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Abstract - Simulation systems play a major role in the design and evaluation of any experimental wireless 
network. The goal of this paper is to demonstrate that simulation model architectures affect simulation 
behavior, concerning network performance metrics, essentially and therefore, the optimal architecture should 
be investigated in order to achieve the most accurate and reliable results. It is found that the most critical 
components that determine simulation model performance are simulation time, network event scheduling and 
grade of concurrency.  It is, also, found that simulation time in relation to event occurrence in the real network 
along with the usage of modern architectural concepts such as multi-threading technology constitute critical 
issues too in the development of an efficient simulation system for wireless communications. In order to 
evaluate the above findings an extensive experimental study has been conducted testing several discrete event 
simulation systems towards presenting the relation between thread modeling selections, simulation time and 
network performance. 
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1 Introduction 
 
1.1 Simulating Wireless networks 
Several systems for simulating wireless networks 
have been introduced in the literature. The adaptation 
of the simulation systems to the real network 
behavior is a major goal. Thus, the simulation has to 
be as realistic as possible. The Physical time and the 
event occurrence in a real network have to be 
reflected realistically inside the simulation model. 
When two or more events are happening at the same 
time, the concurrency is the most suitable 
methodology to model them. The simulation model 
architecture along with programming language is the 
most critical selection for the simulation system 
developer. In this paper, experimental discrete event 
simulation systems are tested and proposed towards 
designing a more realistic simulation environment. 
Moreover, the relation between thread selections, 
scheduling mechanisms, simulation time and 
network performance for designing and evaluating 
cellular communications are also presented. The 
basic Mobile User (MU) services (events) that are 
supported by a cellular network are: 

• New call admission 
• Reallocation (handoff) 
• User movement 
• Call Termination 

The simulation system consists of four major 
components that can be categorized as follows: 

• MU services model  
• Operational parameters selection (e.g. 

number of cells, Base station positions, 
channel allocation scheme, etc) 

• Mathematical models integration 
(propagation models, statistical distributions, 
signal computations, etc) 

• Simulation time modeling. It should be 
noticed that simulation of event occurrence 
over simulation time has to reflect 
realistically the physical time of the network 
under investigation. 

Finally, the MUs services have to be simulated based 
on the above simulation system components. 
 
1.2 Discrete Event Simulation (DES) 
Discrete Event Simulation [1-10] represents the most 
known simulation methodology especially for 
communication systems. According to DES concept, 
events are happening at discrete points in time within 
the simulation time. Simulation time is moving 
forward based on the event sequence. These events 
represent the basic physical network activities such 
as new call admission, etc. Each event is generated 
with a time stamp that is used for the event execution 
at a later time. The event occurrence over simulation 
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time is defined by a scheduler [11-15] that selects 
events with minimum time stamp (maximum 
priority).  Thus, the whole scheduling procedure is 
based on a priority queue. DES systems can be 
categorized as sequential (SDES) or parallel (PDES). 
SDES systems such as ns-2 [16,17] are the most 
popular among scientific community. In such a 
system, the scheduling mechanism can be analyzed 
in a three step cycle: 

• Dequeue: Removal of an event with the 
minimum time stamp from the queue 

• Execute: processing of the dequeued event  
• Enqueue: Insertion of a new generated event 

in the queue 
In ns-2 [16], only one event can be executed at any 
given time. If two or more events are scheduled to 
take place (to execute) at the same time, their 
execution is performed based on the first scheduled – 
first dispatched manner and so the real network 
behaviour can not be reflected realistically.  
The PDES systems offer significant opportunities for 
speeding up the execution time of a complex network 
structure. In such systems, several additional issues 
due to multiple processing units existence, have to be 
faced effectively such as processor synchronization 
[18-20], load balance [21,18], etc. These systems do 
not change the concept of the event scheduling 
mechanism.  
 
