

Improved Simulation System Performance for Wireless
Communications using Efficient Multi-Threading Architectures

P.M.PAPAZOGLOU1, D.A.KARRAS2, R.C.PAPADEMETRIOU3

1 Dept. of Informatics & Computer Technology, Lamia Institute of Technology, Greece
& University of Portsmouth, United Kingdom, papaz@teilam.gr

2 Dept. of Automation Engineering, Chalkis Institute of Technology, Greece
dakarras@teihal.gr

3 Dept. of Electronic & Computer Engineering, University of Portsmouth, United Kingdom

Abstract - Simulation systems play a major role in the design and evaluation of any experimental wireless
network. The goal of this paper is to demonstrate that simulation model architectures affect simulation
behavior, concerning network performance metrics, essentially and therefore, the optimal architecture should
be investigated in order to achieve the most accurate and reliable results. It is found that the most critical
components that determine simulation model performance are simulation time, network event scheduling and
grade of concurrency. It is, also, found that simulation time in relation to event occurrence in the real network
along with the usage of modern architectural concepts such as multi-threading technology constitute critical
issues too in the development of an efficient simulation system for wireless communications. In order to
evaluate the above findings an extensive experimental study has been conducted testing several discrete event
simulation systems towards presenting the relation between thread modeling selections, simulation time and
network performance.

Key-words: - cellular network, simulation model, multi-threading

1 Introduction

1.1 Simulating Wireless networks
Several systems for simulating wireless networks
have been introduced in the literature. The adaptation
of the simulation systems to the real network
behavior is a major goal. Thus, the simulation has to
be as realistic as possible. The Physical time and the
event occurrence in a real network have to be
reflected realistically inside the simulation model.
When two or more events are happening at the same
time, the concurrency is the most suitable
methodology to model them. The simulation model
architecture along with programming language is the
most critical selection for the simulation system
developer. In this paper, experimental discrete event
simulation systems are tested and proposed towards
designing a more realistic simulation environment.
Moreover, the relation between thread selections,
scheduling mechanisms, simulation time and
network performance for designing and evaluating
cellular communications are also presented. The
basic Mobile User (MU) services (events) that are
supported by a cellular network are:

• New call admission
• Reallocation (handoff)
• User movement
• Call Termination

The simulation system consists of four major
components that can be categorized as follows:

• MU services model
• Operational parameters selection (e.g.

number of cells, Base station positions,
channel allocation scheme, etc)

• Mathematical models integration
(propagation models, statistical distributions,
signal computations, etc)

• Simulation time modeling. It should be
noticed that simulation of event occurrence
over simulation time has to reflect
realistically the physical time of the network
under investigation.

Finally, the MUs services have to be simulated based
on the above simulation system components.

1.2 Discrete Event Simulation (DES)
Discrete Event Simulation [1-10] represents the most
known simulation methodology especially for
communication systems. According to DES concept,
events are happening at discrete points in time within
the simulation time. Simulation time is moving
forward based on the event sequence. These events
represent the basic physical network activities such
as new call admission, etc. Each event is generated
with a time stamp that is used for the event execution
at a later time. The event occurrence over simulation

Proceedings of the 11th WSEAS International Conference on COMMUNICATIONS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 366

time is defined by a scheduler [11-15] that selects
events with minimum time stamp (maximum
priority). Thus, the whole scheduling procedure is
based on a priority queue. DES systems can be
categorized as sequential (SDES) or parallel (PDES).
SDES systems such as ns-2 [16,17] are the most
popular among scientific community. In such a
system, the scheduling mechanism can be analyzed
in a three step cycle:

• Dequeue: Removal of an event with the
minimum time stamp from the queue

• Execute: processing of the dequeued event
• Enqueue: Insertion of a new generated event

in the queue
In ns-2 [16], only one event can be executed at any
given time. If two or more events are scheduled to
take place (to execute) at the same time, their
execution is performed based on the first scheduled –
first dispatched manner and so the real network
behaviour can not be reflected realistically.
The PDES systems offer significant opportunities for
speeding up the execution time of a complex network
structure. In such systems, several additional issues
due to multiple processing units existence, have to be
faced effectively such as processor synchronization
[18-20], load balance [21,18], etc. These systems do
not change the concept of the event scheduling
mechanism.

