedures is substantial for computations to be completed in a reasonable amount of 
time. In this paper, we deal with job shop scheduling problem (JSSP) in a disjunctive graph-based 
representation. Turning all undirected edges into directed ones, the problem is transformed to a problem 
solvable by the Critical Path Method (CPM). We propose an original implementation of the CPM that makes it 
possible to decrease its time complexity and thus also the running time of all JSSP iterations.   
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1 Introduction 
Practical machine scheduling problems are 
numerous and varied [3]. They arise in diverse areas 
such as flexible manufacturing systems, production 
planning, logistics, communication, computer 
design etc. A scheduling problem is to find 
sequences of jobs on given machines with the 
objective of minimising some function of the job 
completion times.  

In a simpler version of this problem, flow shop 
scheduling, all jobs pass through all machines in the 
same order. A more complex case is represented by 
a job shop scheduling problem where machine 
orderings can be different for each job.  

Job shop scheduling problem (abbreviated to 
JSSP or JSS) is one of the hardest combinatorial 
optimization problems. It belongs to the class of 
NP-hard problems, consequently there are no known 
algorithms guaranteed to give an optimal solution 
and run in polynomial time. That means, classical 
optimization methods (branch and bound method, 
dynamic programming) can only be used for small-
scale tasks. Therefore, more complex tasks must be 
solved by heuristic methods [10], [12]. Successful 
heuristic methods include approaches based on 
simulated annealing [6], tabu search [11], [14], and 
genetic algorithms [9]. A very efficient method 
combines a variable depth search procedure with a 
shifting bottleneck framework [2], [15]. 

 

2 Mathematical Model of JSSP 
The classical JSS problem can be described as 
follows [13]: There are a set of m machines and a 
set of n jobs. Each job consists of a sequence of 
operations, each of which needs to be processed 
during an uninterrupted time period of a given 
length on a given machine. Each machine can 
process at most one operation at a time. We assume 
that any successive operations of the same job are 
processed on different machines. A schedule is an 
assignment of the operations to time intervals on the 
machines. 

The problem is to find a schedule which 
optimises a given objective. Assume that three finite 
sets J, M, O are given where J is a set of jobs 1, … , 
n, M is a set of machines 1, … , m, and O is a set of 
operations 1, … , N. 

Consider the following denotations: Ji = the job 
to which operation i belongs, Mi = the machine on 
which operation i is to be processed, ti = the start 
time for operation i, pi = the processing time for 
operation i, Cmax = the makespan. 

On O, a binary relation → is defined that 
represents precedence constraints between 
operations of the same job. 

If i→j, then Ji=Jj and there is no 
k∈{i,j}satisfying i→k or k→j. (Operation i is the 
predecessor of operation j). Thus, if i→j, then Mi ≠ 
Mj by the JSSP specifications. 
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The problem of optimal job shop scheduling is to 
find a starting ti time for each operation i∈O such 
that 
  (1) (max i i

i O
t p

∈
+ )

k

is minimised subject to: 
     ∀i∈O :  ti ≥ 0 (2) 
 ∀i, j∈O, i→j :  tj ≥ ti + pi  (3)  
∀i, j∈O, i≠j, Mi =Mj   :  (tj ≥ ti + pi) ∨ (tj ≥ ti + pj) (4) 

The conditions (3) express precedence 
constraints which represent technological link-up of 
operations within the same task. The conditions (4) 
express machine capacity constraints, i.e. each 
machine can process at most one operation at a time. 

The described equations cannot be directly used 
for determining a schedule. We need to eliminate 
symbols of binary relation → and disjunction ∨ and 
try to get a formulation of integer programming. 

The binary relation can be eliminated easily so 
that O will be decomposed into subsets of 
operations that correspond to tasks. Then we will 
assign to operations in each task numbers creating a 
sequence of consecutive integers by the operation 
order. 

Denote nj = the number of operations in job j, 
and Nj = the total number of operations of the first j 
jobs. 

Evidently: 

 0
1 1

0, , .
j n

j k
k k

N N n N
= =

= = =∑ ∑n   (5) 

Using the denotation for total number of 
operations of the first j−1 jobs, we assign to nj 
operations of task j numbers Nj−1 + 1, … , N j−1 + nj 
where N j−1 + nj = Nj. 