2 DES System Development 
2.1 DES features 
An efficient DES system has to offer several features 
and to satisfy some critical conditions. These 
features and conditions can be interpreted as factors 
that affect the DES system behavior. The above 
factors are summarized as follows: 

• Modeling of the MUs services 
• Interpretation and implementation of the real 

time to simulation time 
• Scheduling mechanism (the most prominent 

of them being the Calendar Queue (CQ) 
scheduling) 

• Concurrency 
Time in general is divided in three categories [22]: 

• Physical time (real time of the real network) 
• Wall-clock time (execution time) 
• Simulation time 

According to [22], "Simulation time is defined as a totally 
ordered set of values where each value represents an instant of 
time in the physical system being modelled…". A major goal 
of a DES system is the realistic representation of the 
physical time into simulation time as well as the 
more realistic scheduling approach. 
 

2.2 Calendar Queue (CQ) scheduling 
CQ was first introduced by Brown R. This method, 
constitutes the most known scheduling mechanism 
among the most popular DES systems such as ns-
2(Berkeley)[23], Ptolemy II (Berkeley) [24], Jist 
(Cornel University, USA)[25], etc. Performance 
improvements for CQ can be found in [26-28]. Each 
event is associated with a time stamp that defines its 
priority (in execution sequence). A CQ can be 
implemented as an array of lists where each list 
contains future events. A list of N events is 
partitioned to M shorter lists called Buckets that 
correspond to a specific time range. Using eq.(1), the 
bucket number m(e) where an event e will occur at 
time t(e) can be calculated 

( )( ) modt em e M
δ

⎢ ⎥= ⎢ ⎥⎣ ⎦  

 
(1)

Where δ is a time resolution related constant. Let 
M=8, N=10, δ=1 and t(e)=3.52 (fig.1) for a new 
event e. Using eq.(2), the bucket number for event e 
is m(e)=3. 

 
Fig. 1. A CQ operation 

 
2.3 Multi-Threading Technology (MT) 
A usual capability of a modern operating system 
(OS) is the execution of different programs 
(applications) at the "same time". Real application 
execution at the same time requires at least a system 
with N=P, where N are the applications and P the 
available processors. In most cases, only one 
processor is available and so the CPU time has to be 
shared between the running applications. This 
execution mechanism is called threading (multi-
threading-MT). The traditional scheduling 
mechanism can not reflect realistically enough a 
simultaneous event occurrence as a concurrent 
(multi-threading) mechanism does.  
 
2.3.1 The JVM Example 
One of the most popular features of Java is the 
support of native multi-threading. The JVM controls 
the MT environment. More information for multi-
threading capabilities of Java can be found in [29-31]. 
The OS faces JVM as a single application but within 
the JVM, multiple Java applications and/or multiple 
parts (segments) of one application can be executed 
(fig.2) concurrently. In a single processor machine, 
the active threads are executed with a high speed 
switching between them and so the impression of 
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parallel execution is given. Through available 
methods of JVM, the priority level (1 to 10) of each 
thread can be defined. When the thread priorities are 
equal, the CPU time is distributed in a fair manner. 
The OS gives a time slice to JVM, and this time is re-
distributed to java applications/threads inside the 
JVM environment. The event scheduling is also 
controlled by the JVM. This mechanism defines the 
real-time order of thread execution and can be 
categorized as non-preemptive or preemptive. The 
current thread is running forever and has to inform 
the scheduler explicitly if it is safe to start another 
waiting thread according to non-preemptive 
scheduling. In preemptive, a thread is running for a 
specific CPU time-slice and then the scheduler 
“preempts” it, (calling suspend()), and resumes 
another thread for the next available time-slice. In 
JVM, the execution time of every thread (in case of 
equal priorities) is balanced. Figure 2, illustrates 
three active threads that share a single processor. The 
sleep() method deactivates temporarily the current 
thread in order to give time for execution of another 
thread. 

  
Fig. 2 Thread switching 

 
2.3.2 MT scheduling 
When the time slice given by JVM or by 
programmer to each thread (network event) 
execution is less than the required computational 
time, an event interleaving is achieved. This 
technique reflects more realistically the user 
competition for accessing common radio resources. 
Moreover, when a user is under processing, the 
simulation time flows also for the next upcoming 
user. Thus, the network decisions are more 
sophisticated and optimized to more user requests. 
 