2 DES System Development
2.1 DES features
An efficient DES system has to offer several features
and to satisfy some critical conditions. These
features and conditions can be interpreted as factors
that affect the DES system behavior. The above
factors are summarized as follows:

• Modeling of the MUs services
• Interpretation and implementation of the real

time to simulation time
• Scheduling mechanism (the most prominent

of them being the Calendar Queue (CQ)
scheduling)

• Concurrency
Time in general is divided in three categories [22]:

• Physical time (real time of the real network)
• Wall-clock time (execution time)
• Simulation time

According to [22], "Simulation time is defined as a totally
ordered set of values where each value represents an instant of
time in the physical system being modelled…". A major goal
of a DES system is the realistic representation of the
physical time into simulation time as well as the
more realistic scheduling approach.

2.2 Calendar Queue (CQ) scheduling
CQ was first introduced by Brown R. This method,
constitutes the most known scheduling mechanism
among the most popular DES systems such as ns-
2(Berkeley)[23], Ptolemy II (Berkeley) [24], Jist
(Cornel University, USA)[25], etc. Performance
improvements for CQ can be found in [26-28]. Each
event is associated with a time stamp that defines its
priority (in execution sequence). A CQ can be
implemented as an array of lists where each list
contains future events. A list of N events is
partitioned to M shorter lists called Buckets that
correspond to a specific time range. Using eq.(1), the
bucket number m(e) where an event e will occur at
time t(e) can be calculated

()() modt em e M
δ

⎢ ⎥= ⎢ ⎥⎣ ⎦

(1)

Where δ is a time resolution related constant. Let
M=8, N=10, δ=1 and t(e)=3.52 (fig.1) for a new
event e. Using eq.(2), the bucket number for event e
is m(e)=3.

Fig. 1. A CQ operation

2.3 Multi-Threading Technology (MT)
A usual capability of a modern operating system
(OS) is the execution of different programs
(applications) at the "same time". Real application
execution at the same time requires at least a system
with N=P, where N are the applications and P the
available processors. In most cases, only one
processor is available and so the CPU time has to be
shared between the running applications. This
execution mechanism is called threading (multi-
threading-MT). The traditional scheduling
mechanism can not reflect realistically enough a
simultaneous event occurrence as a concurrent
(multi-threading) mechanism does.

2.3.1 The JVM Example
One of the most popular features of Java is the
support of native multi-threading. The JVM controls
the MT environment. More information for multi-
threading capabilities of Java can be found in [29-31].
The OS faces JVM as a single application but within
the JVM, multiple Java applications and/or multiple
parts (segments) of one application can be executed
(fig.2) concurrently. In a single processor machine,
the active threads are executed with a high speed
switching between them and so the impression of

Proceedings of the 11th WSEAS International Conference on COMMUNICATIONS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 367

parallel execution is given. Through available
methods of JVM, the priority level (1 to 10) of each
thread can be defined. When the thread priorities are
equal, the CPU time is distributed in a fair manner.
The OS gives a time slice to JVM, and this time is re-
distributed to java applications/threads inside the
JVM environment. The event scheduling is also
controlled by the JVM. This mechanism defines the
real-time order of thread execution and can be
categorized as non-preemptive or preemptive. The
current thread is running forever and has to inform
the scheduler explicitly if it is safe to start another
waiting thread according to non-preemptive
scheduling. In preemptive, a thread is running for a
specific CPU time-slice and then the scheduler
“preempts” it, (calling suspend()), and resumes
another thread for the next available time-slice. In
JVM, the execution time of every thread (in case of
equal priorities) is balanced. Figure 2, illustrates
three active threads that share a single processor. The
sleep() method deactivates temporarily the current
thread in order to give time for execution of another
thread.

