

A Theme-based Search Technique

Nida Al-Chalabi & Khalil Shihab
Department of Computer Science, Sultan Qaboos University, Box 36, Al-Khod, Oman

Email: nida@squ.edu.om; kshihab@squ.edu.om

Abstract: - This work presents an intelligent search engine, called ORCA, that returns the most relevant
documents for user’s queries. This search engine analyses the queries and builds themes (models) to be used
when the engine is confronted with similar queries. The intelligent component is used for constructing a model
of the user behavior and using that model to fetch and even pre-fetch information and documents considered of
interest to the user. It uses both latent semantic analysis and web page feature selection for clustering web
pages. Latent semantic analysis is used to find the semantic relations between keywords, and between
documents.

Keywords: Information Filtering, User’s Model, Search Engines, Latent Search Analysis.

1 Introduction
At the current explosive growth rate of the Web,
Internet users are finding it more and more
frustrating to effectively retrieve the desired
information[1, 2, 3]. Current search engines usually
flood the users with the number of pages and URLs
for a given search query. These engines are based on
first identifying keywords from the user queries and,
secondly, searching the web to find the pages
according to the frequency of these keywords in the
HTML pages. The disadvantage of this approach is
that the results of these search engines usually
contain a lot of unwanted information, which does
not relate to the users actual requirements. In other
words, they have lots of “noise”. With this type of
blind search and lack of automatic filtering
capability, traditional search engines make it difficult
for the users to find new information about the same
topic.

This work addresses this very problem and aims
at coming up with a design for a filtering system for
the Web searching which is based on the interests of
individual users, and has the capability for making
intelligent decisions in regard to what the user
desires to access. In summary, the filtering system
should give the users only the information they want,
discarding irrelevant and duplicate pages; thus
saving the users time and effort while surfing the
Web. In other words, search engines should not
bother the users with unwanted knowledge.

Moreover, the search engines should incorporate

some sort of intelligent capability to help the users in
locating information related to their interests. This
implies that an engine should possess learning
capability for building a model of the user behavior

while surfing the Web. This model can be
constructed from the user access log files, and can be
used to access. In the final section of this paper, we
identify some key components of such an intelligent
component.

Recently, several additional search engines
which are described to be intelligent have been
introduced. These engines mainly depend on
automatically discovering the users access patterns
while accessing the Web and use that knowledge for
future retrieval of information relevant to the interest
of the users. Examples of such engines include
WebWatcher [3] and Letizia [4]. They aim at
automatically performing some of the Web
exploration on behalf of the user to pre-fetch what is
considered of interest to the user.

WebWatcher is basically a tool which aims at
helping the user by interactively giving him advice
during the navigation. While the user is browsing
through the pages, WebWatcher assesses the links
contained in the pages, and then recommends those
links which are considered more promising in
meeting the requirements of the search criteria, i.e.
the goal. Letizia is an intelligent agent which works
with conventional browsers such as Netscape. It
tracks the user behavior during browsing and
attempts to figure out his goals and hence build a
model of his interests. It then uses that model to
search for pages considered relevant to the goals
embodied in the user model. The goal here is to
conduct some exploration of the Web on the behalf
of the user. Obviously, in such automatic
exploration, too many noises are expected. For
example, some pages are visited by the user not
because they are of any interest, but simply either
they have some intermediate links which need to be

Proceedings of the 11th WSEAS International Conference on SYSTEMS, Agios Nikolaos, Crete Island, Greece, July 23-25, 2007 367

followed to get to the desired page or they have been
mistakenly visited. Unfortunately, both of the above
engines lack efficient techniques to deal with this last
issue.

In short, intelligence claimed to be embodied in
these engines lie in their ability to model the user’s
access behavior and use that model to anticipate and
predict future access patterns. It is worth noting that
these intelligent search tools are still in their
experimental stages. It will be interesting to see how
effective these tools are after some performance
evaluations are reported. It goes without saying that
any attempt to include some sort of intelligence, as
the one described above, would require incorporating
complicated machine learning and automatic user
modeling techniques in the design of search engines.

