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Abstract: Increasing the degradation of groundwater quality in Oman by salinization and chemical 

contaminants threaten primary sources of drinking water, especially in the coastal agricultural areas. This work 

elaborates the quality deterioration of groundwater due to chemical contaminants. First, we describe the 

development and application of Dynamic Bayesian Networks (DBNs) to determine the impact of these 

contaminants on groundwater quality. Second, we discuss and compare the results produced by these methods 

with that produced by the applications of neural networks and by the applications of classical time series 

models.   
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1 Introduction 
Water is an essential requirement for irrigated 

agriculture, domestic uses, including drinking, 

cooking and sanitation, as critical input in industry. 

Declining surface and groundwater quality is 

regarded as the most serious and persistent issue 

affecting Oman in particular. The Sultanate faces 

severe challenges as it confronts the extremely 

growing and complicated issues of contamination of 

the groundwater supply in and around hazardous 

waste disposal sites across the nation. In Salalah area 

of Oman, groundwater has been an important natural 

resource and the only available water source other 

than the seasonal rainfall.  

Groundwater quality and pollution are 

determined and measured by comparing physical, 

chemical, biological, microbiological, and 

radiological quantities and parameters to a set of 

standards and criteria. A criterion is basically a 

scientific quantity upon which a judgment can be 

based. In this work, however, we considered only the 

chemical parameters, total dissolved solids (TDS), 

electrical conductivity (EC) and water pH, section 4 

presents more details.  

Various countries have attempted to develop 

satisfactory procedures for assessing, monitoring and 

controlling contamination of the groundwater supply 

in and around hazardous waste disposal sites [1]. 

These attempts resulted in various environmental 

regulations that focus attention on the maximum 

allowable limits of hazardous pollutants in the 

groundwater supply. However, they pay scant 

attention to the nature of groundwater data and the 

development of valid statistical procedures for 

detecting and monitoring groundwater 

contamination. 

Recent attempts based on Artificial Intelligence 

(AI) were first applied to the interpretation of 

biomonitoring data [8]. Other works were based on 

pattern recognition using artificial neural networks 

(NNs). A more recent study described a prototype 

Bayesian belief network for the diagnosis of 

acidification in Welsh rivers. Hobbs [5] uses 

Bayesian probabilities to examine the risk of climate 

change on water resources.  
 

 

2 Problem Description  
Oman, has very substantial groundwater resources 

on which the country’s agriculture depends. The oil 

boom, the resultant population boom (possibly 

fivefold since the 1960’s) and the new investment 

have led to a large expansion in irrigated areas.  

The Salalah plain extends over a 253 km2 area to 

the north of the Omani coastline of the Arabian Sea 

to the Mountains of Dhofar.  

In this work, we  compare the applications of 

Bayesian techniques, classical statistical analysis, 

and SOM to forecast groundwater pollution levels in 

the Salalah plain, see Figures 1. 

 
Figure 1. Taqah region, which is the eastern part of the 

Salalah plain in Oman. 
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3 Data Collection  
The Ministry of Water Resources (MWR) maintains 

data on the concentration of the harmful substances 

in the groundwater at Taqah monitoring sites, which 

are located to the south of the Sultanate of Oman, in 

the Salalah plain [9]. The MWR identified that the 

datasets collected from these monitoring wells in the 

Sultanate are important in assessing the groundwater 

quality and in the prediction of the effect of certain 

pollutants on drinking water. The period covered in 

these locations is from 1984 to 2004 [3, 4]. Each site 

has several monitoring wells and water samples were 

collected periodically from these wells and the 

concentration of the pollutants in these water 

samples was recorded.  We also collected data for 

the period  1984-1994 from Oman Mining Company 

(OMCO) and Ministry of Environmental and 

Regional Municipalities (MRME). However, the 

datasets are not complete. We, therefore, filled the 

gaps with data collected by some researchers at the 

Sultan Qaboos University. 
 