Fig. 2 Thread switching

2.3.2 MT scheduling
When the time slice given by JVM or by
programmer to each thread (network event)
execution is less than the required computational
time, an event interleaving is achieved. This
technique reflects more realistically the user
competition for accessing common radio resources.
Moreover, when a user is under processing, the
simulation time flows also for the next upcoming
user. Thus, the network decisions are more
sophisticated and optimized to more user requests.

3 Experimental DES Models
3.1 Network modeling
All the experimental models are based on the
concurrent concept that is implemented through
Multi-threading. Due to the nature of the event
occurrence in the real network, concurrency offers a

chance to model more realistically the physical
activities of the network. Three different
architectures with increasing grade of concurrency
have been implemented and tested in order to
investigate the dependence of the results and
simulation system performance from the multi-
threading usage. The simulation models support the
four basic services for the MUs as mentioned before.
The simulation model operation is mainly focused in
channel allocation procedure which is strongly
connected with new call admission and reallocation
(hand off). This procedure is also used in the case of
an MU movement. Three conditions must be fulfilled
for a successful channel allocation:

• Channel availability
• Carrier to Noise Ratio (CNR) between MU

and BS above a predefined threshold
• Carrier to Noise plus Interference Ratio

(CNIR) above a predefined threshold
Additional criteria can be applied using different
channel allocation strategies. The Dynamic Channel
Allocation (DCA) [32,33-36] strategy has been used
in our experimental models. The CNIR ratio is
derived from the following type:

0
1 0

0 0

1 0

1

1 0

1 0
ic n i n

i i
i

A P dR
N A P d

ξ
α

ξ
α

−

−

−

=
+ ∑

(2)

Where n is the number of base stations and users, ξi
is the distortion due to shadowing from user to base
station, A is a proportional coefficient, Po is the
transmitted power of a reference point, Pi is the
transmitted power of the i user and di is the distance
between MU i and reference BS.

3.2 Multi-threading scenarios
The basic network procedures such as new call
admission (NC), reallocation (RC), MU movement
(MC) and call termination (FC) are implemented as
threads within the JVM environment and for all
experimental models. Inside the simulation system,
seven entities constitute the basic components. These
components are:

• Controller (clock) which controls and
synchronizes the whole simulation procedure

• Initialization Procedures. This procedure
prepares initialization of each new
simulation step (e.g. define traffic
conditions, initialize counters, etc)

• NC, RC, MC, FC which represent the four
basic network procedures respectively

• Termination Procedures. Actions after the
completion of each simulation step (e.g.
compute statistical metrics, store data for the
finished simulation step, etc)

Proceedings of the 11th WSEAS International Conference on COMMUNICATIONS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 368

Table 1, illustrates the implemented and simulated
scenarios that are based on different combinations of
threads and single code tasks (S=single code,
T=thread). In these scenarios four, five and seven
threads have been used respectively.

 Scenario 1 2 3
 4 threads 5 threads 7 threads
1 Clock S T T
2 Init loop S S T
3 NC T T T
4 RC T T T
5 MC T T T
6 FC T T T
7 Termination

loop
S S T

Table 1. Implemented scenarios

In the first scenario (fig. 3), only the basic network
procedures are implemented as threads. The
controller is working as a part of the main
application thread and it is active until the simulation
time termination. When a new simulation step starts,
the controller activates the needed initializations and
after the completion the four threads are activated.
After completion, each thread sends a signal to the
controller. When four completion signals are
collected from the controller, the final loop task is
activated.