Now we can express equation (3) as follows: 

 ( )( )1 11 1 :j j i i ij J N i N t t p− +∀ ∈ + ≤ ≤ − ≥ +  (6) 

The makespan is then determined as the 
maximum of the completion times of the last 
operations in jobs. Hence, we get: 

 max:
j jN Nj J C t p∀ ∈ ≥ +  (7) 

Let us define capacity constraints using binary 
variables xij ∈{0,1} as follows: 

, , , :

1, ,  operation  precedes 

0, ,  operation  precedes 

i j

j i i
ij

i j j
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If T is an upper bound of the makespan, then, 
using xij, we can replace equation (4) by pairs of 
inequalities (9) as follows: 

( )
( )

1
, , , :

1

j i i ij ij
i j

i j j ij i

t t p x T x
i j O i j M M

t t p x Tx
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≥ + − −⎪⎩ j

 (9) 

Hence, the job shop scheduling problem with 
makespan objective can be formulated as follows: 

Minimise 
 Cmax (10) 

subject to 
 ∀i∈O :  ti ≥ 0 (11)
( )( )1 11 1 :j j i i ij J N i N t t p− +∀ ∈ + ≤ ≤ − ≥ +  (12)

max:
j jN Nj J C t p∀ ∈ ≥ +  (13)
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 (14) 
 
 
3 Disjunctive Graph-Based 
 Representation 
An important feature of heuristic methods is 
problem representation. In [4], a review of 
frequently used representations is presented. Here, 
we briefly describe only one based on disjunctive 
graphs. 

The disjunctive graph-based representation: A 
disjunctive graph is defined as follows: 

 ( ),G V C D= ∪  (15) 

where 
V is a set of vertices representing operations. 

This set contains also two special vertices numbered 
0 and N+1 representing the fictitious start and end 
operations, respectively. The processing time of 
each operation is denoted as the weight of the 
vertex. The two fictitious operations 0 and N+1 have 
operation times of zero. 

C is a set of directed conjunctive edges. These 
edges represent pairs of consecutive operations of 
the same job, as well as edges from the start vertex 0 
to the first operation of each job and edges from the 
last operations of each job to the end vertex N+1. i

 (8) 
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D is a set of undirected disjunctive edges 
representing pairs of operations to be processed by 
the same machine. 

To determine a schedule we must define an 
ordering of all operations processed on the same 
machine. It can be done by turning all undirected 
(disjunctive) edges into directed ones. Evidently, 
there are 

 ( )1 2 | || |1 2
ln 22 2 2 MM m m mmm m e + + +

=  (16) 

possible disjunctive graphs, where mi is the number 
of operations on machine i. Some of them are 
infeasible because of cycles. 

A set S of all directed edges selected from 
disjunctive edges is called a complete selection. A 
complete selection S defines a feasible schedule if 
and only if the resulting directed graph is acyclic 
which guarantees there are no precedence conflicts 
between operations, see Figure 2. Obviously, the 
time required to complete all jobs (makespan) is 
given by the length of the longest weighted path 
from the start vertex to the end vertex in a directed 
graph G(S)=(V,C∪S), where S is an acyclic 
complete selection. This path is called the critical 
path and is composed of a sequence of critical 
operations. 

 
 
 r
 
 
 
 
 
 
 
 
 
 

Fig. 1: Disjunctive graph for the JSSP instance and a 
feasible schedule  

 
Using Critical Path Method (CPM) [7], we easily 

get the earliest possible start times of operations and 
the corresponding schedule. 

The key operator of the tabu search and 
simulating annealing methods is one used to 
construct a neighbourhood of the current solution in 
which these algorithms search for a solution to be 
used in the next iteration. In the literature, many 

sophisticated strategies can be found. For lack of 
space, we only mention the neighbourhood search 
strategy of Nowicki and Smutnicki [11], [14]. It is 
based on modifications of critical blocks that create 
a critical path evaluated by the CPM. These blocks 
are given by maximal sequences of consecutive 
critical operations on the same machine.  

For a single (arbitrarily selected) critical path u 
and critical blocks B1, … , BBr defined for u, it swaps 
the first (and the last) two operations in blocks B2B , 
…, BBr−1. In the first block B1B  it swaps only the last 
two operations, and, via symmetry in the last block 
BBr, it swaps only the first two operations. These 
swaps define the set of moves from the processing 
order pi. This set of moves is not empty only if the 
number of blocks is greater than one (r >1) and if 
there exists at least one block with the number of 
elements greater than one. The neighbourhood of pi 
is then defined as all the processing orders obtained 
by applying moves from pi. This strategy 
implemented within the framework of a tabu search 
led to the best known results for benchmarks from 
the OR-Library. 
 