 

4 Dynamic Bayesian Networks (DBNs) 
The problem of assessing and forecasting water 

quality requires not only modelling the static 

probabilistic dependencies between its constituents 

but also the dynamic behaviour of these constituents. 

Dynamic Bayesian Networks (DBNs) can easily 

capture these static and dynamic behaviours [4]. 

They extend Bayesian Networks from static domains 

to dynamic domains [1]. A static Bayesian Network 

can be extended to a Dynamic Belief Network by 

introducing relevant temporal dependencies between 

the representations of the static network at different 

times. In contrast to the time series models that use 

regression to represent correlations, DBNs represent 

the temporal causal relationships between variables. 

Therefore, DBNs can introduce more general 

dependency models [5].  

DBNs can be effectively and cheaply used for 

monitoring and predicting complex situations. For 

example, they have been used for monitoring and 

controlling highway traffic for identifying gene 

regularity from microarray data [9],  and for 

prediction of river and lake water pollution. 

The temporal repetition of identical model 

structures encourages the integration of object 

oriented techniques with Bayesian networks. It 

started with methods for reusing elements of network 

specifications and division of large networks into 

smaller pieces. These and other successful object-

oriented Bayesian networks (OOBNs) models and 

their applications to real-world problems have 

greatly encouraged us to develop a model and a 

computer system based on the OOBN representation 

to assess and predict the water quality. Therefore, we 

used the Hugin and dHugin tools for implementing 

our Bayesian networks [6]. The Hugin system allows 

the implementation of an OOBN. The system 

considers a Bayesian Network (BN) as a special 

case, initial building network, of an OOBN.  Other 

networks in the OOBN are nodes that represent 

instances of the base network.  
 

 

4.1 Bayesian Networks Development 
Identifying the domain variables (pollution 

constituents) and the causal relationships between 

these variables constitute the main part of 

development process. In our study, we only 

considered the dependencies between total dissolved 

solids (TDS), electrical conductivity (EC) and water 

pH. In the Sultanate of Oman, these are the main 

factors that industry experts were dealing with and, 

therefore, maintaining good data about them. In fact, 

we used our literature-based network structure as a 

starting point for discussion with the experts to 

explain the Bayesian network approach and to get 

their input [1]. In addition, we analyzed the data 

collected from many wells and the results revealed 

that these chemical parameters are useful indicators 

of groundwater quality because they form the 

majority of the variance in the data scatter. 

The electrical conductivity (EC) of the water has 

been used as a measure for the salinity hazard of the 

groundwater used for irrigation in the Salalah plain. 

According to international water-quality standards, 

irrigation water with EC values up to 1 mS/cm 

(where mS/cm = milli-Siemens per centimeter) is 

safe for all crops and between 1 and 3 mS/cm is 

acceptable, but values higher than 3 mS/cm restrict 

the use of water for many irrigated crops. Changes in 

conductivity can be caused by changes in water 

content of the soil and by soil or groundwater 

contamination. 

The total dissolved solid (TDS) limit is 600 

mg/L, which is the objective of the current plan of 

the MWR. TDS contains several dissolved solids but 

90% of its concentration is made up of six 

constituents. These are: sodium Na, magnesium Mg, 

calcium Ca, chloride Cl, bicarbonate HCO3 and 

sulfate SO4. We, therefore, considered only these 

elements in the calculation of TDS. Other factors 

that are considered less significant to groundwater 

quality in Oman were not recoded and therefore 

neglected in this study.  

Both TDS and EC can affect water acidity or 

water pH. Solute chemical constituents are variable 
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in high concentration at lower pH (higher acidity). 

On the other hand, acidity allows migration of 

hydrogen ions (H+), which is an indication of 

conductivity. Therefore, our work concentrated on 

the following relations. 
  

TDS � EC, EC � pH, TDS � pH 

 

Reaching to these relations we used two learning 

approaches to construct and parameterize a simple 

static BN that have three nodes, each node represents 

a groundwater quality constituent (TDS, EC or pH). 