Fig. 3 The 4 thread scenario

The controller is converted to thread (fig. 4) in the
case of second scenario. While the four threads are
executing from JVM, the corresponding code within
the application is blocked. The controller defines the
activation sequence between the main simulation
components. The last experimental model (fig. 5)
consists of seven threads, four threads for the basic
network procedures, one for synchronization and two
for supplementary tasks (init loop, final loop). All
the implemented threads are always active within the
simulation time. Special purpose flags inside the
body of each thread and in combination with control
signals the corresponding code is activated. The
JVM offers various methods for controlling threads.
Using these methods for starting/stopping threads

(instead of internal flags) significant delays and
instability of the simulation models can be produced.

Fig. 4 The 5 thread scenario

Controller
Thread

(Generate Clock Signal)

1 : Initial Procedures

2 : Event Threads

3 : Final Procedures

Initial Procedures

Clock=1=Activate
Clock=2=Disable
Clock=3=Disable

Pause clock

Procedure completed, Resume clock

NC Thread

RC Thread

MC Thread

FC Thread

Clock=1=Disable
Clock=2=Activate
Clock=3=Disable

Pause clock

Actions completed, Resume clock

Termination Procedures

Clock=1=Disable
Clock=2=Disable
Clock=3=Activate

Pause clock

Fig. 5 The 7 thread scenario

4 DES System Evaluation

The major tasks judging performance of a cellular
network are the new call admission and handoff
(reallocation). This performance can be measured in
terms of statistical metrics by using blocking and
dropping probability [37-49]. When a new call
admission is unsuccessful, then this call is blocked.
The blocking probability is calculated from the type:

blocking
number of blocked callsP

number of calls
=

(2)

In a handoff situation, if the network can not allocate
a new channel for the moving MU, then, this
ongoing call is dropped. The corresponding
probability is calculated as follows:

dropping
number of forced callsP

number of calls number of blocked calls
=

−
 (3)

For estimating more accurately the simulating
results, Monte Carlo [50] executions have been used.

5 Experimental Results
Figures 6 and 7 show that by increasing thread
number, network performance is improved.

Proceedings of the 11th WSEAS International Conference on COMMUNICATIONS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 369

0 5 10 15
0.083

0.084

0.085

0.086

0.087

0.088

0.089

0.09

0.091

0.092

0.093

Executions (x2)

M
ea

n
Va

lu
e

BLOCKING MEAN Mean Progress USERS=50/CELL

7 threads
5 threads
4 threads

Fig. 6, Blocking probabilities for the involved

architectures

0 5 10 15
0.0175

0.018

0.0185

0.019

0.0195

0.02

0.0205

0.021

0.0215

0.022

0.0225

Executions (x2)

M
ea

n
Va

lu
e

DROPPING MEAN Mean Progress USERS=50/CELL

Calendar Queue (CQ)
Multi-Threading (MT)

Fig. 7, Dropping probabilities for the CQ and MT

approaches

Tables 2 and 3 confirm the results that are illustrated
in previous graphs (figures 8,9)

Scenario Blocking Mean Values
 STD MEAN

7 threads 0.044175 0.089016
5 threads 0.04337 0.090194
4 threads 0.046721 0.092127

Table 2 Mean values of STD and MEAN for
blocking probability

Scenario Dropping Mean Values
 STD MEAN

7 threads 0.025583 0.018442
5 threads 0.0344 0.022512
4 threads 0.033293 0.022728

Table 3 Mean values of STD and MEAN for
dropping probability
Intuitively, the implemented concurrency is more
realistic when the computational time for a
simulation step is remaining stable (balanced
between tasks inside the step). Table 4, shows the

ratio std/mean of the simulation time duration (ms).
This ratio gives us the information for the
significance of the std of the simulation step duration
and thus the resulting stability. Data inside table 4,
represent results based on Monte Carlo executions.
The mean values represent the ratio std/mean and the
std represents the standard deviation of the resulted
mean values.