3 Experimental DES Models 
3.1 Network modeling 
All the experimental models are based on the 
concurrent concept that is implemented through 
Multi-threading. Due to the nature of the event 
occurrence in the real network, concurrency offers a 

chance to model more realistically the physical 
activities of the network. Three different 
architectures with increasing grade of concurrency 
have been implemented and tested in order to 
investigate the dependence of the results and 
simulation system performance from the multi-
threading usage. The simulation models support the 
four basic services for the MUs as mentioned before. 
The simulation model operation is mainly focused in 
channel allocation procedure which is strongly 
connected with new call admission and reallocation 
(hand off). This procedure is also used in the case of 
an MU movement. Three conditions must be fulfilled 
for a successful channel allocation: 

• Channel availability 
• Carrier to Noise Ratio (CNR) between MU 

and BS above a predefined threshold 
• Carrier to Noise plus Interference Ratio 

(CNIR) above a predefined threshold 
Additional criteria can be applied using different 
channel allocation strategies. The Dynamic Channel 
Allocation (DCA) [32,33-36]  strategy has been used 
in our experimental models. The CNIR ratio is 
derived from the following type: 

0
1 0

0 0

1 0

1

1 0

1 0
ic n i n

i i
i

A P dR
N A P d

ξ
α

ξ
α

−

−

−

=
+ ∑

  
(2)

Where n is the number of base stations and users, ξi 
is the distortion due to shadowing from user to base 
station, A is a proportional coefficient, Po is the 
transmitted power of a reference point, Pi is the 
transmitted power of the i user and di is the distance 
between MU i and reference BS.  
 
3.2 Multi-threading scenarios 
The basic network procedures such as new call 
admission (NC), reallocation (RC), MU movement 
(MC) and call termination (FC) are implemented as 
threads within the JVM environment and for all 
experimental models. Inside the simulation system, 
seven entities constitute the basic components. These 
components are: 

• Controller (clock) which controls and 
synchronizes the whole simulation procedure 

• Initialization Procedures. This procedure 
prepares initialization of each new 
simulation step (e.g. define traffic 
conditions, initialize counters, etc) 

• NC, RC, MC, FC which represent the four 
basic network procedures respectively 

• Termination Procedures. Actions after the 
completion of each simulation step (e.g. 
compute statistical metrics, store data for the 
finished simulation step, etc)  
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Table 1, illustrates the implemented and simulated 
scenarios that are based on different combinations of 
threads and single code tasks (S=single code, 
T=thread). In these scenarios four, five and seven 
threads have been used respectively.  

 Scenario 1 2 3 
  4 threads 5 threads 7 threads 
1 Clock S T T 
2 Init loop S S T 
3 NC T T T 
4 RC T T T 
5 MC T T T 
6 FC T T T 
7 Termination 

loop 
S S T 

Table 1. Implemented scenarios 
 
In the first scenario (fig. 3), only the basic network 
procedures are implemented as threads. The 
controller is working as a part of the main 
application thread and it is active until the simulation 
time termination. When a new simulation step starts, 
the controller activates the needed initializations and 
after the completion the four threads are activated. 
After completion, each thread sends a signal to the 
controller. When four completion signals are 
collected from the controller, the final loop task is 
activated.  

 
Fig. 3 The 4 thread scenario 

 
The controller is converted to thread (fig. 4) in the 
case of second scenario. While the four threads are 
executing from JVM, the corresponding code within 
the application is blocked. The controller defines the 
activation sequence between the main simulation 
components. The last experimental model (fig. 5) 
consists of seven threads, four threads for the basic 
network procedures, one for synchronization and two 
for supplementary tasks (init loop, final loop). All 
the implemented threads are always active within the 
simulation time. Special purpose flags inside the 
body of each thread and in combination with control 
signals the corresponding code is activated. The 
JVM offers various methods for controlling threads. 
Using these methods for starting/stopping threads 

(instead of internal flags) significant delays and 
instability of the simulation models can be produced.  