Learning basically consists of two different 

components: 1) learning the network structure , 2) 

learning the conditional probability distributions.  

For the first approach, we used the Hugin system 

that supports structure and parameter learning in 

Bayesian networks. Regarding the former, the PC 

learning algorithm was applied, while for the latter, 

we used the EM algorithm.  

In the second approach, we used a program 

written in C++ to generate the conditional 

probabilities. The program requires, as inputs, a 

dataset and thresholds or discretization intervals for 

each variable in the dataset. It calculates the 

frequencies of various values of the variables given 

various values of their parents in the network. These 

frequencies estimate the conditional probability 

tables associated with each node. Knowing that the 

maximum allowable TDS, EC and pH in the 

drinking water are 550 mg/l, 670 mg/l and 7.5 

respectively, we pass these values as thresholds 

along with the dataset to our C++ program. For TDS, 

the program divides the relevant dataset into two 

categories, considering TDS=550 as a threshold. 

Thus, the first category has TDS < 550 and the 

second category has TDS >= 550. For EC, the 

program also divides the data sample into two 

categories: data with EC < 670 and data with EC >= 

670. Finally, for pH, the program also divides the 

relevant dataset into two categories, data with pH < 

7.5 and data with pH >= 7.5.  

After the categorization of the dataset, the 

program uses the following algorithm to produce the 

conditional probabilities.  

Let A and B be two events (for example 

A=EC<670) and B=TDS<550, and let m(A) and 

m(B) be the frequencies of A and B. The program 

calculates P(A/B) as follows:  
if A includes B then 

     P(A/B)=1; 

else 

      X=A∩B; 

 if X=Φ then 

      P(A/B)=0; 

 else 

)(

)(

)/(
Bm

Xm

BAP Xx

∑
∈= ; 

According to international water-quality 

standards, irrigation water with EC values up to 1 

mS/cm is safe for all crops and between 1 and 3 

mS/cm is acceptable, but values higher than 3 

mS/cm restrict the use of water for many irrigated 

crops. Changes in conductivity can be caused by 

changes in water content of the soil and by soil or 

groundwater contamination. 

The total dissolve solid (TDS) limit is 600 mg/L, 

which is the objective of the current Plan of the 

MWR. TDS contains several dissolved solids but 

90% of its concentration is made up of six 

constituents. These are: sodium Na, magnesium Mg, 

calcium Ca, chloride Cl, bicarbonate HCO3 and 

sulfate SO4. We, therefore, considered only these 

elements in the calculation of TDS, which is 

represented as a node without parents in the network 

structure. This simplification is necessary to make 

the problem tractable and to keep it consistent with 

available data without losing information.     

Both TDS and EC can affect water acidity or 

water pH. Solute chemical constituents are variable 

in high concentration at lower pH (higher acidity). 

On the other hand, acidity allows migration of 

hydrogen ions (H+), which is an indication of 

conductivity. Therefore, our work concentrated on 

the following relations: 
TDS � EC, 

EC   � pH, 

TDS � pH. 

 

Table 1. TDS data for the well Well 001/577. 

 

Yr Mg SO4 Na Ca K Cl 

 

HCO3 

 

84 12 11 21 91 11 172 

 

224.7 

85 10 12 20 88 13 148 234.5 

86 9 14 18 92 17 140 275.4 

87 14 12 43 86 14 148 287.2 

88 12 12 20 90 20 132 255.8 

89 10 12 17 86 16 148 276.9 

90 32 13 15 92 18 164 224.6 

91 19 11 45 89 21 168 287.4 

92 12 14 152 92 17 176 291.5 

93 21 12 165 93 19 192 296.7 

94 27 14 88 96 23 204 294.4 

95 7 11 65 60 22 140 310.8 

96 16 25 64 52 15 244 321.5 
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97 13 19 83 102 18 204 314.6 

98 19 26 97 107 26 248 412.6 

99 56 38 217 98 57 220 487.7 

00 41 20 201 104 31 236 388.4 

01 43 23 204 135 30 244 387.6 

02 55 32 210 138 41 308 438.6 

03 52 20 147 121 33 272 410 

04 48 21 152 130 34 284 405.4 

 

Table 2. TDS,  EC, and pH data for the well Well 

001/577. 