 7 threads 5 threads 4 threads
Mean 0.055156 0.1479 0.20057333
Std 0.03353804 0.014321662 0.16271174

Table 4. Simulation step duration

6 Conclusions
In this paper, the influence of modeled concurrency
level for the proposed simulation architectures of
wireless communication systems to simulation
system behavior and performance is presented.
Moreover, the concept of the simulation step
computational duration stability over simulation time
is illustrated.
It is experimentally implied that JVM in the case of
the multi-threading scenario involving
implementation of a simulation architecture
consisting of four threads and three simple non-
thread tasks, provides balanced time slices only to
the four threads. The simple non-thread tasks do not
participate to this time sharing. The total
computational time that is needed for each
simulation step is based on the completion of each
individual component such as threads and simple
tasks. In the case of less than seven threads
implementation the total time is asymmetrically
allocated to the components and so no balanced
conditions could be guaranteed. When the mentioned
components are all threads, the time slicing that is
provided by JVM is fairly allocated among the active
threads and so balanced conditions are created. The
experimental results show that there is high positive
correlation between system performance and
simulation time stability implying realistic reflection
of the Physical Network Time.
There is no doubt that the JVM environment
constitutes an effective tool for developing a multi-
threading environment. On the other hand, critical
drawbacks of the JVM approach (e.g. deadlocks,
significant delays due to thread priorities,
synchronization problems, etc) should be effectively
faced by the developer. A major future research
work towards developing an efficient simulation
model for wireless communication systems is to
focus on balancing drawbacks and benefits of such a
JVM based approach.

Proceedings of the 11th WSEAS International Conference on COMMUNICATIONS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 370