 
Fig. 4 The 5 thread scenario 

Controller
Thread

(Generate Clock Signal)

1 : Initial Procedures

2 : Event Threads

3 : Final Procedures

Initial Procedures

Clock=1=Activate
Clock=2=Disable
Clock=3=Disable

Pause clock

Procedure completed, Resume clock

NC Thread

RC Thread

MC Thread

FC Thread

Clock=1=Disable
Clock=2=Activate
Clock=3=Disable

Pause clock

Actions completed, Resume clock

Termination Procedures

Clock=1=Disable
Clock=2=Disable
Clock=3=Activate

Pause clock

 
Fig. 5 The 7 thread scenario 

 
4 DES System Evaluation 
 
The major tasks judging performance of a cellular 
network are the new call admission and handoff 
(reallocation). This performance can be measured in 
terms of statistical metrics by using blocking and 
dropping probability [37-49]. When a new call 
admission is unsuccessful, then this call is blocked. 
The blocking probability is calculated from the type: 

blocking
number of blocked callsP

number of calls
=

 
(2)

In a handoff situation, if the network can not allocate 
a new channel for the moving MU, then, this 
ongoing call is dropped. The corresponding 
probability is calculated as follows: 
 

dropping
number of forced callsP

number of calls number of blocked calls
=

−
 (3)

For estimating more accurately the simulating 
results, Monte Carlo [50] executions have been used. 
 
5 Experimental Results 
Figures 6 and 7 show that by increasing thread 
number, network performance is improved. 
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Fig. 6, Blocking probabilities for the involved 

architectures 
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Fig. 7, Dropping probabilities for the CQ and MT 

approaches 
 
Tables 2 and 3 confirm the results that are illustrated 
in previous graphs (figures 8,9) 

Scenario Blocking Mean Values 
 STD MEAN 

7 threads 0.044175 0.089016 
5 threads 0.04337 0.090194 
4 threads 0.046721 0.092127 

Table 2 Mean values of STD and MEAN for 
blocking probability 
 

Scenario Dropping Mean Values 
 STD MEAN 

7 threads 0.025583 0.018442 
5 threads 0.0344 0.022512 
4 threads 0.033293 0.022728 

Table 3 Mean values of STD and MEAN for 
dropping probability 
Intuitively, the implemented concurrency is more 
realistic when the computational time for a 
simulation step is remaining stable (balanced 
between tasks inside the step). Table 4, shows the 

ratio std/mean of the simulation time duration (ms). 
This ratio gives us the information for the 
significance of the std of the simulation step duration 
and thus the resulting stability. Data inside table 4, 
represent results based on Monte Carlo executions. 
The mean values represent the ratio std/mean and the 
std represents the standard deviation of the resulted 
mean values.  
 
 7 threads 5 threads 4 threads 
Mean 0.055156 0.1479 0.20057333
Std 0.03353804 0.014321662 0.16271174

Table 4. Simulation step duration 
 
6 Conclusions 
In this paper, the influence of modeled concurrency 
level for the proposed simulation architectures of 
wireless communication systems to simulation 
system behavior and performance is presented. 
Moreover, the concept of the simulation step 
computational duration stability over simulation time 
is illustrated.  
It is experimentally implied that JVM in the case of 
the multi-threading scenario involving 
implementation of a simulation architecture 
consisting of four threads and three simple non-
thread tasks, provides balanced time slices only to 
the four threads. The simple non-thread tasks do not 
participate to this time sharing. The total 
computational time that is needed for each 
simulation step is based on the completion of each 
individual component such as threads and simple 
tasks. In the case of less than seven threads 
implementation the total time is asymmetrically 
allocated to the components and so no balanced 
conditions could be guaranteed. When the mentioned 
components are all threads, the time slicing that is 
provided by JVM is fairly allocated among the active 
threads and so balanced conditions are created. The 
experimental results show that there is high positive 
correlation between system performance and 
simulation time stability implying realistic reflection 
of the Physical Network Time. 
There is no doubt that the JVM environment 
constitutes an effective tool for developing a multi-
threading environment. On the other hand, critical 
drawbacks of the JVM approach (e.g. deadlocks, 
significant delays due to thread priorities, 
synchronization problems, etc) should be effectively 
faced by the developer. A major future research 
work towards developing an efficient simulation 
model for wireless communication systems is to 
focus on balancing drawbacks and benefits of such a 
JVM based approach. 
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