2 Themes – User’s Behavior Models
In this approach, a search engine should come up
with the models that represent best of the user access
patterns and various areas of interest. We use explicit
planning mechanism to model the user behavior on
the Web. In this mechanism, the user is required to
explicitly spell out his/her interests that which
externalize and represent his access patterns. In this
way, the information about the user overall access
behavior on the Web is analyzed by the search
engine. This approach greatly simplifies the
problems associated with designing systems for
intelligent or automatic deduction of the user access
patterns.

2.1 The Architecture
Here we would like to lay down an architecture of
the User’ Model (Theme) component of the system,
which is placed on top of the existing search engines.
The system is written in Visual Basic and is designed
to help the users in avoiding seeing undesired
information when carrying out the search.

At the architectural level (shown in Figure 1),
the system consists of two main components, namely
the Theme Manager and the Processing Manager.

The Theme Manager serves several purposes
besides being the interface which communicates with
the users. As an interface, the Theme Manager
allows the user to establish his/her personal profile,
which includes such items as (1) set of keywords
(search criteria) which captures the topic or concept
of interest to the user, (2) the desired search engine
and (3) the options for live update. The Theme
Manager maintains individual user models in the
Theme Database. The Manager is also responsible
for submitting the queries to the search engines and

accessing the Theme Database where the results of
the search are stored, organized and managed by the
Processing Manager.

Figure 1: System Architecture

2.2 The Operations
After retrieving or creating themes for the current
user, the system displays the Current Themes and
Search Criteria window on the screen and allows the
user to add, modify, or delete his search preferences.
For example, the user can enter four search criteria,
but decide to submit only the first and the last ones
for search. The search engines selected can be Yahoo
for the first criteria and 37.Com for the last criteria.

After the user submits the searches, the system
processes the user’s query using the noise-disposal
procedure in order to produce a query consisting of
keywords only. It, then, uses these keywords to look
up for a theme from a table called look-up table,
which contains all the themes in the database. Using
a partial matching process, the system tries to match
the first keyword in the user’s query with the first
column in the table. If a match is found, it checks the
next field that contains the themes or tables related to
the first keyword and once again it tries to find

Theme Manager
Proc Manager

Theme Database

Doc. Database

Yahoo AltaVista HOTBOT 37.Com

WWW

Query

Query

Dispos

e

Look-Up
Table

Proceedings of the 11th WSEAS International Conference on SYSTEMS, Agios Nikolaos, Crete Island, Greece, July 23-25, 2007 368

another match. This process will continue until the
system finds the theme that contains all the URLs.
The process continues in the same manner with the
other keywords in the user’s query.

The system also deals with empty queries, the
case of having only one word and this word is final
sub theme, and the case of none of the given
keywords is a final sub-theme and the case when the
query doesn’t exist in the database. For the last case,
the system creates a new table with its description as
the query keywords and sends the queries to the
search engines selected and the results produced are
fed into the Processing Manager. The Manager
compiles the lists of URLs from the engines, merges
them, deletes duplicates, and finally produces a list
of URLs which satisfy the queries submitted. As
documents arrive, the Processing Manager classifies
URLs and stores these results into the Document
Database.

The Process Manager uses two types of features
extraction, latent semantic analysis and web page
features selection, for web page clustering using our
conceptual clustering technique (see section 5). The
latent semantic analysis (see section 4) extracts
common semantic relations between keywords and a
document. The web page feature selection extracts
the text features from a given web page for inputting
to our clustering technique. Latent semantic analysis
is used to find the semantic relations between
keywords, and between documents. The latent
semantic analysis method projects terms and a
document into a vector space to find latent

information in the document. At the same time, we
also extract text features from web page content.

3 System Implementation

3.1 Query Dispose
At this stage, the query is modified by removing all
the noise and all the unnecessary words. The system,
then, converts the query into individual keywords.
What we mean by noise is the words that are helpless
in the searching process such as find, about and
without. For example, if the user query is “training
courses of diploma in computer science” so the pure
query is “training courses diploma computer
science”. These keywords are stored in a vector
called terms-vector.

This sub routine is written using Visual Basic
Script and ASP.

3.2 Look-Up Table
This table is a two-dimensional array in which the
first column consists of all the tables (or themes)
available in the system’s database. The cells in each
row contain the tables (themes) related to the first
entry in each row. The last filled entry in each row is
indicated by “*” to show that this is the last entry.
This is due to the various numbers of sub themes
related to each theme. We have used “$” to indicate
that this theme is a final sub theme.