 
4 CPM and Its New Implementation 
Given a network of one project in A-on-A graphical 
representation (activity = arrow (directed edge)) 
with weights of edges (i, j) determined by activity 
durations ti j, we can calculate, for each activity, by 
means of the well known Critical Path Method 
(CPM) [1], [7], [8] the earliest possible start time 
(the earliest possible time that the activity can 
begin); the earliest possible finish time (the earliest 
possible time plus the time ti j needed to complete 
the activity); the latest allowable finish time (the 
latest time an activity can end without delaying the 
project) and the latest allowable start time (the latest 
allowable finish time minus the time needed to 
complete the activity) and total (activity) slack or 
total (activity) float (the amount of time by which 
the start of a given activity can be delayed without 
delaying the completion of the project). 

In A-on-A graphical representation, the 
following notions are referred to start and end 
vertices of the network graph: Ti

(0) represents the 
earliest possible start time of vertex i, Tj

(1) the latest 
allowable finish time of vertex j. TSi j = Tj

(1) − Ti
(0) −ti j 

is the total slack of activity (i, j).  
 
 
4.1  CPM for topologically sorted network 
 graph 

finish 

8 9 10 11 

sta
1 2 3 4 

t 
5 6 7 12 0 

8 9 10 11 

start 
1 2 3 4 

5 6 7 0 12 
finish 
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A classical version of the CPM implementation is 
based on that topological ordering [5] of the 
vertices which means that, for each edge (i, j), i 
appears before j in the ordering, that is, i< j. 

Let nt be the number of the network graph 
terminal, n0 the number of the network graph origin, 
and m the number of edges. 

The denotation n0 is used only for the sake of 
generality because in literature the origin is 
numbered by 0 or 1. 

Then, a topological ordering of the vertices can 
be computed as follows: 
1. Start from the origin and assign n0 to it. 
2. Leave all edges outgoing from n0 and assign 

numbers n0+1, … , n0+k1 to k1 vertices that have 
no input edge. 

3. Leave all edges outgoing from the vertices 
numbered in the previous step and assign 
numbers n0+k1+1, … , n0+k1+k2 to k2 vertices 
that have no input edge. 

4. Continue this way until all vertices are 
numbered. 

In the program realization of this algorithm, we 
keep for each vertex a value C(v) that determines 
the number of unselected vertices adjacent to v. At 
the beginning, we initialise C(v) by 0 for each vertex 
v and then, for all end vertices w of directed edges 
(v, w), we make the assignment C(w):=C(w)+1. This 
process is applied to each vertex v of edges (v, w) 
satisfying C(v)=0. Pruning the edges outgoing from 
a vertex v numbered in the previous step 
corresponds to executing the statements modifying 
the value C(w) of end vertices of edges (v, w) by 
C(w) :=C(w)−1. 

The time complexity of the topological sort is 
O(|V|+|E|) [5]. 

If a network graph is topologically ordered, then 
the earliest possible start times are determined as 
follows: 

0

(0) 0nT =  (17) 

{ }(0) (0)
0 0

( , )
max , 1, 2, ,ij tj ii j E

T T t j n n
∈

= + = + + … n  (10) 

The following two equations are used to 
determine the latest allowable finish times of the 
vertices: 

(1) (0)
t tn nT T=  (18) 

{ }(1) (0)
0

( , )
min , 1, 2, ,ij t ti ji j E

T T t j n n
∈

= − = − − … n  (12) 

From these equations it is obvious that the time 
complexity of both the earliest possible start times 
and the latest allowable finish times calculations is 
equal to O(|V||E|). 

The phase of the topological sort included, the 
total time complexity of the algorithm is therefore 
O(|V|+|E|+|V||E|). 
 