References
[1] Reuben Pasquini, ALGORITHMS FOR IMPROVING THE
PERFORMANCE OF OPTIMISTIC PARALLEL SIMULATION, PhD
dissertation, Purdue University, 1999
[2] Dirk Brade, A GENERALIZED PROCESS FOR THE
VERIFICATION AND VALIDATION OF MODELS AND
SIMULATION RESULTS, PhD dissertation, University of Bundeswehr
Munchen, 2003
[3] Rimon Barr, AN EFFICIENT, UNIFYING APPROACH TO
SIMULATION USING VIRTUAL MACHINES, Cornell University,
2004
[4] R. S. M. GOH and I. L-J THNG, MLIST: AN EFFICIENT PENDING
EVENT SET STRUCTURE
FOR DISCRETE EVENT SIMULATION, International Journal of
SIMULATION Vol. 4 No. 5-6, 2003
[5] Gianni A. Di Caro, Analysis of simulation environments for mobile ad
hoc networks, Technical Report No. IDSIA-24-03, Dalle Molle Institute
for Artificial Intelligence,2003
[6] Thomas J. Schriber, Daniel T. Brunner, INSIDE DISCRETE-EVENT
SIMULATION SOFTWARE: HOW IT WORKS AND WHY IT
MATTERS, Proceedings of the 1997 Winter Simulation Conference,
1997
[7] Jayadev Misra, Distributed Discrete-event Simulation, ACM,
Computing Surveys, Vol. 18, No. 1, March 1986
[8] Benno Jaap Overeinder, Distributed Event-driven Simulation, PhD
dissertation, University of Amsterdam, 2000
[9] Bruno R. Preis, Wayne M. Loucks, V. Carl Hamacher, A UNIFIED
MODELING METHODOLOGY FOR PERFORMANCE
EVALUATION OF DISTRIBUTED DISCRETE EVENT
SIMULATION MECHANISMS, the 1988 Winter Simulation
Conference, 1988
[10] Kalyan S. Perumalla, PARALLEL AND DISTRIBUTED
SIMULATION: TRADITIONAL TECHNIQUES AND RECENT
ADVANCES, Proceedings of the 2006 Winter Simulation
Conference,2006
[11] Mathieu Lacage, Thomas R. Henderson, Yet Another Network
Simulator, ACM 2006
[12] Rick Siow Mong Goh, Ian Li- Jin Thng, DSplay: An Efficient
Dynamic Priority Queue Structure For Discrete Event Simulation, ???
[13] kehsiung chung, janche sang and vernon rego, A Performance
Comparison of Event Calendar Algorithms: an Empirical Approach,
SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 23(10), 1107–
1138 (OCTOBER 1993)
[14] Lukito Muliadi, DISCRETE EVENT MODELING IN PTOLEMY
II, University of California, Berkeley, 1999
15] Valeri Naoumov, Thomas Gross Simulation of Large Ad Hoc
Networks, MSWiM’03, September, San Diego, California, USA, 2003
[16] Kevin Fall, Kannan Varadhan, The ns Manual, UC Berkeley, LBL,
USC/ISI, and Xerox PARC, January 14, 2007
[17] Stuart Kurkowski, Tracy Camp, and Michael Colagrosso, MANET
Simulation Studies: The Current State and New Simulation Tools, 2005
[18] Xiang Zeng, Rajive Bagrodia, Mario Gerla, “GloMoSim: A Library
for Parallel Simulation of Large-scale Wireless Networks”, Proceedings
of the 12th Workshop on Parallel and Distributed Simulations, 1998
[19] Lokesh Bajaj, Mineo Takai, Rajat Ahuja, Rajive Bagrodia,
“Simulation of Large-Scale Heterogeneous Communication Systems”,
Proceedings of IEEE Military Communications Conference
(MILCOM’99), 1999
[20] A. Boukerche, S. K. Das, A. Fabbri, “SWiMNet: A Scalable Parallel
Simulation Testbed forWireless and Mobile Networks”, Wireless
Networks 7, 467–486, 2001
[21] Winston Liu, Ching_Chuan Chiang, Hsiao_Kuang Wu, Vikas Jha,
Mario Gerla, Rajive Bagrodia, “PARALLEL SIMULATION
ENVIRONMENT FOR MOBILE WIRELESS NETWORKS”,
Proceedings of the 1996 Winter Simulation Conference, WSC’96, pp 605-
612,1996
[22] Richard M. Fujimoto. Parallel and Distributed Simulation Systems.
Parallel and Distributed Computing. Wiley-Interscience, 2000.
[23] Kevin Fall, Kannan Varadhan, (2007), The ns Manual, UC Berkeley,
LBL, USC/ISI, and Xerox PARC, January 14.
[24] Lukito Muliadi, (1999), Discrete Event Modeling In Ptolemy Ii,
Department of Electrical Engineering and Computer Science University
of California, Berkeley.
[25]http://jist.ece.cornell.edu/javadoc/jist/runtime/
Scheduler.Calendar.html