For an experiment, we created a database
containing three main themes: education, business
and computer. The database is created in Microsoft
Access. There are 59 tables in total for all the three
themes.

Now consider the business theme along with its
only three related sub themes, which are economics,
finance and marketing. If we trace the finance sub
theme, we get the following sub themes: banking,
accounting, planning, investment services, etc. If we
trace the theme investment service, the related sub
themes beneath it are: brokerages and socially
responsible investment. If we continue with
brokerages, we get bonds and money as a final sub
theme. This technique is used for all the tables to get
to the final sub themes. The following shows the
scheme that was stated above.

Business theme
Lookup (9, 1) = "business"
Lookup (9, 2) = "economics"
Lookup (9, 3) = "finance_and_investment"
Lookup (9, 4) = "marketing_and_advertising"
.

Var
 x, i : integer
word, query : string
find : Boolean
begin
 x = 0
 Size = 0 //size of the array of keywords of query.
 query = bring the user’s query from the HTML
 interface “project.asp”
 while (query is not “ “)
 begin
 x = find the position of the first
 white space “ “ in query
 word=starting from left of query
 take the sub string from the first index till (x-1)
 find=check if word is a noise ”false if it’s a noise”

 if find then
 begin
 keywordArray (Size) = word
 increment Size by 1
 end // if
 query=update query to start from
 x till length of query
 end //while
end.

Proceedings of the 11th WSEAS International Conference on SYSTEMS, Agios Nikolaos, Crete Island, Greece, July 23-25, 2007 369

.

.
Lookup (9, 23) = "brokerages"
Lookup (9, 24) = "bonds"
Lookup (9, 25) = "money"
Lookup (9, 26) = "*"

Finance Sub Theme

Lookup (29, 1) = "finance_and_investment"
Lookup (29, 2) = "banking"
Lookup (29, 3) = "accounting"
Lookup (29, 4) = "planning"
Lookup (29, 5) = "investment_service"
.
.
.
Lookup (29, 13) = "*"

Investment Service Sub-Theme

Lookup (12, 1) = "investment_service"
Lookup (12, 2) = "socially_responsible_investment"
.
.
.
Lookup (12, 6) = "*"

Brokerages Sub Theme

Lookup (8, 1) = "brokerages"
Lookup (8, 2) = "bonds"
Lookup (8, 3) = "money"
Lookup (8, 4) = "*"

Bonds Final Sub Theme

Lookup (7, 1) = "bonds"
Lookup (7, 2) = "$"

Money Final Sub Theme

Lookup (15, 1) = "money"
Lookup (15, 2) = "$"

3.3 Database
The database is created in Microsoft Access and it
initially contains 59 tables. There are two types of
tables: final sub theme tables and other theme tables.
The final sub theme tables are at the bottom level of
each theme (or the most sub theme).

Table 1: html table, which is an example of the final
sub-theme.

Table 2: www table, which is an example of a theme
table.

 To retrieve the fields in the final sub theme tables,
we use the following algorithm:

dim objrs
 set objrs = Server.CreateObject("ADODB.Recordset")
 connectme = "DSN=dsnname"
 sqlstmt = store here the query to retrieve the fields from
a specified table
 objrs.open sqlstmt,connectme
 Do While not objrs.EOF
 response.write objrs("URL")
 response.write objrs("Description")
 objrs.movenext
 loop

3.4 Theme Search
In order to complete this stage we need four major
subroutines: first_col (), leaf_node (), search_row ()
and findtheme ().

The first_col () subroutine gets a string and tries
to find a match in the lookup table by searching the
first column, which contains all the themes and sub-
themes available in the database, and returns an
integer number, which represents the row where the
theme can be found. It searches the lookup table
using a partial matching technique.