Yr TDS EC pH 

84 543 548 7.7 

85 526 548 7.8 

86 565 579 7.75 

87 604 588 7.57 

88 542 601 7.43 

89 566 625 7.34 

90 559 638 7.32 

91 640 798 7.27 

92 755 739 7.24 

93 799 758 7.28 

94 746 799 7.29 

95 616 514 7.3 

96 738 619 7.28 

97 754 869 7.19 

98 936 558 7.15 

99 1174 855 7.15 

0 1021 796 7.06 

1 1067 855 6.98 

2 1223 844 6.94 

3 1055 881 6.9 

 

Table 1 shows the monitoring measurements of 

the main components of TDS for the well Well 

001/577.  Data for the constituents Mg, SO4, Na, Ca, 

K, and CL of TDS were only reported. Differences 

for other parameters were not significant in the 

Salalah area. Table 2 shows the measurements of  

EC and pH for the same well along with the 

measurements of TDS copied from Table 1.  

After providing the prior probabilities and the 

conditional probability tables, the results of the run 

session for new-presented data for any selected node 

of HUGIN are also shown in Figures  2 and 3. 

Once the static BN model (static model) for each 

monitoring well was built, parameterized and tested, 

we used these models as initial building networks in 

the construction of OOBN for groundwater quality 

prediction. The OOBN, as shown in  Figure 2, 

models the time slices for each well characterizing 

the temporal nature of identical model structures, 

where the initial building network, see Figure 3, 

describes a generic time-sliced network.  

 
Figure 2. The OOBN representing three time-sliced 

network. 

 

Figure 3. The initial building block representing one time-

sliced network. 

 

 

5 Application Results  
The application was carried out with special 

emphasis on the advantages of Bayesian against 

traditional techniques. It involved monitoring the 

groundwater quality parameters and validating 

crucial assumptions. 

Figures 4 show the KL-divergence between the 

true and the approximate distribution. Since the KL-

distance converges to zero, this is an indication of 

the accuracy and reliability of OOBN. 
 

0
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Figure 4. The KL-divergence between the true distribution 

and the estimate distribution over all variables. 

 

 

6 Using Classical Time Series 
We applied the classical time series analysis to 

groundwater quality data and to compare the results 

Proceedings of the 11th WSEAS International Conference on SYSTEMS, Agios Nikolaos, Crete Island, Greece, July 23-25, 2007         64



 

 

with that obtained by the application of Dynamic 

Bayesian Networks (DBN).  

Time series analyses of water supply wells with 

respect to the concentration of chemical constituents 

are presented in Figures 5-6.   
 

y  =  3 3 . 9 2 8 x  +  4 1 2 . 5 3

R
2
 =  0 . 8 2 2 3

0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

1 2 0 0

1 4 0 0

1 9
8 4

1 9
8 6

1 9
8 8

1 9
9 0

1 9
9 2

1 9
9 4

1 9
9 6

1 9
9 8

2 0
0 0

2 0
0 2

2 0
0 4

m
g
/l

T D S

L in e a r

( T D S )

 
Figure 5. Fluctuation of TDS concentration for the well 

Well001/577. 
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Figure 6. EC concentration is poorly represented for the 

well Well001/577. 
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Figure 7.  Fluctuation of the concentration of the major 

chemical constituents for Well001/577. 

 

The fluctuation of the concentration of the 

chloride (Cl), sodium (Na), and calcium (Ca) with 

respect to time is shown in Figure 7. The values were 

averaged during the initial analysis as there were no 

significant differences among the monthly data. 