[26] Rick Siow Mong Goh, Ian Li- Jin Thng, (2004), DSplay: An
Efficient Dynamic Priority Queue Structure For Discrete Event
Simulation, SimTecT Simulation Technology and Training Conference,
Australia
[27] R. S. M. GOH and I. L-J THNG, (2003), MLIST: An Efficient
Pending Event Set Structure For Discrete Event Simulation, International
Journal of SIMULATION Vol. 4 No. 5-6.
[28] Kehsiung Chung, Janche Sang and Vernon Rego, (1993), A
Performance Comparison of Event Calendar Algorithms: an Empirical
Approach, Software-Practice and Experience, vol. 23(10), 1107–1138.
[29]Oaks S., et al, "Java Threads", O'Reilly,3rd edition, 2004
[30]Kramer J.M., "Concurrency: State Models & Java Programs", John
Wiley & Sons, 2nd Edition, 2006
[31]Lindsey C.S., et al, "An Introduction to Scientific and Technical
Computing with java", Cambridge University Press, 2005
[32] Zhang M., and T. S. Yum, “Comparisons of Channel Assignment
Strategies in Cellular Mobile Telephone Systems”, IEEE Transactions on
Vehicular Technology, vol.38,no.4,pp211-215, 1989
[33]Cimini L.J. and G.J. Foschini, “Distributed Algorithms for Dynamic
Channel Allocation in Microcellular Systems”, IEEE Vehicular
Technology Conference, pp.641-644, 1992
[34]Cox D.C. and D. O. Reudink, “Increasing Channel Occupancy in
Large Scale Mobile Radio Systems: Dynamic Channel Reassignment”,
IEEE Transanctions on Vehicular Technology, vol.VT-22, pp.218–222,
1973
[35]Del Re E., R. Fantacci, and G. Giambene, “A Dynamic Channel
Allocation Technique based on Hopfield Neural Networks”, IEEE
Transanctions on Vehicular Technology, vol.45, no.1, pp.26–32, 1996
[36]Sivarajan K.N., R.J. McEliece, and J.W. Ketchum,“Dynamic Channel
Assignment in Cellular Radio”, IEEE 40th Vehicular Technology
Conference, pp.631–637, 1990
[37] I. Katzela and M. Naghshineh, “Channel assignment schemes for
cellular mobile telecommunication systems: A comprehensive survey,”
IEEE Personal Comms., pp. 10–31, June 1996.
[38] S.H. Wong, “Channel Allocation for Broadband Fixed Wireless
Access Networks”, PhD dissertation, University of Cambridge, 2003
[39] P.Cherriman, F.Romiti and L.Hanzo, “Channel Allocation for Third-
generation Mobile Radio Systems”, ACTS’98, vol.1,pp.255-261,1998
[40] D.Grace, “Distributed Dynamic Channel Assignment for the
Wireless Environment”, PhD dissertation, University of York, 1998
[41] H.Haas, “Interference analysis of and dynamic channel assignment
algorithms in TD–CDMA/TDD systems”, PhD dissertation, University of
Edinburg, 2000
[42] Hector Salgado, Marvin Sirbu, Jon Peha, “SPECTRUM SHARING
THROUGH DYNAMIC CHANNEL ASSIGNMENT FOR OPEN
ACCESS TO PERSONAL COMMUNICATIONS SERVICES” Proc. of
IEEE Intl. Communications Conference (ICC), June 1995, pp. 417-22,
1995
[43] L.C.Godara, “Applications of Antenna Arrays to Mobile
Communications, Part I: Performance Improvement, Feasibility, and
System Considerations ”, PROCEEDINGS OF THE IEEE, VOL. 85, NO.
7, JULY 1997
[44] Nishith D. Tripathi, Nortel Jeffrey H. Reed and Hugh F.
VanLandingham, " Handoff in Cellular Systems ", IEEE Personal
Communications, 1998
[45] J. Bigham, L. Du, “Cooperative Negotiation in a MultiAgent System
for RealTime Load Balancing of a Mobile Cellular Network”,
AAMAS’03, July 14–18, 2003
[46] F. Berggren, “Power Control and Adaptive Resource Allocation in
DS-CDMA Systems”, PhD dissertation, Royal Institute of Technology,
2003
[47] D. Hollos, H. Karl, A. Wolisz, “Regionalizing Global Optimization
Algorithms to Improve the Operation of Large Ad Hoc Networks”, Proc.
of IEEE Wireless Communications and Networking Conf., Atlanta,
Georgia, USA, March 2004
[48] M. Cheng, Y. Li and D.-Z. Du, “Combinatorial Optimization in
Communication Networks”, Kluwer, 2005
[49] Wang-Chien Lee, Johnson Lee, and Karen Huff, "On Simulation
Modeling of Information
Dissemination Systems in Mobile Environments ", LNCS 1748, pp. 45–
57, 1999.
[50] Fishman 1995 George S, Fishman. Monte Carlo: concepts,
algorithms, and applications. Springer-Verlag, (1995).

Proceedings of the 11th WSEAS International Conference on COMMUNICATIONS, Agios Nikolaos, Crete Island, Greece, July 26-28, 2007 371