The leaf_node () subroutine takes an integer,
which represents the row number. It should check
whether the string is in first column and the given
row is a final sub-theme. It returns a Boolean value
true if it is a final sub theme and false otherwise.

x = first_col (current keyword)
 leaf_node (x)
'if the first keyword is not a final sub theme
 begin
 While (count <= array size) And (final sub theme is not
 found) do
 begin
 if (current keyword is not available) then
 create a new table in the database
 Else
 begin
 leaf_node(a given row)

 if the given keyword is final sub theme
 begin

Proceedings of the 11th WSEAS International Conference on SYSTEMS, Agios Nikolaos, Crete Island, Greece, July 23-25, 2007 370

 tablename = lookup (count, 1)
 sqlstmt = select required fields from this
 final sub theme
 retrieve the urls from database.
 End
 Else
 begin
 Bool=search_row(a given row, key (count+1))
 if bool then
 increment count
 End
 End
 End
 Else if the first keyword is final sub theme then
 retrieve the urls from the database.

The search_row () sub routine accepts an integer

representing the row number and a string. It returns a
Boolean value true if the string is found in the
indicated row, otherwise it returns false.

While (lookup (row number, count) != "*") &&
 (string not found)
 begin
 if some letters in lookup (row number, count)
 match some letters from string (partial matching) then
 return true
 Else
 Increment count
 end

Finally, the findtheme () is a search algorithm

takes each keyword from the vector of keywords one
at a time. It searches the lookup table by passing
each keyword to first_col (). The findtheme() returns
the row number. If it is a final sub-theme, the system
retrieves the required fields (Description and URL).
Otherwise, the system should carry out a further
check. If the keyword cannot be found in the
database, the system should expand the database
using initially this keyword as a title. If the keyword
exists in the database, the system will check if the
next keyword in the vector of keywords in the row of
the previous keyword. If the keyword is there, the
process is repeated using the remaining keywords.
But if the next keyword doesn’t exist in that row,
then the system has to create a new theme.

3.5 Expanding the Database
The database should be expanded when the query
entered by the user has not found in the local
database. The system should, therefore, adds a new
table (theme) with query as an initial name of the
new table. The system
starts with empty new theme (no records). The
records will be added manually. The following code
is responsible for this issue:

DIM strSQL
 strSQL = "CREATE TABLE" & " " & tablename & "

 " & ")"& _
 “ num Counter Primary Key,” &_

 “URL Text(50), “ &_
 “Description Text(50) “ &_
 “) ; "
DIM Conn
 SET Conn= Server.CreateObject("ADODB.Connection”)
 Conn.Open "sun "," ”,””
 Conn.Execute (strSQL)
 Conn.close
 set conn=Nothing

4 Latent Semantic Analysis (LSA)
Latent semantic analysis applies a vector space
concept [5]. All keywords and documents form a
two-dimension term-document matrix; singular value
decomposition is used to decompose the term-
document matrix to obtain the semantic features.
Suppose that X is a term-document matrix, which is
which is an i×j matrix; where i is the number of
keywords and j the number of documents. Each
element X[i,j] is the number of occurrences of
keyword i in document j. The SVD computes the
matrix singular value decomposition of X. It uses the
eigenvalue and eigenvector to reduce the dimensions
of the original data, filtering irrelevant information.
The original matrix has a high dimension. An SVD
can reduce the original high term-document matrix
dimensions to a low term-document matrix. The
Matlab command [U,S,V] = svd(X) produces a
diagonal matrix S of the same dimension as X, with
nonnegative diagonal elements in decreasing order,
and unitary matrices U and V so that X = U*S*V'.

5 Clustering Technique
Our clustering technique is computationally efficient
and has high classification accuracy [6]. The basic
idea of the method is simple yet effective. It uses a
control-generate-test strategy, which involves the
generation of a set of dynamic filters (concepts) and
then testing these concepts on given data vectors
(components) for detecting clusters of these
components.

The clustering technique is based on using the
identity matrix (I), i.e. a matrix that contains only the
base vectors, rather than using a random matrix
(RM). These vectors are, therefore, considered as the
seeds for producing the required filtering concepts.
Using this method, the algorithm operates in O (N)
time; where N is the number of base vectors. It
provides great speed and efficiency improvement

Proceedings of the 11th WSEAS International Conference on SYSTEMS, Agios Nikolaos, Crete Island, Greece, July 23-25, 2007 371

over the first method and over the methods currently
used for clustering.

Concepts construction:

Prepare a suitable identity matrix I of base
vectors and the data matrix that is required to be
divided into groups. The number of the elements
(patterns) of the data matrix should constitute
the dimensions of the identity matrix I. Thus, if
the data matrix has n elements, then the
dimensions of the identity matrix I should be
n×n.