Chloride values above 250 mg/l give a slight salty 

taste to water which is objectionable by many 

people. Multiple regression analysis is used to 

explain as much variation observed in the response 

variable as possible, while minimizing unexplained 

variation from “noise”.  The results of this analysis is 

used to produce the moving average chart, Figure 9.  

We used Excel Business Tools, Microsoft Excel, and 

Matlab for producing these and other charts. 
 

Figure 8. Excel templates for financial analysis and 

business productivity from Excel Business Tools . 

 

As it is shown in Figure 9 that the trend is as 

follows: 

TrendWQ=19.01*TDS - 5.42*EC -270.16*pH + 

205.14 
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Figure 9. Moving average chart of 2-year period for 

groundwater quality trend. 

 

The classical time series models are based on the 

assumption of stationary. Therefore, these models do 

not readily adapt to domains with dynamically 

changing model characteristics, as is the case with 

groundwater quality assessment. In addition, the 

classical models are restricted in their ability to 

represent the general probabilistic dependency 

among the domain variables and they fail to 

incorporate prior knowledge.  

The observed groundwater quality data are 

irregularly spaced and not predetermined as in the 

case with ordinary time series. This may cause the 

traditional time series techniques to be ineffective 

(Prediction: what is the predicted value for one 

period ahead). It is evident that the time series casts 

doubts on the positive or negative effects of any 

chemical constituent on the groundwater quality for 

the long run, and is thus not as clear and reliable as 

in the case of using Dynamic Bayesian Techniques. 

While some groundwater quality constituents, such 

as chloride and TDS, show an increasing trend, the 

other constituents, such as pH, Mg, and SO4 do not 

demonstrate obvious trends. Therefore, we cannot 

draw a reliable conclusion on the cause of the 
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increasing trend of the groundwater quality. In 

addition to the ignorance of the cause-effect 

relationships, classical time series models assume the 

linearity in the relationships among variables and 

normality of their probability distributions. 
 

 

7 Using SOM 
In this section, we explain how neural methods 

might be applied to groundwater quality assessment.  

SOM uses an unsupervised approach to learning. 

The map resembles a landscape in which it is 

possible to identify borders that define different 

clusters. With this map we wanted to see how 

different chemical values are situated in comparison 

to each other and to the previous years’ values. It is 

visualized in order to discover how the groundwater 

quality has been changed according to different 

years. On the map, we define the clusters by looking 

at the color shades of the borders between the 

neurons (nodes). The dark colors in the walls 

represent great distances while brighter colors 

indicate similarities amongst the neurons. The 

colored borders between the nodes are of great value 

when trying to determine and interpret clusters.  

A number of clusters and the characteristics of 

these clusters were identified, see Figure 10. There is 

a tendency starting from the bottom right corner, 

where the early eighties data are allocated, up 

towards the top of the map and then to the bottom 

left corner. Therefore, the map shows that the 

degradation of groundwater quality  is in the bottom 

left corner where the data for the years 2000 to 2004 

are located. The first seven years data from 1984 to 

90 inclusive are in the bottom right corner of the 

map. The 1998 data are also at the ultimate bottom 

right of the map that shows a significant 

improvement in the groundwater quality for this 

year. 

 
Figure 10: The u-matrix (unified distance matrix) 

visualization of the SOM for the chemical constituents 

dataset in Table 1. The map is 11 × 9 neurons. The map is 

also labeled. 

 

 

8 Conclusion and Further Work 
The simple Bayesian network presented here is 

the first step towards having a comprehensive 

network that contains the other variables that are 

considered by the researchers significant for the 

assessment of groundwater quality in the Salalah 

plain in particular. These variables include: 

• NO3: Nitrate is an increasingly important 

indicator of water pollution. 

• COD: chemical oxygen demand, it 

reflects the organic and inorganic content 

of the water. 
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