 
4.2 CPM for network with lexicographical 
ordering of edges 
Consider a lexicographical ordering of the edges 
defined in the following way: Let e1, e2 ∈E, e1 = (a1, 
a2), e2 = (b1, b2), then 

( ) ( )( )0 0 0 0

1 2 0

0

{1,2}:

1 :i i i i

e e i

a b i i i a b

⇔ ∃ ∈

< ∧ ∀ ≤ < =

≺
 (19) 

In this definition, we do not consider the edges 
equality because each network graph is simple and 
thus all edges differ minimally in one vertex. Using 
this ordering, we can simplify the formulae for the 
earliest possible start and latest allowable finish 
times calculations so that the pairs of nested cycles 
in the algorithm are replaced by simple sequential 
cycles: 

Formally, we express this for the earliest possible 
start times of the vertices as follows: 

(0): ii V T 0∀ ∈ =  (20) 

{ }(0) (0) (0)( , ) : max , ijj j ii j E T T T t∀ ∈ = +

Notice that the cycle  is processed by 
the ordering ≺  from the “lowest” edge to the 
“highest” edge. 

( , )i j E∀ ∈

Next two equations make it possible to determine 
the latest allowable finish times of the vertices 
where, in the cycle ( , )i j E∀ ∈ , we use the “inverse” 
ordering from the highest edge to the lowest one: 

These formulae imply that, in this type of 
ordering, the time complexity of the vertices times 
is O(|V|+|E|). However, time complexity of the 
lexicographical sort must also be considered. From 
the most efficient sorting algorithms MergeSort, 
HeapSort and QuickSort, we selected the last one 
for the reason of its simple implementation. The 
time complexity of QuickSort is O(|E| log2|E|). As 
the lexicographical sort is preceded by the 
topological sort, the total time complexity of this 
CPM implementation is given by 
O(|V|+|E|+|V|+|E|+|E| log2|E|), which can be 
simplified to O(|V|+|E|+|E| log2|E|). 
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Now we can write a pseudopascal version of the 
described CPM implementation for network graphs 
using a lexicographically ordered list of edges. Here 
ne denotes the number of edges of network graph, 
i.e., it equals |E|. The user-defined type 
net_graph represents an array of records 
describing edges. Their items are given by SV = 
starting vertex of edge, EV = ending vertex of edge, 
t = weight of edge represented by the activity 
duration and TS = total slack of activity. The user-
defined type ivector is used for arrays of 
numbers assigned to vertices. 
 
procedure CPMlex(var graph: net_graph; ne, nv0, 
nv: integer; var T0,T1: ivector) ; 
 var  i: integer ; 
 begin for i : = nv0 to nv do 
 T0[i] : = 0; 
 for i : = 1 to ne  do 
 with graph[i] do 
 if T0[SV] + t > T0[EV] 
  then T0[EV] : = T0[SV] + t ;  
 { max } 
 for i : = nv downto nv0 do 
 T1[i] : = T0[nv]; 
 for i : = ne downto 1  do 
 with graph[i] do 
 if T1[EV] − t < T1[SV] 
  then T1[SV] : = T1[EV] − t ;   
 { min } 
 for  i : = 1 to ne  do 
 with graph[i] do 
 TS : = T1[EV] − T0[SV] − t 
 end ;  
{ CPMlex - CPM implementation for network graph 
using a lexicographically ordered list of edges } 
 
 
5 Conclusions 
In this paper, we presented a mathematical model of 
the job shop scheduling problem. Based on a mixed 
integer programming formulation, it could be used 
for computation in such optimization tools as 
GAMS and LINDO. Obviously, because of NP-
hardness of the model, they can only get an optimal 
solution for small JSSP instances. Therefore, other 
representation schemes, more suitable for 
computations by approximation or heuristic 
methods, must be searched. As frameworks of these 
methods are sufficiently known, we focused on the 
key neighbourhood operator of the probably best 
known algorithm proposed by Nowicki and 

Smutnicki to disjunctive graph-based representation 
of JSSP. 

Since JSSP in the disjunctive graph-based 
representation is based on the CPM calculation step, 
the efficiency of this step plays a significant role 
here. In this paper, a new implementation of the 
CPM was proposed. After the usual topological sort 
of vertices, an additional step (lexicographical sort 
of edges) is included. It was shown that for a 
network graph G =(V, E) the time complexity of this 
version of CPM is equal to O(|V|+|E|+|E| log2|E|), 
and thus it is lower than the time complexity of the 
classical CPM implementation using topological 
ordering of vertices.  

Further investigation will include fuzzy versions 
of these problems where two cases of uncertainties 
can be obtained - uncertain due dates and uncertain 
processing times. 
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