1. Use the data matrix to produce a category
matrix or pattern matrix PM=[pvi]

T of pattern
vectors (pvi). This requires a transformation of
data or smoothing. We have used log10 for the
transformation. This step is not necessary but it
provides further performance enhancement and,
as stated before, it can only be carried out if we
know in advance the categories of each attribute
in the data matrix.
2. If the number of columns of the pattern
matrix (PM) is less than the number of columns
of the identity matrix I, then fill the missing data
of PM with averages to produce a new matrix,
namely IM. This step is required in order to have
the same dimensionality for both PM and I.
3. Use the identity matrix I (or IM), and the
pattern matrix (PM), and go throughout the
following steps to generate a concept matrix
CM=[cvi]

 T of concept vectors along with its
associated distance vector DV= [dvi]

 T.

For i =0 to the last pattern in PM do
 Begin
 For j=0 to the last random vector in IM do
 Begin
 a. Find the closest base vector bvj in IM to pvi in PM.
 b. Calculate the distance before alignment (bdi):
 bdi = ||bvj – pvi||, and save the Result in BD=[bdi]

T
 c. Align bvj and pvi as follows:

 bvj = bvj + α ||bvj – pvi||; 0<α<1.
 d. Replace bvi with the result of the alignment to
 produce a candidate concept.
 End;
 End;

4. Remove the base vectors that are not used
from IM and save the result as a concept matrix
(CM) along with the distance vector (BD).
5. Eliminate the redundant concepts; concepts
are considered redundant if the same clustering
result can be reached with using only the
remaining concepts. The elimination should be
carried out as follows:

a. Let adi= ||pvk – cvi||; k=0, 1, 2, …, n be the
distance after the alignment.

b. For all i and j such that i ≠ j if ||cvi - cvji|| ≤ adi,
then eliminate cvji

Clusters generation

6. At the start of iteration i, select a concept
vector (cvi) and its associated distance (bdi) at a
random.
7. Find the pattern vectors that satisfy the
inequality, given below, and place them in the
concept group i (CGi)

Let adi= ||pvk – cvi||; k=0, 1, 2, …, n be the
distance after the alignment and bdi is the
distance before the alignment. For a pattern
vector k to be placed in group i, it must satisfy
the following inequality:

||bdi – adi||<Ti where Ti=adi*∝;

0<∝<1.
8. Stop when you reach an empty pattern

matrix (PM). Otherwise, increase ∝ slightly.
9. Reset PM and CGi for all i, and repeat from
step 1.

6 Conclusion and Further Work
This paper has presented a prototype system to
improve the efficiency of the Web search engines.
The main goal of the search tool described here is to
overcome the drawbacks found in the current search
engines, which are related mainly to their being one-
time, unintelligent search engines. The novelty of the
design presented lies in its ability to support
intelligent (automatic) approaches. The retrieved
documents are grouped into clusters using our
clustering technique that accepts as input the web
features and the semantic features produced by LSA.
Through this approach, the users are always
presented with updated information and are never
flooded with duplicate information every time a
query is submitted.

References:
[1] http://www.ncsa.uiuc.edu/SDG/Software/Mosaic/
[2] http://www.netscape.com/
[3] Armstrong et al. WebWatcher: A Learning

Apprentice for the World Wide Web.
[4] H. Lieberman. Letizia: An Agent that Assista

Web Browsing , IJCAI'95, 1995.
[5] H. Ramadhan and K. Shihab. Improving the

Engineering of Search Engines for the Web,
Proceedings of the Intl. Conference on Internet
Computing, 2002, pp 188-193, USA.

[6] Landauer, T. K., Foltz, P. W., & Laham, D.
Introduction to Latent Semantic Analysis,
Discourse Processes, 25, 1998, pp. 259-284.

[7] Shihab, K. Improving Clustering Performance by
Using Feature Selection and Extraction
Techniques, Journal of Intelligent Systems, Vol.
13, No. 3, 2004, pp 249-273, 2004.

Proceedings of the 11th WSEAS International Conference on SYSTEMS, Agios Nikolaos, Crete Island, Greece, July 23-25, 2007 372

